
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 362–370,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Better Synchronous Binarization for Machine Translation

Tong Xiao
*
, Mu Li

+
, Dongdong Zhang

+
, Jingbo Zhu

*
, Ming Zhou

+

*
Natural Language Processing Lab

Northeastern University

Shenyang, China, 110004

xiaotong@mail.neu.edu.cn

zhujingbo@mail.neu.edu.cn

+
Microsoft Research Asia

Sigma Center

Beijing, China, 100080

muli@microsoft.com

dozhang@microsoft.com

mingzhou@microsoft.com

Abstract

Binarization of Synchronous Context Free

Grammars (SCFG) is essential for achieving

polynomial time complexity of decoding for

SCFG parsing based machine translation sys-

tems. In this paper, we first investigate the

excess edge competition issue caused by a left-

heavy binary SCFG derived with the method

of Zhang et al. (2006). Then we propose a new

binarization method to mitigate the problem

by exploring other alternative equivalent bi-

nary SCFGs. We present an algorithm that ite-

ratively improves the resulting binary SCFG,

and empirically show that our method can im-

prove a string-to-tree statistical machine trans-

lations system based on the synchronous bina-

rization method in Zhang et al. (2006) on the

NIST machine translation evaluation tasks.

1 Introduction

Recently Statistical Machine Translation (SMT)

systems based on Synchronous Context Free

Grammar (SCFG) have been extensively investi-

gated (Chiang, 2005; Galley et al., 2004; Galley

et al., 2006) and have achieved state-of-the-art

performance. In these systems, machine transla-

tion decoding is cast as a synchronous parsing

task. Because general SCFG parsing is an NP-

hard problem (Satta and Peserico, 2005), practic-

al SMT decoders based on SCFG parsing re-

quires an equivalent binary SCFG that is directly

learned from training data to achieve polynomial

time complexity using the CKY algorithm (Ka-

sami, 1965; Younger, 1967) borrowed from CFG

parsing techniques. Zhang et al. (2006) proposed

synchronous binarization, a principled method to

binarize an SCFG in such a way that both the

source-side and target-side virtual non-terminals

have contiguous spans. This property of syn-

chronous binarization guarantees the polynomial

time complexity of SCFG parsers even when an

n-gram language model is integrated, which has

been proved to be one of the keys to the success

of a string-to-tree syntax-based SMT system.

However, as shown by Chiang (2007), SCFG-

based decoding with an integrated n-gram lan-

guage model still has a time complexity of

𝛩(𝑚3 𝑇 4(𝑛−1)), where m is the source sentence

length, and 𝑇 is the vocabulary size of the lan-

guage model. Although it is not exponential in

theory, the actual complexity can still be very

high in practice. Here is an example extracted

from real data. Given the following SCFG rule:

 VP → VB NP 会 JJR ,

 VB NP will be JJR

we can obtain a set of equivalent binary rules

using the synchronous binarization method

(Zhang et al., 2006) as follows:

 VP → V1 JJR , V1 JJR

 V1 → VB V2 , VB V2

 V2 → NP 会 , NP will be

This binarization is shown with the solid lines as

binarization (a) in Figure 1. We can see that bi-

narization (a) requires that “NP 会” should be

reduced at first. Data analysis shows that “NP 会”

is a frequent pattern in the training corpus, and

there are 874 binary rules of which the source

language sides are “NP 会”. Consequently these

binary rules generate a large number of compet-

ing edges in the chart when “NP 会” is matched

in decoding. To reduce the number of edges pro-

362

posed in decoding, hypothesis re-combination is

used to combine the equivalent edges in terms of

dynamic programming. Generally, two edges can

be re-combined if they satisfy the following two

constraints: 1) the LHS (left-hand side) non-

terminals are identical and the sub-alignments

are the same (Zhang et al., 2006); and 2) the

boundary words
1
 on both sides of the partial

translations are equal between the two edges

(Chiang, 2007). However, as shown in Figure 2,

the decoder still generates 801 edges after the

hypothesis re-combination. As a result, aggres-

sive pruning with beam search has to be em-

ployed to reduce the search space to make the

decoding practical. Usually in beam search only

a very small number of edges are kept in the

beam of each chart cell (e.g. less than 100).

These edges have to compete with each other to

survive from the pruning. Obviously, more com-

peting edges proposed during decoding can lead

to a higher risk of making search errors.

VB NP 会 JJR

(a)(b)

V2

V1

V2'

V1'

VP

VB NP will be JJR

Figure 1: Two different binarizations (a) and

(b) of the same SCFG rule distinguished by the

solid lines and dashed lines

我们 希望 情况 会 更好 。
(We hope the situation will be better .)

我们 希望 NP 会 JJR 。

decoding

match 874 rules match 62 rules

competing edges: 801 competing edges: 57

Figure 2: Edge competitions caused by different

binarizations

The edge competition problem for SMT de-

coding is not addressed in previous work (Zhang

et al., 2006; Huang, 2007) in which each SCFG

rule is binarized in a fixed way. Actually the re-

sults of synchronous binarization may not be the

only solution. As illustrated in Figure 1, the rule

1
 For the case of n-gram language model integration,

2 × (𝑛 − 1) boundary words needs to be examined.

can also be binarized as binarization (b) which is

shown with the dashed lines.

