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Abstract 

Binarization of Synchronous Context Free 

Grammars (SCFG) is essential for achieving 

polynomial time complexity of decoding for 

SCFG parsing based machine translation sys-

tems. In this paper, we first investigate the 

excess edge competition issue caused by a left-

heavy binary SCFG derived with the method 

of Zhang et al. (2006). Then we propose a new 

binarization method to mitigate the problem 

by exploring other alternative equivalent bi-

nary SCFGs. We present an algorithm that ite-

ratively improves the resulting binary SCFG, 

and empirically show that our method can im-

prove a string-to-tree statistical machine trans-

lations system based on the synchronous bina-

rization method in Zhang et al. (2006) on the 

NIST machine translation evaluation tasks. 

1 Introduction 

Recently Statistical Machine Translation (SMT) 

systems based on Synchronous Context Free 

Grammar (SCFG) have been extensively investi-

gated (Chiang, 2005; Galley et al., 2004; Galley 

et al., 2006) and have achieved state-of-the-art 

performance. In these systems, machine transla-

tion decoding is cast as a synchronous parsing 

task. Because general SCFG parsing is an NP-

hard problem (Satta and Peserico, 2005), practic-

al SMT decoders based on SCFG parsing re-

quires an equivalent binary SCFG that is directly 

learned from training data to achieve polynomial 

time complexity using the CKY algorithm (Ka-

sami, 1965; Younger, 1967) borrowed from CFG 

parsing techniques. Zhang et al. (2006) proposed 

synchronous binarization, a principled method to 

binarize an SCFG in such a way that both the 

source-side and target-side virtual non-terminals 

have contiguous spans. This property of syn-

chronous binarization guarantees the polynomial 

time complexity of SCFG parsers even when an 

n-gram language model is integrated, which has 

been proved to be one of the keys to the success 

of a string-to-tree syntax-based SMT system. 

However, as shown by Chiang (2007), SCFG-

based decoding with an integrated n-gram lan-

guage model still has a time complexity of  

𝛩(𝑚3 𝑇 4(𝑛−1)), where m is the source sentence 

length, and  𝑇  is the vocabulary size of the lan-

guage model. Although it is not exponential in 

theory, the actual complexity can still be very 

high in practice. Here is an example extracted 

from real data. Given the following SCFG rule: 

     VP   →   VB  NP  会  JJR  , 

               VB  NP  will be  JJR 

we can obtain a set of equivalent binary rules 

using the synchronous binarization method 

(Zhang et al., 2006)  as follows: 

        VP → V1  JJR ,   V1  JJR 

            V1 → VB  V2 ,   VB  V2 

        V2 → NP 会 ,   NP  will be 

This binarization is shown with the solid lines as 

binarization (a) in Figure 1. We can see that bi-

narization (a) requires that “NP 会” should be 

reduced at first. Data analysis shows that “NP 会” 

is a frequent pattern in the training corpus, and 

there are 874 binary rules of which the source 

language sides are “NP 会”. Consequently these 

binary rules generate a large number of compet-

ing edges in the chart when “NP 会” is matched 

in decoding. To reduce the number of edges pro-
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posed in decoding, hypothesis re-combination is 

used to combine the equivalent edges in terms of 

dynamic programming. Generally, two edges can 

be re-combined if they satisfy the following two 

constraints:  1) the LHS (left-hand side) non-

terminals are identical and the sub-alignments 

are the same (Zhang et al., 2006); and 2) the 

boundary words
1
 on both sides of the partial 

translations are equal between the two edges 

(Chiang, 2007). However, as shown in Figure 2, 

the decoder still generates 801 edges after the 

hypothesis re-combination. As a result, aggres-

sive pruning with beam search has to be em-

ployed to reduce the search space to make the 

decoding practical. Usually in beam search only 

a very small number of edges are kept in the 

beam of each chart cell (e.g. less than 100). 

These edges have to compete with each other to 

survive from the pruning. Obviously, more com-

peting edges proposed during decoding can lead 

to a higher risk of making search errors.  

 

VB NP 会 JJR

(a)(b)

V2

V1

V2'

V1'

VP

VB NP will be JJR
 

Figure 1: Two different binarizations (a) and 

(b) of the same SCFG rule distinguished by the 

solid lines and dashed lines 

 

我们   希望   情况   会   更好 。
(We hope the situation will be better .)

我们   希望   NP   会   JJR   。

decoding

match 874 rules match 62 rules

competing edges: 801 competing edges: 57

Figure 2: Edge competitions caused by different 

binarizations 

 

The edge competition problem for SMT de-

coding is not addressed in previous work (Zhang 

et al., 2006; Huang, 2007) in which each SCFG 

rule is binarized in a fixed way. Actually the re-

sults of synchronous binarization may not be the 

only solution. As illustrated in Figure 1, the rule 

                                                 
1
 For the case of n-gram language model integration, 

2 × (𝑛 − 1) boundary words needs to be examined. 

can also be binarized as binarization (b) which is 

shown with the dashed lines.  

