
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 778–788,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Training continuous space language models:
some practical issues

Le Hai Son and Alexandre Allauzen and Guillaume Wisniewski and François Yvon
Univ. Paris-Sud, France and LIMSI/CNRS

BP 133, 91403 Orsay Cedex
Firstname.Lastname@limsi.fr

Abstract

Using multi-layer neural networks to esti-
mate the probabilities of word sequences is
a promising research area in statistical lan-
guage modeling, with applications in speech
recognition and statistical machine transla-
tion. However, training such models for large
vocabulary tasks is computationally challeng-
ing which does not scale easily to the huge
corpora that are nowadays available. In this
work, we study the performance and behav-
ior of two neural statistical language models
so as to highlight some important caveats of
the classical training algorithms. The induced
word embeddings for extreme cases are also
analysed, thus providing insight into the con-
vergence issues. A new initialization scheme
and new training techniques are then intro-
duced. These methods are shown to greatly re-
duce the training time and to significantly im-
prove performance, both in terms of perplexity
and on a large-scale translation task.

1 Introduction

Statistical language models play an important role in
many practical applications, such as machine trans-
lation and automatic speech recognition. Let V be
a finite vocabulary, statistical language models de-
fine distributions over sequences of words wL

1 in V?

usually factorized as:

P (wL
1 ) = P (w1)

L∏
l=1

P (wl|wl−1
1 )

Modeling the joint distribution of several discrete
random variables (such as words in a sentence) is

difficult, especially in real-world Natural Language
Processing applications where V typically contains
dozens of thousands words.

Many approaches to this problem have been pro-
posed over the last decades, the most widely used
being back-off n-gram language models. n-gram
models rely on a Markovian assumption, and de-
spite this simplification, the maximum likelihood es-
timate (MLE) remains unreliable and tends to under-
estimate the probability of very rare n-grams, which
are hardly observed even in huge corpora. Con-
ventional smoothing techniques, such as Kneser-
Ney and Witten-Bell back-off schemes (see (Chen
and Goodman, 1996) for an empirical overview,
and (Teh, 2006) for a Bayesian interpretation), per-
form back-off on lower order distributions to pro-
vide an estimate for the probability of these unseen
events. n-gram language models rely on a discrete
space representation of the vocabulary, where each
word is associated with a discrete index. In this
model, the morphological, syntactic and semantic
relationships which structure the lexicon are com-
pletely ignored, which negatively impact the gen-
eralization performance of the model. Various ap-
proaches have proposed to overcome this limita-
tion, notably the use of word-classes (Brown et al.,
1992; Niesler, 1997), of generalized back-off strate-
gies (Bilmes et al., 1997) or the explicit integration
of morphological information in the random-forest
model (Xu and Jelinek, 2004; Oparin et al., 2008).

One of the most successful alternative to date is to
use distributed word representations (Bengio et al.,
2003), where distributionally similar words are rep-
resented as neighbors in a continuous space. This
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turns n-grams distributions into smooth functions
of the word representations. These representations
and the associated probability estimates are jointly
computed in a multi-layer neural network architec-
ture. This approach has showed significant and
consistent improvements when applied to automatic
speech recognition (Schwenk, 2007; Emami and
Mangu, 2007; Kuo et al., 2010) and machine trans-
lation tasks (Schwenk et al., 2006). Hence, contin-
uous space language models are becoming increas-
ingly used. These successes have revitalized the re-
search on neuronal architectures for language mod-
els, and given rise to several new proposals (see, for
instance, (Mnih and Hinton, 2007; Mnih and Hinton,
2008; Collobert and Weston, 2008)). A major diffi-
culty with these approaches remains the complexity
of training, which does not scale well to the mas-
sive corpora that are nowadays available. Practical
solutions to this problem are discussed in (Schwenk,
2007), which introduces a number of optimization
and tricks to make training doable. Even then, train-
ing a neuronal language model typically takes days.