We think that this problem can be alleviated

by choosing better binarizations for SMT decod-

ers, since there is generally more than one bina-

rization for a SCFG rule. In our investigation,

about 96% rules that need to be binarized have

more than one binarization under the contiguous

constraint. As shown in binarization (b) (Figure

1), “会 JJR” is reduced first. In the decoder, the

number of binary rules with the source-side “会

JJR” is 62, and the corresponding number of

edges is 57 (Figure 2). The two numbers are both

much smaller than those of “NP 会” in (a). This

is an informative clue that the binarization (b)

could be better than the binarization (a) based on

the following: the probability of pruning the rule

in (a) is higher than that in (b) as the rule in (b)

has fewer competitors and has more chances to

survive during pruning.

In this paper we propose a novel binarization

method, aiming to find better binarizations to

improve an SCFG-based machine translation

system. We formulate the binarization optimiza-

tion as a cost reduction process, where the cost is

defined as the number of rules sharing a common

source-side derivation in an SCFG. We present

an algorithm, iterative cost reduction algorithm,

to obtain better binarization for the SCFG learnt

automatically from the training corpus. It can

work with an efficient CKY-style binarizer to

search for the lowest-cost binarization. We apply

our method into a state-of-the-art string-to-tree

SMT system. The experimental results show that

our method outperforms the synchronous binari-

zation method (Zhang et al., 2006) with over 0.8

BLEU scores on both NIST 2005 and NIST 2008

Chinese-to-English evaluation data sets.

2 Related Work

The problem of binarization originates from the

parsing problem in which several binarization

methods are studied such as left/right binariza-

tion (Charniak et al., 1998; Tsuruoka and Tsujii,

2004) and head binarization (Charniak et al.,

2006). Generally, the pruning issue in SMT de-

coding is unnecessary for the parsing problem,

and the accuracy of parsing does not rely on the

binarization method heavily. Thus, many efforts

on the binarization in parsing are made for the

efficiency improvement instead of the accuracy

improvement (Song et al., 2008).

Binarization is also an important topic in the

research of syntax-based SMT. A synchronous

363

binarization method is proposed in (Zhang et al.,

2006) whose basic idea is to build a left-heavy

binary synchronous tree (Shapiro and Stephens,

1991) with a left-to-right shift-reduce algorithm.

Target-side binarization is another binarization

method which is proposed by Huang (2007). It

works in a left-to-right way on the target lan-

guage side. Although this method is compara-

tively easy to be implemented, it just achieves

the same performance as the synchronous binari-

zation method (Zhang et al., 2006) for syntax-

based SMT systems. In addition, it cannot be

easily integrated into the decoding of some syn-

tax-based models (Galley et al., 2004; Marcu et

al., 2006), because it does not guarantee conti-

guous spans on the source language side.

3 Synchronous Binarization Optimiza-

tion by Cost Reduction

As discussed in Section 1, binarizing an SCFG in

a fixed (left-heavy) way (Zhang et al., 2006) may

lead to a large number of competing edges and

consequently high risk of making search errors.

Fortunately, in most cases a binarizable SCFG

can be binarized in different ways, which pro-

vides us with an opportunity to find a better solu-

tion than the default left-heavy binarization. An

ideal solution to this problem could be that we

define an exact edge competition estimation

function and choose the best binary SCFG based

on it. However, even for the rules with a com-

mon source-side, generally it is difficult to esti-

mate the exact number of competing edges in the

dynamic SCFG parsing process for machine

translation, because in order to integrate an n-

gram language model, the actual number of

edges not only depends on SCFG rules, but also

depends on language model states which are spe-

cific to input sentences. Instead, we have to em-

ploy certain kinds of approximation of it. First

we will introduce some notations frequently used

in later discussions.

3.1 Notations

We use 𝐺 = {𝑅𝑖 ∶ 𝑋𝑖 → 𝛼𝑖 ,𝛽𝑖} to denote an

SCFG, where 𝑅𝑖 is the 𝑖𝑡ℎ rule in 𝐺 ; 𝑋𝑖 is the

LHS (left hand side) non-terminal of 𝑅𝑖 ; 𝛼𝑖 and

𝛽𝑖 are the source-side and target-side RHS (right

hand side) derivations of 𝑅𝑖 respectively. We use

ℬ 𝐺 to denote the set of equivalent binary

SCFG of 𝐺. The goal of SCFG binarization is to

find an appropriate binary SCFG 𝐺′ ∈ ℬ 𝐺 . For

𝑅𝑖 , ℬ 𝑅𝑖 = {𝑣𝑖𝑗 } ⊆ 𝐺′ ∈ ℬ 𝐺 is the set of

equivalent binary rules based on 𝑅𝑖 , where 𝑣𝑖𝑗 is

the 𝑗𝑡ℎ binary rule in ℬ 𝑅𝑖 . Figure 3 illustrates

the meanings of these notations with a sample

grammar.