We think that this problem can be alleviated 

by choosing better binarizations for SMT decod-

ers, since there is generally more than one bina-

rization for a SCFG rule. In our investigation, 

about 96% rules that need to be binarized have 

more than one binarization under the contiguous 

constraint. As shown in binarization (b) (Figure 

1), “会 JJR” is reduced first. In the decoder, the 

number of binary rules with the source-side “会 

JJR” is 62, and the corresponding number of 

edges is 57 (Figure 2). The two numbers are both 

much smaller than those of “NP 会” in (a). This 

is an informative clue that the binarization (b) 

could be better than the binarization (a) based on 

the following: the probability of pruning the rule 

in (a) is higher than that in (b) as the rule in (b) 

has fewer competitors and has more chances to 

survive during pruning. 

In this paper we propose a novel binarization 

method, aiming to find better binarizations to 

improve an SCFG-based machine translation 

system. We formulate the binarization optimiza-

tion as a cost reduction process, where the cost is 

defined as the number of rules sharing a common 

source-side derivation in an SCFG. We present 

an algorithm, iterative cost reduction algorithm, 

to obtain better binarization for the SCFG learnt 

automatically from the training corpus. It can 

work with an efficient CKY-style binarizer to 

search for the lowest-cost binarization. We apply 

our method into a state-of-the-art string-to-tree 

SMT system. The experimental results show that 

our method outperforms the synchronous binari-

zation method (Zhang et al., 2006) with over 0.8 

BLEU scores on both NIST 2005 and NIST 2008 

Chinese-to-English evaluation data sets. 

2 Related Work 

The problem of binarization originates from the 

parsing problem in which several binarization 

methods are studied such as left/right binariza-

tion (Charniak et al., 1998; Tsuruoka and Tsujii, 

2004) and head binarization (Charniak et al., 

2006). Generally, the pruning issue in SMT de-

coding is unnecessary for the parsing problem, 

and the accuracy of parsing does not rely on the 

binarization method heavily. Thus, many efforts 

on the binarization in parsing are made for the 

efficiency improvement instead of the accuracy 

improvement (Song et al., 2008). 

Binarization is also an important topic in the 

research of syntax-based SMT. A synchronous 
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binarization method is proposed in (Zhang et al., 

2006) whose basic idea is to build a left-heavy 

binary synchronous tree (Shapiro and Stephens, 

1991) with a left-to-right shift-reduce algorithm. 

Target-side binarization is another binarization 

method which is proposed by Huang (2007). It 

works in a left-to-right way on the target lan-

guage side. Although this method is compara-

tively easy to be implemented, it just achieves 

the same performance as the synchronous binari-

zation method (Zhang et al., 2006) for syntax-

based SMT systems. In addition, it cannot be 

easily integrated into the decoding of some syn-

tax-based models (Galley et al., 2004; Marcu et 

al., 2006), because it does not guarantee conti-

guous spans on the source language side. 

3 Synchronous Binarization Optimiza-

tion by Cost Reduction 

As discussed in Section 1, binarizing an SCFG in 

a fixed (left-heavy) way (Zhang et al., 2006) may 

lead to a large number of competing edges and 

consequently high risk of making search errors. 

Fortunately, in most cases a binarizable SCFG 

can be binarized in different ways, which pro-

vides us with an opportunity to find a better solu-

tion than the default left-heavy binarization. An 

ideal solution to this problem could be that we 

define an exact edge competition estimation 

function and choose the best binary SCFG based 

on it. However, even for the rules with a com-

mon source-side, generally it is difficult to esti-

mate the exact number of competing edges in the 

dynamic SCFG parsing process for machine 

translation, because in order to integrate an n-

gram language model, the actual number of 

edges not only depends on SCFG rules, but also 

depends on language model states which are spe-

cific to input sentences. Instead, we have to em-

ploy certain kinds of approximation of it. First 

we will introduce some notations frequently used 

in later discussions. 