In this paper, we empirically study the conver-
gence behavior of two multi-layer neural networks
for statistical language modeling, comparing the
standard model of (Bengio et al., 2003) with the log-
bilinear (LBL) model of (Mnih and Hinton, 2007).
Our contributions are the following: we first pro-
pose a reformulation of Mnih and Hinton’s model,
which reveals its similarity with extant models, and
allows a direct and fair comparison with the stan-
dard model. For the standard model, these results
highlight the impact of parameter initialization. We
first investigate a re-initialization method which al-
lows to escape from the local extremum the standard
model converges to. While this method yields a sig-
nificative improvement, the underlying assumption
about the structure of the model does not meet the
requirement of very large-scale tasks. We therefore
introduce a different initialization strategy, called
one vector initialization. Experimental results show
that these novel training strategies drastically reduce
the total training time, while delivering significant
improvements both in terms of perplexity and in a
large-scale translation task.

The rest of this paper is organized as follows. We
first describe, in Section 2, the standard and the LBL
language models. By reformulating the latter, we

show that both models are very similar and empha-
size the remaining differences. Section 2.4 discusses
complexity issues and possible solutions to reduce
the training time. We then report, in Section 3, pre-
liminary experimental results that enlighten some
caveats of the standard approach. Based on these
observations, we introduce in Section 4 novel and
more efficient training schemes, yielding improved
performance and a reduced training time both on
small and large scale experiments.

2 Continuous space language models

Learning a language model amounts to estimate the
parameters of the discrete conditional distribution
over words given each possible history, where the
history corresponds to some function of the preced-
ing words. For an n-gram model, the history con-
tains the n − 1 preceding words, and the model
parameters correspond to P (wl|wl−1

l−n+1). Continu-
ous space language models aim at computing these
estimates based on a distributed representation of
words (Bengio et al., 2003), thereby reducing the
sparsity issues that plague conventional maximum
likelihood estimation. In this approach, each word
in the vocabulary is mapped into a real-valued vec-
tor and the conditional probability distributions are
then expressed as a (parameterized) smooth func-
tion of these feature vectors. The formalism of neu-
ral networks allows to express these two steps in a
well-known framework, where, crucially, the map-
ping and the model parameters can be learned in
conjunction. In the next paragraphs, we describe the
two continuous space language models considered
in our study and present the various issues associ-
ated with the training of such models, as well as their
most common remedies.

2.1 The standard model

In the following, we will consider words as indices
in a finite dictionary of size V ; depending on the
context, w will either refer to the word or to its in-
dex in the dictionary. A word w can also be repre-
sented by a 1-of-V coding vector v of RV in which
all elements are null except the wth. In the standard
approach of (Bengio et al., 2003), the feed-forward
network takes as input the n−1 word history and de-
livers an estimate of the probability P (wl|wl−1

l−n+1)

779



as its output. It consists of three layers.
The first layer builds a continuous representation

of the history by mapping each word into its real-
valued representation. This mapping is defined by
RT v, where R ∈ RV×m is a projection matrix
and m is the dimension of the continuous projection
word space. The output of this layer is a vector i of
(n − 1)m real numbers obtained by concatenating
the representations of the context words. The pro-
jection matrix R is shared along all positions in the
history vector and is learned automatically.

The second layer introduces a non-linear trans-
form, where the output layer activation values are
defined by h = tanh (Wihi + bih) , where i is the
input vector, Wih ∈ RH×(n−1)m and bih ∈ RH are
the parameters of this layer. The vector h ∈ RH can
be considered as an higher (more abstract) represen-
tation of the context than i.

The third layer is an output layer that estimates the
desired probability, thanks to the softmax function:

P (wl = k|wl−1
l−n+1) =

exp(ok)∑
k′ exp(ok′)

(1)

o = Whoh + bho, (2)

where Who ∈ RV×H and bho ∈ RV are respec-
tively the projection matrix and the bias term associ-
ated with this layer. The wth component in P corre-
sponds to the estimated probability of the wth word
of the vocabulary given the input history vector.

The standard model has two hyper-parameters
(the dimension of projection space m and the size of
hidden layer, H) that define the architecture of the
neural network and a set of free parameters Θ that
need to be learned from data: the projection matrix
R, the weight matrix Wih, the bias vector bih, the
weight matrix Who and the bias vector bho.