VP → VB NP 会 JJR , VB NP will be JJR

S → NP 会 VP , NP will VP

R1 :

R2 :

G

VP → V12 JJR , V12 JJR

 (R1)

G’

V12 → VB V13 , VB V13

V13 → NP 会 , NP will be

v11 :

v12 :

v13 :

S → V22 VP , V22 VP

V22 → NP 会 , NP will

v21 :

v22 :
 (R2)

binarization

...v11 v12
v22

S(“VB NP 会 JJR ”, G’) S(“VB NP 会”, G’) S(“NP 会”, G’)

L(v12)=”VB NP 会”

v13

rule bucket

Figure 3: Binarization on a sample grammar

The function 𝐿(∙) is defined to map a result-

ing binary rule 𝑣𝑖𝑗 𝜖𝐺′ to the sub-sequence in 𝛼𝑖

derived from 𝑣𝑖𝑗 . For example, as shown in Fig-

ure 3, the binary rule 𝑣13 covers the source sub-

sequence “NP 会” in 𝑅1 , so 𝐿 𝑣13 = "NP 会".

Similarly, 𝐿 𝑣12 = "VB NP 会".

The function 𝐿(∙) is used to group the rules in

𝐺′ with a common right-hand side derivation for

source language. Given a binary rule 𝑣 ∈ 𝐺′, we

can put it into a bucket in which all the binary

rules have the same source sub-sequence 𝐿(𝑣).

For example (Figure 3), as 𝐿 𝑣12 = "VB NP 会",

𝑣12 is put into the bucket indexed by “VB NP 会”.

And 𝑣13 and 𝑣22 are put into the same bucket,

since they have the same source sub-sequence

“NP 会”. Obviously, 𝐺′ can be divided into a set

of mutual exclusive rule buckets by 𝐿(∙).

In this paper, we use 𝑆(𝐿(𝑣),𝐺′) to denote the

bucket for the binary rules having the source sub-

sequence 𝐿(𝑣). For example, 𝑆("𝑁𝑃 会",𝐺′) de-

notes the bucket for the binary rules having the

source-side “NP 会”. For simplicity, we also use

𝑆(𝑣,𝐺′) to denote 𝑆 𝐿 𝑣 ,𝐺′ .

3.2 Cost Reduction for SCFG Binarization

Given a binary SCFG 𝐺′, it can be easily noticed

that if a rule 𝑣 in the bucket 𝑆(𝑣,𝐺′) can be ap-

plied to generate one or more new edges in

SCFG parsing, any other rules in this bucket can

also be applied because all of them can be re-

duced from the same underlying derivation 𝐿(𝑣).

364

Each application of other rules in the bucket

𝑆(𝑣,𝐺′) can generate competing edges with the

one based on 𝑣 . Intuitively, the size of bucket

can be used to approximately indicate the actual

number of competing edges on average, and re-

ducing the size of bucket could help reduce the

edges generated in a parsing chart by applying

the rules in the bucket. Therefore, if we can find

a method to greedily reduce the size of each

bucket 𝑆(𝑣,𝐺′), we can reduce the overall ex-

pected edge competitions when parsing with 𝐺′.
However, it can be easily proved that the

numbers of binary rules in any 𝐺′ ∈ ℬ 𝐺 are

same, which implies that we cannot reduce the

sizes of all buckets at the same time – removing

a rule from one bucket means adding it to anoth-

er. Allowing for this fact, the excess edge com-

petition example shown in Section 1 is essential-

ly caused by the uneven distribution of rules

among different buckets 𝑆 ∙ . Accordingly, our

optimization objective should be a more even

distribution of rules among buckets.

In the following, we formally define a metric

to model the evenness of rule distribution over

buckets. Given a binary SCFG 𝐺′ and a binary

SCFG rule 𝑣 ∈ 𝐺′ , 𝑄(𝑣) is defined as the cost

function that maps 𝑣 to the size of the bucket

𝑆 𝑣,𝐺′ :

𝑄 𝑣 = 𝑆 𝑣,𝐺′ (1)

Obviously, all the binary rules in 𝑆 𝑣,𝐺′ share a

common cost value 𝑆 𝑣,𝐺′ . For example (Fig-

ure 3), both 𝑣13 and 𝑣22 are put into the same

bucket 𝑆 "𝑁𝑃 会",𝐺′ , so 𝑄 𝑣13 = 𝑄 𝑣22 = 2.

The cost of the SCFG 𝐺′ is computed by

summing up all the costs of SCFG rules in it:

𝑄 𝐺′ = 𝑄(𝑣)
𝑣∈𝐺 ′

 (2)

Back to our task, we are to find an equivalent

binary SCFG 𝐺′ of 𝐺 with the lowest cost in

terms of the cost function 𝑄(.) given in Equation

(2):

𝐺∗ = argmin𝐺′∈ℬ 𝐺 𝑄(𝐺′) (3)

Next we will show how 𝐺∗ is related to the

evenness of rule distribution among different

buckets. Let 𝑆 𝐺′ = {𝑆1,… , 𝑆𝑀} be the set of

rule buckets containing rules in 𝐺′, then the value

of 𝑄(𝐺′) can also be written as:

𝑄 𝐺′ = 𝑆𝑖
2

1≤𝑖≤𝑀
 (4)