3.1 Notations 

We use 𝐺 = {𝑅𝑖 ∶  𝑋𝑖 → 𝛼𝑖 ,𝛽𝑖}  to denote an 

SCFG, where 𝑅𝑖  is the 𝑖𝑡ℎ  rule in 𝐺 ; 𝑋𝑖  is the 

LHS (left hand side) non-terminal of 𝑅𝑖 ; 𝛼𝑖  and 

𝛽𝑖  are the source-side and target-side RHS (right 

hand side) derivations of 𝑅𝑖  respectively. We use 

ℬ 𝐺  to denote the set of equivalent binary 

SCFG of 𝐺. The goal of SCFG binarization is to 

find an appropriate binary SCFG 𝐺′ ∈ ℬ 𝐺 . For 

𝑅𝑖 , ℬ 𝑅𝑖 = {𝑣𝑖𝑗 } ⊆ 𝐺′ ∈ ℬ 𝐺  is the set of 

equivalent binary rules based on 𝑅𝑖 , where 𝑣𝑖𝑗  is 

the 𝑗𝑡ℎ  binary rule in ℬ 𝑅𝑖 . Figure 3 illustrates 

the meanings of these notations with a sample 

grammar. 

 

VP →  VB NP 会 JJR  ,   VB NP will be JJR

S   →  NP 会 VP  ,           NP will VP

R1 :

R2 :

G

VP → V12 JJR ,    V12 JJR

 (R1)

G’ 

V12 → VB V13 ,     VB V13

V13 → NP 会 ,       NP  will be

v11 :

v12 :

v13 :

S   → V22 VP ,      V22 VP

V22 → NP 会 ,      NP will

v21 :

v22 :
 (R2)

binarization

...v11 v12 
v22 

S(“VB NP 会 JJR ”, G’) S(“VB NP 会”, G’) S(“NP 会”, G’)

L(v12)=”VB NP 会”

v13 

rule bucket

 
 

Figure 3: Binarization on a sample grammar 

 

The function 𝐿(∙) is defined to map a result-

ing binary rule 𝑣𝑖𝑗 𝜖𝐺′ to the sub-sequence in 𝛼𝑖  

derived from 𝑣𝑖𝑗 . For example, as shown in Fig-

ure 3, the binary rule 𝑣13 covers the source sub-

sequence “NP 会” in 𝑅1 , so 𝐿 𝑣13 = "NP 会". 

Similarly, 𝐿 𝑣12 = "VB NP 会".  

The function 𝐿(∙) is used to group the rules in 

𝐺′ with a common right-hand side derivation for 

source language. Given a binary rule 𝑣 ∈ 𝐺′, we 

can put it into a bucket in which all the binary 

rules have the same source sub-sequence 𝐿(𝑣). 

For example (Figure 3), as 𝐿 𝑣12 = "VB NP 会", 

𝑣12 is put into the bucket indexed by “VB NP 会”. 

And 𝑣13  and 𝑣22  are put into the same bucket, 

since they have the same source sub-sequence 

“NP 会”. Obviously, 𝐺′ can be divided into a set 

of mutual exclusive rule buckets by 𝐿(∙). 

In this paper, we use 𝑆(𝐿(𝑣),𝐺′) to denote the 

bucket for the binary rules having the source sub-

sequence 𝐿(𝑣). For example, 𝑆("𝑁𝑃 会",𝐺′) de-

notes the bucket for the binary rules having the 

source-side “NP 会”. For simplicity, we also use 

𝑆(𝑣,𝐺′) to denote 𝑆 𝐿 𝑣 ,𝐺′ .  

3.2 Cost Reduction for SCFG Binarization 

Given a binary SCFG 𝐺′, it can be easily noticed 

that if a rule 𝑣 in  the bucket 𝑆(𝑣,𝐺′) can be ap-

plied to generate one or more new edges in 

SCFG parsing, any other rules in this bucket can 

also be applied because all of them can be re-

duced from the same underlying derivation 𝐿(𝑣). 

364



Each application of other rules in the bucket 

𝑆(𝑣,𝐺′) can generate competing edges with the 

one based on 𝑣 . Intuitively, the size of bucket 

can be used to approximately indicate the actual 

number of competing edges on average, and re-

ducing the size of bucket could help reduce the 

edges generated in a parsing chart by applying 

the rules in the bucket. Therefore, if we can find 

a method to greedily reduce the size of each 

bucket 𝑆(𝑣,𝐺′), we can reduce the overall ex-

pected edge competitions when parsing with 𝐺′. 
However, it can be easily proved that the 

numbers of binary rules in any 𝐺′ ∈ ℬ 𝐺  are 

same, which implies that we cannot reduce the 

sizes of all buckets at the same time – removing 

a rule from one bucket means adding it to anoth-

er. Allowing for this fact, the excess edge com-

petition example shown in Section 1 is essential-

ly caused by the uneven distribution of rules 

among different buckets 𝑆 ∙ . Accordingly, our 

optimization objective should be a more even 

distribution of rules among buckets. 