In this model, the projection matrices R and Who

play similar roles as they define maps between the
vocabulary and the hidden representation. The fact
that R assigns similar representations to history
words w1 and w2 implies that these words can be
exchanged with little impact on the resulting prob-
ability distribution. Likewise, the similarity of two
lines in Who is an indication that the corresponding
words tend to have a similar behavior, i.e. tend to
have a similar probabilities of occurrence in all con-
texts. In the remainder, we will therefore refer to R

as the matrix representing the context space, and to
Who as the matrix for the prediction space.

2.2 The log-bilinear model

The work reported (Mnih and Hinton, 2007) de-
scribes another parameterization of the architecture
introduced in the previous section. This parameter-
ization is based on Factored Restricted Boltzmann
Machine. According to (Mnih and Hinton, 2007),
this model, termed the log-bilinear language model
(LBL), achieves, for large vocabulary tasks, bet-
ter results in terms of perplexity than the standard
model, even if the reasons beyond this improvement
remain unclear.

In this section, we will describe this model and
show how it relates to the standard model. The LBL
model estimates the n-gram parameters by:

P (wl|wl−1
l−n+1) =

exp(−E(wl; wl−1
l−n+1))∑

w exp(−E(w; wl−1
l−n+1))

(3)

In this equation, E is an energy function defined as:

E(wl; wl−1
1 ) = −

(
l−1∑

k=l−n+1

vk
T RCT

k

)
RT vl

(4)

− br
T RT vl − bv

T vl

= −vT
l R

(
l−1∑

k=l−n+1

CkRT vk + br

)
− vT

l bv (5)

where R is the projection matrix introduced above,
(vk)l−n+1≤k≤l−1 are the 1-of-V coding vectors for
the history words and vl is the coding vector for wl;
Ck ∈ Rm×m is a combination matrix and br and bv

denote bias vectors. All these parameters need to be
learned during training.

Equation (4) can be rewritten using the notations
introduced for the standard model. We then rename
br and bv respectively bih and bho. We also denote
i the concatenation of the (n − 1) vectors RT vk;
likewise Wih denotes the H × (n− 1)m matrix ob-
tained by concatenating row-wise the (n − 1) ma-
trices Ck. With these new notations, equations (4)
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and (3) can be rewritten as:

h = Wihi + bih

o = Rh + bho

P (wl = k|wl−1
l−n+1) =

exp(ok)∑
k′ exp(ok′)

This formulation allows to highlight the similarity of
the LBL model and the standard model. These two
models differ only by the activation function of their
hidden layer (linear for the LBL model and tangent
hyperbolic for the standard model) and by their def-
inition of the prediction space: for the LBL model,
the context space and the prediction space are the
same (R = Who, and thus H = m), while in the
standard model, the prediction space is defined in-
dependently from the context space. This restriction
drastically reduces the number of free parameters of
the LBL model.

It is finally noteworthy to outline the similarity
of this model with standard maximum entropy lan-
guage models (Lau et al., 1993; Rosenfeld, 1996).
Let x denote the binary vector formed by stacking
the (n-1) 1-of-V encodings of the history words;
then the conditional probability distributions esti-
mated in the model are proportional to exp F (x),
where F is an affine transform of x. The main dif-
ference with MaxEnt language models are thus the
restricted form of the feature functions, which only
test one history word, and the particular representa-
tion of F , which is defined as:

F (x) = RWihR′T v + Rbih + bho

where, as before, R′ is formed by concatenating
(n− 1) copies of the projection matrix R.

2.3 Training and inference
Training the two models introduced above can be
achieved by maximizing the log-likelihood L of the
parameters Θ. This optimization is usually per-
formed by stochastic back-propagation as in (Ben-
gio et al., 2003). For all our experiments, the learn-
ing rate is fixed at 5×10−3. The learning weight de-
cay and the the weight decay (respectively 1× 10−9

and 0) seem to have a minor impact on the results.
Learning starts with a random initialization of the

parameters under the uniform distribution and con-
verges to a local maximum of the log-likelihood
function. Moreover, to prevent overfitting, an early
stopping strategy is adopted: after each epoch, train-
ing is stopped when the likelihood of a validation set
stops increasing.