Assume 𝑌𝑖 = 𝑆𝑖 is an empirical distribution of a

discrete random variable 𝑌, then the square devi-

ation of the empirical distribution is:

𝜎2 =
1

𝑀
 (𝑆𝑖 − 𝑌)2

𝑖
 (5)

Noticing that Σ 𝑆𝑖 = 𝐺 ′ and 𝑌 = 𝐺′ /𝑀, Equ-

ation (5) can be written as:

𝜎2 =
1

𝑀
 𝑄 𝐺 ′ −

 𝐺′ 2

𝑀
 (6)

Since both 𝑀 and |𝐺′| are constants, minimizing

the cost function 𝑄(𝐺′) is equivalent to minimiz-

ing the square deviation of the distribution of

rules among different buckets. A binary SCFG

with the lower cost indicates the rules are more

evenly distributed in terms of derivation patterns

on the source language side.

3.3 Static Cost Reduction

Before moving on discussing the algorithm

which can optimize Equation (3) based on rule

costs specified in Equation (1), we first present

an algorithm to find the optimal solution to Eq-

uation (3) if we have known the cost setting of

𝐺∗ and can use the costs as static values during

binarization. Using this simplification, the prob-

lem of finding the binary SCFG 𝐺∗ with minim-

al costs can be reduced to find the optimal bina-

rization ℬ∗(𝑅𝑖) for each rule 𝑅𝑖 in 𝐺.

To obtain ℬ∗(𝑅𝑖) , we can employ a CKY-

style binarization algorithm which builds a com-

pact binarization forest for the rule 𝑅𝑖 in bottom-

up direction. The algorithm combines two adja-

cent spans of 𝛼𝑖 each time, in which two spans

can be combined if and only if they observe the

BTG constraints− their translations are either

sequentially or reversely adjacent in 𝛽𝑖 , the tar-

get-side derivation of 𝑅𝑖 . The key idea of this

algorithm is that we only use the binarization tree

with the lowest cost of each span for later com-

bination, which can avoid enumerating all the

possible binarization trees of 𝑅𝑖 using dynamic

programming.

Let 𝛼𝑝
𝑞

 be the sub-sequence spanning from p

to q on the source-side, 𝑣[𝑝, 𝑞] be optimal bina-

rization tree spanning 𝛼𝑝
𝑞
, 𝑄𝑣[𝑝, 𝑞] be the cost of

𝑣[𝑝, 𝑞], and 𝑄𝑟 [𝑝, 𝑞] be the cost of any binary

rules whose source-side is 𝛼𝑝
𝑞

, then the cost of

optimal binarization tree spanning 𝛼𝑝
𝑞

 can be

computed as:

𝑄𝑣[𝑝, 𝑞] = min
𝑝≤𝑘≤𝑞−1

(𝑄𝑟 [𝑝, 𝑞] + 𝑄𝑣[𝑝,𝑘] + 𝑄𝑣[𝑘 + 1, 𝑞])

365

The algorithm is shown as follows:

CYK-based binarization algorithm
Input: a SCFG rule 𝑅𝑖 and the cost function 𝑄(.).

Output: the lowest cost binarization on 𝑅𝑖
1: Function CKYBINARIZATION(𝑅𝑖 , 𝑄)

2: for l = 2 to n do ⊳ Length of span

3: for p = 1 to n – l + 1 do ⊳ Start of span

4: q = p + l ⊳ End of span

5: for k = p to q – 1 do ⊳ Partition of span

6: if not CONSECUTIVE(𝑇 𝑝, 𝑘 , 𝑇 𝑘 + 1,𝑞)

 then next loop

7: 𝑄𝑟 [𝑝, 𝑞] ← 𝑄(𝛼𝑝
𝑞

)

8: curCost ← 𝑄𝑟 𝑝, 𝑞 +𝑄𝑣 𝑝, 𝑘 +𝑄𝑣[𝑘 + 1,𝑞]

9: if curCost < minCost then

10: minCost ← curCost

11: 𝑣[𝑝, 𝑞] ← COMBINE(𝑣[𝑝, 𝑘], 𝑣[𝑘 + 1,𝑞])

12: 𝑄𝑣 𝑝, 𝑞 ← minCost

13: return 𝑣[1,𝑛]

14: Function CONSECUTIVE((a, b), (c, d))

15: return (b = c – 1) or (d = a – 1)

where n is the number of tokens (consecutive

terminals are viewed as a single token) on the

source-side of 𝑅𝑖 . COMBINE(𝑣[𝑝, 𝑘], 𝑣[𝑘 + 1,𝑞])
combines the two binary sub-trees into a larger

sub-tree over 𝛼𝑝
𝑞
. 𝑇 𝑝, 𝑞 = (𝑎, 𝑏) means that the

non-terminals covering 𝛼𝑝
𝑞

 have the consecutive

indices ranging from a to b on the target-side. If

the target non-terminal indices are not consecu-

tive, we set 𝑇 𝑝, 𝑞 = (−1,−1). 𝑄 𝛼𝑝
𝑞
 = 𝑄(𝑣′)

where 𝑣′ is any rule in the bucket 𝑆 𝛼𝑝
𝑞

,𝐺′ .

In the algorithm, lines 9-11 implement dynam-

ic programming, and the function CONSECUTIVE

checks whether the two spans can be combined.