In the following, we formally define a metric 

to model the evenness of rule distribution over 

buckets. Given a binary SCFG 𝐺′ and a binary 

SCFG rule 𝑣 ∈ 𝐺′ , 𝑄(𝑣) is defined as the cost 

function that maps 𝑣  to the size of the bucket  

𝑆 𝑣,𝐺′ : 

𝑄 𝑣 =  𝑆 𝑣,𝐺′   (1) 

Obviously, all the binary rules in 𝑆 𝑣,𝐺′  share a 

common cost value  𝑆 𝑣,𝐺′  . For example (Fig-

ure 3), both 𝑣13  and 𝑣22  are put into the same 

bucket 𝑆 "𝑁𝑃 会",𝐺′ , so 𝑄 𝑣13 = 𝑄 𝑣22 = 2. 

The cost of the SCFG 𝐺′  is computed by 

summing up all the costs of SCFG rules in it: 

𝑄 𝐺′ =  𝑄(𝑣)
𝑣∈𝐺 ′

 (2) 

Back to our task, we are to find an equivalent 

binary SCFG 𝐺′  of 𝐺  with the lowest cost in 

terms of the cost function 𝑄(. ) given in Equation 

(2): 

𝐺∗ = argmin𝐺′∈ℬ 𝐺 𝑄(𝐺′) (3) 

Next we will show how 𝐺∗  is related to the 

evenness of rule distribution among different 

buckets. Let 𝑆 𝐺′ = {𝑆1,… , 𝑆𝑀}  be the set of 

rule buckets containing rules in 𝐺′, then the value 

of 𝑄(𝐺′) can also be written as: 

𝑄 𝐺′ =   𝑆𝑖 
2

1≤𝑖≤𝑀
 (4) 

Assume 𝑌𝑖 =  𝑆𝑖  is an empirical distribution of a 

discrete random variable 𝑌, then the square devi-

ation of the empirical distribution is: 

𝜎2 =
1

𝑀
 ( 𝑆𝑖 − 𝑌 )2

𝑖
 (5) 

Noticing that Σ 𝑆𝑖 =  𝐺 ′   and 𝑌 =  𝐺′ /𝑀, Equ-

ation (5) can be written as: 

𝜎2 =
1

𝑀
 𝑄 𝐺 ′ −

 𝐺′ 2

𝑀
  (6) 

Since both 𝑀 and |𝐺′| are constants, minimizing 

the cost function 𝑄(𝐺′) is equivalent to minimiz-

ing the square deviation of the distribution of 

rules among different buckets. A binary SCFG 

with the lower cost indicates the rules are more 

evenly distributed in terms of derivation patterns 

on the source language side. 

3.3 Static Cost Reduction 

Before moving on discussing the algorithm 

which can optimize Equation (3) based on rule 

costs specified in Equation (1), we first present 

an algorithm to find the optimal solution to Eq-

uation (3) if we have known the cost setting of 

𝐺∗ and can use the costs as static values during 

binarization. Using this simplification, the prob-

lem of finding the binary SCFG  𝐺∗ with minim-

al costs can be reduced to find the optimal bina-

rization ℬ∗(𝑅𝑖) for each rule 𝑅𝑖  in 𝐺. 

To obtain ℬ∗(𝑅𝑖) , we can employ a CKY-

style binarization algorithm which builds a com-

pact binarization forest for the rule 𝑅𝑖  in bottom-

up direction. The algorithm combines two adja-

cent spans of 𝛼𝑖  each time, in which two spans 

can be combined if and only if they observe the 

BTG constraints− their translations are either 

sequentially or reversely adjacent in 𝛽𝑖 , the tar-

get-side derivation of 𝑅𝑖 . The key idea of this 

algorithm is that we only use the binarization tree 

with the lowest cost of each span for later com-

bination, which can avoid enumerating all the 

possible binarization trees of 𝑅𝑖  using dynamic 

programming. 

Let 𝛼𝑝
𝑞

 be the sub-sequence spanning from p 

to q on the source-side, 𝑣[𝑝, 𝑞] be optimal bina-

rization tree spanning 𝛼𝑝
𝑞
, 𝑄𝑣[𝑝, 𝑞] be the cost of 

𝑣[𝑝, 𝑞], and 𝑄𝑟 [𝑝, 𝑞] be the cost of any binary 

rules whose source-side is 𝛼𝑝
𝑞

, then the cost of 

optimal binarization tree spanning 𝛼𝑝
𝑞

 can be 

computed as: 

𝑄𝑣[𝑝, 𝑞] = min
𝑝≤𝑘≤𝑞−1

(𝑄𝑟 [𝑝, 𝑞] + 𝑄𝑣[𝑝,𝑘] + 𝑄𝑣[𝑘 + 1, 𝑞]) 
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The algorithm is shown as follows: 

CYK-based binarization algorithm 
Input: a SCFG rule 𝑅𝑖  and the cost function 𝑄(. ).  