2.4 Complexity issues

The main problem with neural language models is
their computational complexity. For the two mod-
els presented in this section, the number of floating
point operations needed to predict the label of a sin-
gle example is1:

((n− 1) ·m + 1)×H + (H + 1)× V (6)

where the first term of the sum corresponds to the
computation of the hidden layer and the second one
to the computation of the output layer. The projec-
tion of the context words amounts to select one row
of the projection matrix R, as the words are repre-
sented with a 1-of-V coding vector. We can there-
fore assume that the computation complexity of the
first layer is negligible. Most of the computation
time is thus spent in the output layer, which implies
that the computing time grows linearly with the vo-
cabulary size. Training these models for large scale
tasks is therefore challenging, and a number of tricks
have been introduced to make training and inference
tractable (Schwenk and Gauvain, 2002; Schwenk,
2007).

Short list A simple method to reduce the com-
plexity in inference and in learning is to reduce
the size of the output vocabulary (Schwenk, 2007):
rather than estimating the probability P (wl =
w|wl−1

l−n+1) for all words in the vocabulary, we only
estimate it for the N most frequent words of the
training set (the so-called short-list). In this case,
two vocabularies need to be considered, correspond-
ing respectively to the context vocabulary Vc used to
define the history; and the prediction vocabulary Vp.
However, this method fails to deliver any probability
estimate for words outside of the prediction vocab-
ulary, meaning that a fall-back strategy needs to be
defined for those words. In practice, neural network

1Recall that learning requires to repeatedly predict the label
for all the examples in the training set.
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language models are combined with a conventional
n-gram model as described in (Schwenk, 2007).

Batch mode and resampling Additional speed-
ups can be obtained by propagating several exam-
ples at once through the network (Bilmes et al.,
1997). This “batch mode” allows to factorize the
matrix operations and cut down both inference and
training time. In all our experiments, we used a
batch size of 64. Moreover, the training time is lin-
ear in the number of examples in the training data2.
Training on very large corpora, which, nowadays,
comprise billions of word tokens, cannot be per-
formed exhaustively and requires to adopt resam-
pling strategies, whereby, at each epoch, the system
is trained with only a small random subset of the
training data. This approach enables to effectively
estimate neural language models on very large cor-
pora; it has also been observed empirically that sam-
pling the training data can increase the generaliza-
tion performance (Schwenk, 2007).

3 A head-to-head comparison

In this section, we analyze a first experimental
study of the two neural network language models
introduced in Section 2 in order to better under-
stand the differences between these models espe-
cially in terms of the word representations they in-
duce. Based on this study, we will propose, in the
next section, improvements of both the speed and
the prediction capacity of the models. In all our ex-
periments, 4-gram language models are used.

3.1 Corpus

The data we use for training is a large monolingual
corpus, containing all the English texts in the par-
allel data of the Arabic to English NIST 2009 con-
strained task3. It consists of 176 millions word to-
kens with 532, 557 different word types as the size
of vocabulary. The perplexity is computed with re-
spect to the 2006 NIST test data, which is used here
as our development data.

2Equation (6) gives the complexity of inference for a single
example.

3http://www.itl.nist.gov/iad/mig/tests/
mt/2009/MT09_ConstrainedResources.pdf

3.2 Convergence study
In a first experiment, we trained the two models in
the same setting: we choose to consider a small
vocabulary comprising the 10, 000 most frequent
words. The same vocabulary is used to constrain
the words occurring in the history and the words
to be predicted. The size of hidden layer is set to
m = H = 200, the history contains the 3 preceding
words, we use a batch size of 64, a resampling rate
of 5% and no weight decay.