VB NP 会

V[1,2] V[3,4]

VP

JJR

V[2,3]

V[1,3] V[2,4]

c=6619 c=874 c=62

c=884 c=876 c=64c=6629

c=885

c=6682
c=65

VB NP will be JJR

lowest cost

c=0 c=0 c=0 c=0

Figure 4: Binarization forest for an SCFG rule

𝐿(𝑣) 𝑄(𝑣) 𝐿(𝑣) 𝑄(𝑣)

 VB NP 6619 VB NP 会 10

 NP 会 874 NP 会 JJR 2

 会 JJR 62 VB NP 会 JJR 1

Table 1: Sub-sequences and corresponding costs

Figure 4 shows an example of the compact

forest the algorithm builds, where the solid lines

indicate the optimal binarization of the rule,

while other alternatives pruned by dynamic pro-

gramming are shown in dashed lines. The costs

for binarization trees are computed based on the

cost table given in Table 1.

The time complexity of the CKY-based bina-

rization algorithm is Θ(n
3
), which is higher than

that of the linear binarization such as the syn-

chronous binarization (Zhang et al., 2006). But it

is still efficient enough in practice, as there are

generally only a few tokens (n < 5) on the

source-sides of SCFG rules. In our experiments,

the linear binarization method is just 2 times

faster than the CKY-based binarization.

3.4 Iterative Cost Reduction

However, 𝑄(∙) cannot be easily predetermined in

a static way as is assumed in Section 3.3 because

it depends on 𝐺′ and should be updated whenever

a rule in 𝐺 is binarized differently. In our work

this problem is solved using the iterative cost

reduction algorithm, in which the update of 𝐺′
and the cost function 𝑄(∙) are coupled together.

Iterative cost reduction algorithm
Input: An SCFG 𝐺

Output: An equivalent binary SCFG 𝐺′ of 𝐺

1: Function ITERATIVECOSTREDUCTION(𝐺)

2: 𝐺′ ← 𝐺0

3: for each 𝑣 ∈ 𝐺0do

4: 𝑄(𝑣) = 𝑆 𝑣,𝐺0
5: while 𝑄(𝐺′) does not converge do

6: for each 𝑅𝑖 ∈ 𝐺 do

7: 𝐺[−𝑅𝑖]
 ← 𝐺′ − ℬ(𝑅𝑖)

8: for each 𝑣 ∈ ℬ(𝑅𝑖) do

9: for each 𝑣′ ∈ 𝑆 𝑣,𝐺′ do

10: 𝑄 𝑣′ ← 𝑄 𝑣′ − 1

11: ℬ(𝑅𝑖) ← CKYBINARIZATION(𝑅𝑖 , 𝑄)

12: 𝐺′ ← 𝐺[−𝑅𝑖]
∪ ℬ(𝑅𝑖)

13: for each 𝑣 ∈ ℬ(𝑅𝑖) do

14: for each 𝑣′ ∈ 𝑆 𝑣,𝐺′ do

15: 𝑄 𝑣′ ← 𝑄 𝑣′ + 1

16: return 𝐺′

In the iterative cost reduction algorithm, we

first obtain an initial binary SCFG 𝐺0 using the

synchronous binarization method proposed in

(Zhang et al., 2006). Then 𝐺0 is assigned to an

iterative variable 𝐺′. The cost of each binary rule

in 𝐺0 is computed based on 𝐺0 according to Equ-

ation (1) (lines 3-4 in the algorithm).

After initialization, 𝐺′ is updated by iteratively

finding better binarization for each rule in 𝐺. The

basic idea is: for each 𝑅𝑖 in 𝐺 , we remove the

current binarization result for 𝑅𝑖 from 𝐺′ (line 7),

while the cost function 𝑄(∙) is updated accor-

dingly since the removal of binary rule 𝑣 ∈

ℬ(𝑅𝑖) results in the reduction of the size of the

corresponding bucket 𝑆 𝑣,𝐺′ . Lines 8-10 im-

366

plement the cost reduction of each binary rule in

the bucket 𝑆 𝑣,𝐺 ′ .
Next, we find the lowest cost binarization for

𝑅𝑖 based on the updated cost function 𝑄(∙) with

the CKY-based binarization algorithm presented

in Section 3.3 (line 11).

At last, the new binarization for 𝑅𝑖 is added

back to 𝐺′ and 𝑄(∙) is re-updated to synchronize

with this change (lines 12-15). Figure 5 illu-

strates the differences between the static cost

reduction and the iterative cost reduction.

Ri

Ri-1

Ri+1

...

...

the ith

rule

G

binarizer

Q(∙)

binarize

(a) static cost reduction

Ri

Ri-1

Ri+1

...

...

the ith

rule

G

binarizer

Q(∙)

G0

(b) iterative cost reduction

update

static

dynamic

binarize

Figure 5: Comparison between the static cost

reduction and the iterative cost reduction

The algorithm stops when 𝑄(𝐺′) does not de-

crease any more. Next we will show that 𝑄(𝐺′)

is guaranteed not to increase in the iterative

process.