Output: the lowest cost binarization on 𝑅𝑖  
1:  Function CKYBINARIZATION(𝑅𝑖 , 𝑄) 

2:      for l = 2 to n do  ⊳  Length of span 

3:        for p = 1 to n – l + 1 do ⊳  Start of span 

4:               q = p + l  ⊳  End of span 

5:             for k = p to q – 1 do ⊳  Partition of span  

6:               if not CONSECUTIVE(𝑇 𝑝, 𝑘 , 𝑇 𝑘 + 1,𝑞 )  

                         then next loop 

7:                   𝑄𝑟 [𝑝, 𝑞] ← 𝑄(𝛼𝑝
𝑞

)    

8:                   curCost ← 𝑄𝑟 𝑝, 𝑞 +𝑄𝑣 𝑝, 𝑘 +𝑄𝑣[𝑘 + 1,𝑞] 

9:                 if curCost  <  minCost then 

10:                   minCost ← curCost 

11:                    𝑣[𝑝, 𝑞] ← COMBINE(𝑣[𝑝, 𝑘], 𝑣[𝑘 + 1,𝑞]) 

12:             𝑄𝑣 𝑝, 𝑞  ← minCost 

13:    return 𝑣[1,𝑛]     

14: Function CONSECUTIVE(( a, b), (c, d)) 

15:    return (b = c – 1) or (d = a – 1)   

where n is the number of tokens (consecutive 

terminals are viewed as a single token) on the 

source-side of 𝑅𝑖 . COMBINE(𝑣[𝑝, 𝑘], 𝑣[𝑘 + 1,𝑞]) 
combines the two binary sub-trees into a larger 

sub-tree over 𝛼𝑝
𝑞
. 𝑇 𝑝, 𝑞 = (𝑎, 𝑏) means that the 

non-terminals covering 𝛼𝑝
𝑞

 have the consecutive 

indices ranging from a to b on the target-side. If 

the target non-terminal indices are not consecu-

tive, we set 𝑇 𝑝, 𝑞 = (−1,−1). 𝑄 𝛼𝑝
𝑞
 = 𝑄(𝑣′) 

where 𝑣′ is any rule in the bucket 𝑆 𝛼𝑝
𝑞

,𝐺′ . 

In the algorithm, lines 9-11 implement dynam-

ic programming, and the function CONSECUTIVE 

checks whether the two spans can be combined. 

VB NP 会

V[1,2] V[3,4]

VP

JJR

V[2,3]

V[1,3] V[2,4]

c=6619 c=874 c=62

c=884 c=876 c=64c=6629

c=885

c=6682
c=65

VB NP will be JJR

lowest cost

c=0 c=0 c=0 c=0

 
Figure 4: Binarization forest for an SCFG rule 

 
𝐿(𝑣) 𝑄(𝑣) 𝐿(𝑣) 𝑄(𝑣) 

 VB NP 6619 VB NP 会 10 

 NP 会 874 NP 会 JJR 2 

 会 JJR 62 VB NP 会 JJR 1 

Table 1: Sub-sequences and corresponding costs 

Figure 4 shows an example of the compact 

forest the algorithm builds, where the solid lines 

indicate the optimal binarization of the rule, 

while other alternatives pruned by dynamic pro-

gramming are shown in dashed lines. The costs 

for binarization trees are computed based on the 

cost table given in Table 1. 

The time complexity of the CKY-based bina-

rization algorithm is Θ(n
3
), which is higher than 

that of the linear binarization such as the syn-

chronous binarization (Zhang et al., 2006). But it 

is still efficient enough in practice, as there are 

generally only a few tokens (n < 5) on the 

source-sides of SCFG rules. In our experiments, 

the linear binarization method is just 2 times 

faster than the CKY-based binarization. 

3.4 Iterative Cost Reduction 

However, 𝑄(∙) cannot be easily predetermined in 

a static way as is assumed in Section 3.3 because 

it depends on 𝐺′ and should be updated whenever 

a rule in 𝐺 is binarized differently. In our work 

this problem is solved using the iterative cost 

reduction algorithm, in which the update of 𝐺′ 
and the cost function 𝑄(∙) are coupled together. 

Iterative cost reduction algorithm 
Input: An SCFG 𝐺 

Output: An equivalent binary SCFG 𝐺′ of 𝐺 

1: Function ITERATIVECOSTREDUCTION(𝐺) 

2:   𝐺′ ← 𝐺0 

3:   for each 𝑣 ∈ 𝐺0do 

4:        𝑄(𝑣) =  𝑆 𝑣,𝐺0   
5:   while 𝑄(𝐺′) does not converge do 

6:        for each 𝑅𝑖 ∈ 𝐺 do 

7:            𝐺[−𝑅𝑖]
 ← 𝐺′ −  ℬ(𝑅𝑖) 