For any ℬ(𝑅𝑖) on 𝑅𝑖 , we have

 𝑄 𝐺[−𝑅𝑖] ∪ ℬ 𝑅𝑖

 = 2 × 𝑄 ℬ 𝑅𝑖 + ℬ 𝑅𝑖 + 𝑄 𝐺[−𝑅𝑖]

As both ℬ 𝑅𝑖 and 𝑄 𝐺[−𝑅𝑖] are constants with

respect to 𝑄(ℬ 𝑅𝑖), 𝑄 𝐺[−𝑅𝑖] ∪ ℬ 𝑅𝑖 is a li-

near function of 𝑄(ℬ 𝑅𝑖), and the correspond-

ing slope is positive. Thus 𝑄 𝐺[−𝑅𝑖] ∪ ℬ 𝑅𝑖

reaches the lowest value only when 𝑄(ℬ 𝑅𝑖)

reaches the lowest value. So 𝑄 𝐺[−𝑅𝑖] ∪ ℬ 𝑅𝑖

achieves the lowest cost when we replace the

current binarization with the new binarization

ℬ∗(𝑅𝑖) (line 12). Therefore 𝑄 𝐺[−𝑅𝑖]
∪ ℬ 𝑅𝑖

does not increase in the processing on each 𝑅𝑖
(lines 7-15), and 𝑄(𝐺′) will finally converge to a

local minimum when the algorithm stops.

4 Experiments

The experiments are conducted on Chinese-to-

English translation in a state-of-the-art string-to-

tree SMT system. All the results are reported in

terms of case-insensitive BLEU4(%).

4.1 Experimental Setup

Our bilingual training corpus consists of about

350K bilingual sentences (9M Chinese words +

10M English words)
2
. Giza++ is employed to

perform word alignment on the bilingual sen-

tences. The parse trees on the English side are

generated using the Berkeley Parser
3
. A 5-gram

language model is trained on the English part of

LDC bilingual training data and the Xinhua part

of Gigaword corpus. Our development data set

comes from NIST2003 evaluation data in which

the sentences of more than 20 words are ex-

cluded to speed up the Minimum Error Rate

Training (MERT). The test data sets are the

NIST evaluation sets of 2005 and 2008.

Our string-to-tree SMT system is built based

on the work of (Galley et al., 2006; Marcu et al.,

2006), where both the minimal GHKM and

SPMT rules are extracted from the training cor-

pus, and the composed rules are generated by

combining two or three minimal GHKM and

SPMT rules. Before the rule extraction, we also

binarize the parse trees on the English side using

Wang et al. (2007) „s method to increase the

coverage of GHKM and SPMT rules. There are

totally 4.26M rules after the low frequency rules

are filtered out. The pruning strategy is similar to

the cube pruning described in (Chiang, 2007). To

achieve acceptable translation speed, the beam

size is set to 50 by default. The baseline system

is based on the synchronous binarization (Zhang

et al., 2006).

4.2 Binarization Schemes

Besides the baseline (Zhang et al., 2006) and

iterative cost reduction binarization methods, we

also perform right-heavy and random synchron-

ous binarizations for comparison. In this paper,

the random synchronous binarization is obtained

by: 1) performing the CKY binarization to build

the binarization forest for an SCFG rule; then 2)

performing a top-down traversal of the forest. In

the traversal, we randomly pick a feasible binari-

zation for each span, and then go on the traversal

in the two branches of the picked binarization.

Table 2 shows the costs of resulting binary

SCFGs generated using different binarization

methods. The costs of the baseline (left-heavy)

2
 LDC2003E14, LDC2003E07, LDC2005T06 and

LDC2005T10
3 http://code.google.com/p/berkeleyparser/

367

and right-heavy binarization are similar, while

the cost of the random synchronous binarization

is lower than that of the baseline method
4
. As

expected, the iterative cost reduction method ob-

tains the lowest cost, which is much lower than

that of the other three methods.

Method cost of binary SCFG 𝐺′

Baseline 4,897M

Right-heavy 5,182M

Random 3,479M

Iterative cost reduction 185M

Table 2: Costs of the binary SCFGs generated

using different binarization methods.

4.3 Evaluation of Translations

Table 3 shows the performance of SMT systems

based on different binarization methods. The

iterative cost reduction binarization method

achieves the best performance on the test sets as

well as the development set. Compared with the

baseline method, it obtains gains of 0.82 and

0.84 BLEU scores on NIST05 and NIST08 test

sets respectively. Using the statistical signific-

ance test described by Koehn (2004), the im-

provements are significant (p < 0.05).

Method Dev NIST05 NIST08

Baseline 40.02 37.90 27.53

Right-heavy 40.05 37.87 27.40

Random 40.10 37.99 27.58

Iterative cost

reduction

40.97* 38.72* 28.37*

Table 3: Performance (BLUE4(%)) of different

binarization methods. * = significantly better than

baseline (p < 0.05).

The baseline method and the right-heavy bina-

rization method achieve similar performance,

while the random synchronous binarization me-

thod performs slightly better than the baseline

method, which agrees with the fact of the cost

reduction shown in Table 2. A possible reason

that the random synchronous binarization me-

thod can outperform the baseline method lies in

that compared with binarizing SCFG in a fixed

way, the random synchronous binarization tends

to give a more even distribution of rules among

buckets, which alleviates the problem of edge

competition. However, since the high-frequency

source sub-sequences still have high probabilities

to be generated in the binarization and lead to the

4
 We perform random synchronous binarization for 5

times and report the average cost.

excess competing edges, it just achieves a very

small improvement.

4.4 Translation Accuracy vs. Cost of Binary

SCFG

We also study the impacts of cost reduction on

translation accuracy over iterations in iterative

cost reduction. Figure 6 and Figure 7 show the

results on NIST05 and NIST08 test sets. We can

see that the cost of the resulting binary SCFG

drops greatly as the iteration count increases,

especially in the first iteration, and the BLEU

scores increase as the cost decreases.

Figure 6: Cost of binary SCFG vs. BLEU4 (NIST05)

Figure 7: Cost of binary SCFG vs. BLEU4 (NIST08)

4.5 Impact of Beam Size

In this section, we study the impacts of beam

sizes on translation accuracy as well as compet-

ing edges. To explicitly investigate the issue un-

der large beam sizes, we use a subset of NIST05

and NIST08 test sets for test, which has 50 Chi-

nese sentences of no longer than 10 words.

Figure 8 shows that the iterative cost reduction

method is consistently better than the baseline

method under various beam settings. Besides the

experiment on the test set of short sentences, we

also conduct the experiment on NIST05 test set.

To achieve acceptable decoding speed, we range

the beam size from 10 to 70. As shown in Figure

9, the iterative cost reduction method also out-

performs the baseline method under various

beam settings on the large test set.

Though enlarging beam size can reduce the

search errors and improve the system perfor-

mance, the decoding speed of string-to-tree SMT

drops dramatically when we enlarge the beam

size. The problem is more serious when long

1.0E+08

1.0E+09

1.0E+10

37.8

38

38.2

38.4

38.6

38.8

0 1 2 3 4 5
performance(BLEU4) cost

iteration

BLEU4(%) cost of G'

1.0E+08

1.0E+09

1.0E+10

27.4

27.6

27.8

28

28.2

28.4

0 1 2 3 4 5
performance(BLEU4) cost

BLEU4(%) cost of G'

iteration

368

sentences are translated. For example, when the

beam size is set to a larger number (e.g. 200), our

decoder takes nearly one hour to translate a sen-

tence whose length is about 20 on a 3GHz CPU.

Decoding on the entire NIST05 and NIST08 test

sets with large beam sizes is impractical.

Figure 8: BLEU4 against beam size (small test set)

Figure 9: BLEU4 against beam size (NIST05)

Figure 10 compares the baseline method and

the iterative cost reduction method in terms of

translation accuracy against the number of edges

proposed during decoding. Actually, the number

of edges proposed during decoding can be re-

garded as a measure of the size of search space.

We can see that the iterative cost reduction me-

thod outperforms the baseline method under var-

ious search effort.

Figure 10: BLEU4 against competing edges

The experimental results of this section show

that compared with the baseline method, the iter-

ative cost reduction method can lead to much

fewer edges (about 25% reduction) as well as the

higher BLEU scores under various beam settings.

4.6 Edge Competition vs. Cost of Binary

SCFG

In this section, we study the impacts of cost re-

duction on the edge competition in the chart cells

of our CKY-based decoder. Two metrics are

used to evaluate the degree of edge competition.

They are the variance and the mean of the num-

ber of competing edges in the chart cells, where

high variance means that in some chart cells the

rules have high risk to be pruned due to the large

number of competing edges. The same situation

holds for the mean as well. Both of the two me-

trics are calculated on NIST05 test set, varying

with the span length of chart cell.

Figure 11 shows the cost of resulting binary

SCFG and the variance of competing edges

against iteration count in iterative cost reduction.

We can see that both the cost and the variance

reduce greatly as the iteration count increases.

Figure 12 shows the case for mean, where the

reduction of cost also leads to the reduction of

the mean value. The results shown in Figure 11

and Figure 12 indicate that the cost reduction is

helpful to reduce edge competition in the chart

cells.

Figure 11: Cost of binary SCFG vs. variance of

competing edge number (NIST05)

Figure 12: Cost of binary SCFG vs. mean of

competing edge number (NIST05)

We also perform decoding without pruning

(i.e. beam size = ∞) on a very small set which

has 20 sentences of no longer than 7 words. In

this experiment, the baseline system and our iter-

ative cost reduction based system propose

14,454M and 10,846M competing edges respec-

tively. These numbers can be seen as the real

numbers of the edges proposed during decoding

instead of an approximate number observed in

the pruned search space. It suggests that our me-

thod can reduce the number of the edges in real

search space effectively. A possible reason to

32

34

36

38

40

42

10 50 100 500 1000 5000

baseline

cost reduction

BLEU4(%)

beam
size

35

36

37

38

39

10 20 30 40 50 70

baseline

cost reduction

beam
size

BLEU4(%)

32

34

36

38

40

42

1E+07 1E+08 1E+09 1E+10

baseline

cost reduction

BLEU4(%)

of
edges

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

1.0E+7

1.0E+8

1.0E+9

1.0E+10

0 1 2 3 4 5

span=2

span=3

span=5

span=7

span=10

span=20

cost

iteration

variance cost of G'

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

8.0E+3

1.0E+5

0 1 2 3 4 5

span=2

span=3

span=5

span=7

span=10

span=20

cost

iteration

mean cost of G'

369

this result is that the cost reduction based binari-

zation could reduce the probability of rule mis-

matching caused by binarization, which results in

the reduction of the number of edges proposed

during decoding.