8:            for each 𝑣 ∈ ℬ(𝑅𝑖) do 

9:                for each 𝑣′ ∈ 𝑆 𝑣,𝐺′  do 

10:                  𝑄 𝑣′ ← 𝑄 𝑣′ − 1 

11:          ℬ(𝑅𝑖) ← CKYBINARIZATION(𝑅𝑖 , 𝑄) 

12:          𝐺′ ← 𝐺[−𝑅𝑖]
∪  ℬ(𝑅𝑖) 

13:          for each 𝑣 ∈ ℬ(𝑅𝑖) do 

14:              for each 𝑣′ ∈ 𝑆 𝑣,𝐺′  do 

15:                  𝑄 𝑣′ ← 𝑄 𝑣′ + 1 

16: return 𝐺′ 

In the iterative cost reduction algorithm, we 

first obtain an initial binary SCFG 𝐺0 using the 

synchronous binarization method proposed in 

(Zhang et al., 2006). Then 𝐺0 is assigned to an 

iterative variable 𝐺′. The cost of each binary rule 

in 𝐺0 is computed based on 𝐺0 according to Equ-

ation (1) (lines 3-4 in the algorithm). 

After initialization, 𝐺′ is updated by iteratively 

finding better binarization for each rule in 𝐺. The 

basic idea is: for each 𝑅𝑖  in 𝐺 , we remove the 

current binarization result for 𝑅𝑖  from 𝐺′ (line 7), 

while the cost function 𝑄(∙)  is updated accor-

dingly since the removal of binary rule 𝑣 ∈ 

ℬ(𝑅𝑖) results in the reduction of the size of the 

corresponding bucket 𝑆 𝑣,𝐺′ . Lines 8-10 im-
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plement the cost reduction of each binary rule in 

the bucket 𝑆 𝑣,𝐺 ′ . 
Next, we find the lowest cost binarization for 

𝑅𝑖  based on the updated cost function 𝑄(∙) with 

the CKY-based binarization algorithm presented 

in Section 3.3 (line 11).  

At last, the new binarization for 𝑅𝑖  is added 

back to 𝐺′ and 𝑄(∙) is re-updated to synchronize 

with this change (lines 12-15). Figure 5 illu-

strates the differences between the static cost 

reduction and the iterative cost reduction. 

Ri

Ri-1

Ri+1

...

...

the ith 

rule

G

binarizer

Q(∙)

binarize

(a) static cost reduction

Ri

Ri-1

Ri+1

...

...

the ith 

rule

G

binarizer

Q(∙)

G0

(b) iterative cost reduction

update

static

dynamic

binarize

 
Figure 5: Comparison between the static cost 

reduction and the iterative cost reduction 

 

The algorithm stops when 𝑄(𝐺′) does not de-

crease any more. Next we will show that 𝑄(𝐺′)  

is guaranteed not to increase in the iterative 

process. 

For any ℬ(𝑅𝑖) on 𝑅𝑖 , we have 

               𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   

        = 2 × 𝑄 ℬ 𝑅𝑖  +  ℬ 𝑅𝑖  + 𝑄 𝐺[−𝑅𝑖]  

As both  ℬ 𝑅𝑖   and 𝑄 𝐺[−𝑅𝑖]  are constants with 

respect to 𝑄(ℬ 𝑅𝑖 ), 𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   is a li-

near function of 𝑄(ℬ 𝑅𝑖 ), and the correspond-

ing slope is positive. Thus 𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   

reaches the lowest value only when 𝑄(ℬ 𝑅𝑖 ) 

reaches the lowest value. So 𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   

achieves the lowest cost when we replace the 

current binarization with the new binarization  

ℬ∗(𝑅𝑖)  (line 12). Therefore 𝑄  𝐺[−𝑅𝑖]
∪  ℬ 𝑅𝑖   

does not increase in the processing on each 𝑅𝑖  
(lines 7-15), and 𝑄(𝐺′) will finally converge to a 

local minimum when the algorithm stops. 

4 Experiments 

The experiments are conducted on Chinese-to-

English translation in a state-of-the-art string-to-

tree SMT system. All the results are reported in 

terms of case-insensitive BLEU4(%). 

4.1 Experimental Setup 

Our bilingual training corpus consists of about 

350K bilingual sentences (9M Chinese words + 

10M English words)
2
. Giza++ is employed to 

perform word alignment on the bilingual sen-

tences. The parse trees on the English side are 

generated using the Berkeley Parser
3
. A 5-gram 

language model is trained on the English part of 

LDC bilingual training data and the Xinhua part 

of Gigaword corpus. Our development data set 

comes from NIST2003 evaluation data in which 

the sentences of more than 20 words are ex-

cluded to speed up the Minimum Error Rate 

Training (MERT). The test data sets are the 

NIST evaluation sets of 2005 and 2008. 