5 Conclusion and Future Work

This paper introduces a new binarization method,

aiming at choosing better binarization for SCFG-

based SMT systems. We demonstrate the effec-

tiveness of our method on a state-of-the-art

string-to-tree SMT system. Experimental results

show that our method can significantly outper-

form the conventional synchronous binarization

method, which indicates that better binarization

selection is very beneficial to SCFG-based SMT

systems.

In this paper the cost of a binary rule is de-

fined based on the competition among the binary

rules that have the same source-sides. However,

some binary rules with different source-sides

may also have competitions in a chart cell. We

think that the cost of a binary rule can be better

estimated by taking the rules with different

source-sides into account. We intend to study

this issue in our future work.

Acknowledgements

The authors would like to thank the anonymous

reviewers for their pertinent comments, and Xi-

nying Song, Nan Duan and Shasha Li for their

valuable suggestions for improving this paper.

References

Eugene Charniak, Mark Johnson, Micha Elsner, Jo-

seph Austerweil, David Ellis, Isaac Haxton, Cathe-

rine Hill, R. Shrivaths, Jeremy Moore, Michael Po-

zar, and Theresa Vu. 2006. Multilevel Coarse-to-

Fine PCFG Parsing. In Proc. of HLT-NAACL 2006,

New York, USA, 168-175.

Eugene Charniak, Sharon Goldwater, and Mark John-

son. 1998. Edge-Based Best-First Chart Parsing. In

Proc. of the Six Workshop on Very Large Corpora,

pages: 127-133.

David Chiang. 2005. A Hierarchical Phrase-Based

Model for Statistical Machine Translation. In Proc.

of ACL 2005, Ann Arbor, Michigan, pages: 263-

270.

David Chiang. 2007. Hierarchical Phrase-based

Translation. Computational Linguistics. 33(2):

202-208.

Michel Galley, Jonathan Graehl, Kevin Knight, Da-

niel Marcu, Steve DeNeefe, Wei Wang, and Igna-

cio Thayer. 2006. Scalable Inference and Training

of Context-Rich Syntactic Translation Models. In

Proc. of ACL 2006, Sydney, Australia, pages: 961-

968.

Michel Galley, Mark Hopkins, Kevin Knight, and

Daniel Marcu. 2004. What‟s in a translation rule?

In Proc. of HLT-NAACL 2004, Boston, USA, pag-

es: 273-280.

Liang Huang. 2007. Binarization, Synchronous Bina-

rization, and Target-side binarization. In Proc. of

HLT-NAACL 2007 / AMTA workshop on Syntax

and Structure in Statistical Translation, New York,

USA, pages: 33-40.

Tadao Kasami. 1965. An Efficient Recognition and

Syntax Analysis Algorithm for Context-Free Lan-

guages. Technical Report AFCRL-65-758, Air

Force Cambridge Research Laboratory, Bedford,

Massachusetts.

Philipp Koehn. 2004. Statistical Significance Tests for

Machine Translation Evaluation. In Proc. of

EMNLP 2004, Barcelona, Spain , pages: 388–395.

Daniel Marcu, Wei Wang, Abdessamad Echihabi, and

Kevin Knight. 2006. SPMT: Statistical machine

translation with syntactified target language phras-

es. In Proc. of EMNLP 2006, Sydney, Australia,

pages: 44-52.

Giorgio Satta and Enoch Peserico. 2005. Some Com-

putational Complexity Results for Synchronous

Context-Free Grammars. In Proc. of HLT-EMNLP

2005, Vancouver, pages: 803-810.

L. Shapiro and A. B. Stephens. 1991. Bootstrap per-

colation, the Sch𝑟 oder numbers, and the n-kings

problem. SIAM Journal on Discrete Mathematics,

4(2):275-280.

Xinying Song, Shilin Ding and Chin-Yew Lin. 2008.

Better Binarization for the CKY Parsing. In Proc.

of EMNLP 2008, Hawaii, pages: 167-176.

Yoshimasa Tsuruoka and Junichi Tsujii. 2004. Itera-

tive CKY Parsing for Probabilistic Context-Free

Grammars. In Proc. of IJCNLP 2004, pages: 52-

60.

Wei Wang and Kevin Knight and Daniel Marcu.

2007. Binarizing Syntax Trees to Improve Syntax-

Based Machine Translation Accuracy. In Proc. of

EMNLP-CoNLL 2007, Prague, Czech Republic,

pages: 746-754.

D. H. Younger. 1967. Recognition and Parsing of

Context-Free Languages in Time n
3
. Information

and Control, 10(2):189-208.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin

Knight. 2006. Synchronous Binarization for Ma-

chine Translation. In Proc. of HLT-NAACL 2006,

New York, USA, pages: 256- 263.

370