Our string-to-tree SMT system is built based 

on the work of (Galley et al., 2006; Marcu et al., 

2006), where both the minimal GHKM and 

SPMT rules are extracted from the training cor-

pus, and the composed rules are generated by 

combining two or three minimal GHKM and 

SPMT rules. Before the rule extraction, we also 

binarize the parse trees on the English side using 

Wang et al. (2007) „s method to increase the 

coverage of GHKM and SPMT rules. There are 

totally 4.26M rules after the low frequency rules 

are filtered out. The pruning strategy is similar to 

the cube pruning described in (Chiang, 2007). To 

achieve acceptable translation speed, the beam 

size is set to 50 by default. The baseline system 

is based on the synchronous binarization (Zhang 

et al., 2006).  

4.2 Binarization Schemes 

Besides the baseline (Zhang et al., 2006) and 

iterative cost reduction binarization methods, we 

also perform right-heavy and random synchron-

ous binarizations for comparison. In this paper, 

the random synchronous binarization is obtained 

by: 1) performing the CKY binarization to build 

the binarization forest for an SCFG rule; then 2) 

performing a top-down traversal of the forest. In 

the traversal, we randomly pick a feasible binari-

zation for each span, and then go on the traversal 

in the two branches of the picked binarization. 

Table 2 shows the costs of resulting binary 

SCFGs generated using different binarization 

methods. The costs of the baseline (left-heavy) 

                                                 
2
 LDC2003E14, LDC2003E07, LDC2005T06 and 

LDC2005T10 
3 http://code.google.com/p/berkeleyparser/ 
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and right-heavy binarization are similar, while 

the cost of the random synchronous binarization 

is lower than that of the baseline method
4
. As 

expected, the iterative cost reduction method ob-

tains the lowest cost, which is much lower than 

that of the other three methods.  

 

Method cost of binary SCFG 𝐺′ 

Baseline 4,897M 

Right-heavy 5,182M 

Random 3,479M 

Iterative cost reduction    185M 

Table 2: Costs of the binary SCFGs generated 

using different binarization methods. 

4.3 Evaluation of Translations 

Table 3 shows the performance of SMT systems 

based on different binarization methods. The 

iterative cost reduction binarization method 

achieves the best performance on the test sets as 

well as the development set. Compared with the 

baseline method, it obtains gains of 0.82 and 

0.84 BLEU scores on NIST05 and NIST08 test 

sets respectively. Using the statistical signific-

ance test described by Koehn (2004), the im-

provements are significant  (p < 0.05). 

 
Method Dev NIST05 NIST08 

Baseline 40.02 37.90 27.53  

Right-heavy 40.05 37.87 27.40 

Random 40.10 37.99 27.58 

Iterative cost 

reduction 

40.97* 38.72* 28.37* 

Table 3: Performance (BLUE4(%)) of different 

binarization methods. * = significantly better than 

baseline (p < 0.05).  

 

The baseline method and the right-heavy bina-

rization method achieve similar performance, 

while the random synchronous binarization me-

thod performs slightly better than the baseline 

method, which agrees with the fact of the cost 

reduction shown in Table 2. A possible reason 

that the random synchronous binarization me-

thod can outperform the baseline method lies in 

that compared with binarizing SCFG in a fixed 

way, the random synchronous binarization tends 

to give a more even distribution of rules among 

buckets, which alleviates the problem of edge 

competition. However, since the high-frequency 

source sub-sequences still have high probabilities 

to be generated in the binarization and lead to the 

                                                 
4
 We perform random synchronous binarization for 5 

times and report the average cost. 

excess competing edges, it just achieves a very 

small improvement. 

4.4 Translation Accuracy vs. Cost of Binary 

SCFG 

We also study the impacts of cost reduction on 

translation accuracy over iterations in iterative 

cost reduction. Figure 6 and Figure 7 show the 

results on NIST05 and NIST08 test sets. We can 

see that the cost of the resulting binary SCFG 

drops greatly as the iteration count increases, 

especially in the first iteration, and the BLEU 

scores increase as the cost decreases. 

 
Figure 6: Cost of binary SCFG vs. BLEU4 (NIST05) 

 

 
Figure 7: Cost of binary SCFG vs. BLEU4 (NIST08) 

4.5 Impact of Beam Size 

In this section, we study the impacts of beam 

sizes on translation accuracy as well as compet-

ing edges. To explicitly investigate the issue un-

der large beam sizes, we use a subset of NIST05 

and NIST08 test sets for test, which has 50 Chi-

nese sentences of no longer than 10 words. 

Figure 8 shows that the iterative cost reduction 

method is consistently better than the baseline 

method under various beam settings. Besides the 

experiment on the test set of short sentences, we 

also conduct the experiment on NIST05 test set. 

To achieve acceptable decoding speed, we range 

the beam size from 10 to 70. As shown in Figure 

9, the iterative cost reduction method also out-

performs the baseline method under various 

beam settings on the large test set. 

Though enlarging beam size can reduce the 

search errors and improve the system perfor-

mance, the decoding speed of string-to-tree SMT 

drops dramatically when we enlarge the beam 

size. The problem is more serious when long 
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sentences are translated. For example, when the 

beam size is set to a larger number (e.g. 200), our 

decoder takes nearly one hour to translate a sen-

tence whose length is about 20 on a 3GHz CPU. 

Decoding on the entire NIST05 and NIST08 test 

sets with large beam sizes is impractical. 

 
Figure 8: BLEU4 against beam size (small test set) 

 

 
Figure 9: BLEU4 against beam size (NIST05) 

 

Figure 10 compares the baseline method and 

the iterative cost reduction method in terms of 

translation accuracy against the number of edges 

proposed during decoding. Actually, the number 

of edges proposed during decoding can be re-

garded as a measure of the size of search space. 

We can see that the iterative cost reduction me-

thod outperforms the baseline method under var-

ious search effort.  

 
Figure 10: BLEU4 against competing edges  

 

The experimental results of this section show 

that compared with the baseline method, the iter-

ative cost reduction method can lead to much 

fewer edges (about 25% reduction) as well as the 

higher BLEU scores under various beam settings. 

4.6 Edge Competition vs. Cost of Binary 

SCFG 

In this section, we study the impacts of cost re-

duction on the edge competition in the chart cells 

of our CKY-based decoder. Two metrics are 

used to evaluate the degree of edge competition. 

They are the variance and the mean of the num-

ber of competing edges in the chart cells, where 

high variance means that in some chart cells the 

rules have high risk to be pruned due to the large 

number of competing edges. The same situation 

holds for the mean as well. Both of the two me-

trics are calculated on NIST05 test set, varying 

with the span length of chart cell. 

Figure 11 shows the cost of resulting binary 

SCFG and the variance of competing edges 

against iteration count in iterative cost reduction. 

We can see that both the cost and the variance 

reduce greatly as the iteration count increases. 

Figure 12 shows the case for mean, where the 

reduction of cost also leads to the reduction of 

the mean value. The results shown in Figure 11 

and Figure 12 indicate that the cost reduction is 

helpful to reduce edge competition in the chart 

cells.  

 
Figure 11: Cost of binary SCFG vs. variance of 

competing edge number (NIST05) 

 

 
Figure 12: Cost of binary SCFG vs. mean of 

competing edge number (NIST05) 

 

We also perform decoding without pruning 

(i.e. beam size = ∞) on a very small set which 

has 20 sentences of no longer than 7 words. In 

this experiment, the baseline system and our iter-

ative cost reduction based system propose 

14,454M and 10,846M competing edges respec-

tively. These numbers can be seen as the real 

numbers of the edges proposed during decoding 

instead of an approximate number observed in 

the pruned search space. It suggests that our me-

thod can reduce the number of the edges in real 

search space effectively. A possible reason to 

32

34

36

38

40

42

10 50 100 500 1000 5000

baseline

cost reduction

BLEU4(%)

beam 
size 

35

36

37

38

39

10 20 30 40 50 70

baseline

cost reduction

beam
size

BLEU4(%)

32

34

36

38

40

42

1E+07 1E+08 1E+09 1E+10

baseline

cost reduction

BLEU4(%)

# of
edges

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

1.0E+7

1.0E+8

1.0E+9

1.0E+10

0 1 2 3 4 5

span=2

span=3

span=5

span=7

span=10

span=20

cost

iteration

variance cost of G'

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

8.0E+3

1.0E+5

0 1 2 3 4 5

span=2

span=3

span=5

span=7

span=10

span=20

cost

iteration

mean cost of G'

369



this result is that the cost reduction based binari-

zation could reduce the probability of rule mis-

matching caused by binarization, which results in 

the reduction of the number of edges proposed 

during decoding. 

5 Conclusion and Future Work 

This paper introduces a new binarization method, 

aiming at choosing better binarization for SCFG-

based SMT systems. We demonstrate the effec-

tiveness of our method on a state-of-the-art 

string-to-tree SMT system. Experimental results 

show that our method can significantly outper-

form the conventional synchronous binarization 

method, which indicates that better binarization 

selection is very beneficial to SCFG-based SMT 

systems. 

In this paper the cost of a binary rule is de-

fined based on the competition among the binary 

rules that have the same source-sides. However, 

some binary rules with different source-sides 

may also have competitions in a chart cell. We 

think that the cost of a binary rule can be better 

estimated by taking the rules with different 

source-sides into account. We intend to study 

this issue in our future work. 
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