Figure 1 displays the perplexity convergence
curve measured on the development data for the
standard and the LBL models4. The convergence
perplexities after the combination with the standard
back-off model are also provided for all the mod-
els in table 2 (see section 4.3). We can observe
that the LBL model converges faster than the stan-
dard model: the latter needs 13 epochs to reach
the stopping criteria, while the former only needs
6 epochs. However, upon convergence, the stan-
dard model reaches a lower perplexity than the LBL
model.
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Figure 1: Convergence rate of the standard and the LBL
models evaluated by the evolution of the perplexity on a
development set

As described in Section 2.2, the main difference
between the standard and the LBL model is the way
the context and the prediction spaces are defined: in
the standard model, the two spaces are distinct; in

4The use of a back-off 4-model estimated with the modified
Knesser-Ney smoothing on the same training data achieves a
perplexity of 141 on the development data.
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the LBL model, they are bound to be the same. With
a smaller number of parameters, the LBL model can
not capture as many characteristics of the data as the
standard model, but it converges faster5. This differ-
ence in convergence can be explained by the scarcity
of the updates in the projection matrix R in the
standard model: during backpropagation, only those
weights that are associated with words in the history
are updated. By contrast, each training sample up-
dates all the weights in the prediction matrix Who.

3.3 An analysis of the continuous word space

To deepen our understanding, we propose to further
analyze the induced word embeddings by finding,
for some randomly selected words, the five nearest
neighbors (according to the Euclidian distance) in
the context space and in the prediction space of the
two models. Results are presented in Table 1.

If we look first at the standard model, the global
picture is that for frequent words (is, are, and, to
a lesser extend, have), both spaces seem to define
meaningful neighborhood, corresponding to seman-
tic and syntactic similarities; this is less true for rarer
words, where we see a greater discrepancy between
the context and prediction spaces. For instance, the
date 1947 seems to be randomly associated in the
context space, while the 5 nearest words in the pre-
diction space form a consistent set of dates. The
same trend is also observed for the word Castro. Our
interpretation is that for less frequent words, the pro-
jection vectors are hardly ever updated and remain
close to their original random initialization.

By contrast, the similarities in the (unique) pro-
jection space of the LBL remain consistent for all
frequency ranges, and are very similar to the predic-
tion space of the standard model. This seems to val-
idate our hypothesis that in the standard model, the
prediction space is learned much faster than the con-
text space and corroborates our interpretation of the
impact of the scarce updates of rare words. Another
possible explanation is that there is no clear relation

5We could increase the number of parameters of the LBL
model for a fairer comparison with the standard model. How-
ever, this would also increase the size of the vocabulary and
cause two new issues: on one hand, the time complexity would
drastically increase for the LBL model, and on the other hand,
both models would not be comparable in terms of perplexity as
their vocabulary would be different.

between the context space and the target function:
the context space is learned only indirectly by back-
propagation. As a result, due to the random initial-
ization of the parameters and to data sparsity, many
vectors of R might be blocked in some local max-
ima, meaning that similar vectors cannot be grouped
in a consistent way and that the induced similarity is
more “loose”.

4 Improving the standard model

In Section 3.2, we observed that slightly better re-
sults can be obtained with the standard rather than
with the LBL model. The latter is however much
faster to train, and seems to induce better projection
matrices. Both effects can be attributed to the partic-
ular parameterization of this model, which uses the
same projection matrix both for the context and for
the prediction spaces. In this section, we propose
several new learning regimes that allowed us to im-
prove the standard model in terms of both speed and
prediction capacity. All these improvements rely on
the idea of sharing word representations. While this
idea is not new (see for instance (Collobert and We-
ston, 2008)), our analysis enables to better under-
stand its impact on the convergence rate. Finally, the
improvements we propose are evaluated on a real-
word machine translation task.

4.1 Improving performances with
re-initialization

The experiments reported in the previous section
suggest that it is possible to improve the perfor-
mances of the standard model by building a better
context space. Thus, we introduce a new learning
regime, called re-initialization which aims to im-
prove the context space by re-injecting the informa-
tion on word neighborhoods that emerges in the pre-
diction space. One possible implementation of this
idea is as follows:

1. train a standard model until convergence;

2. use the prediction space of this model to ini-
tialize the context space of a new model; the
prediction space is chosen randomly;

3. train this new model.
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Table 1: The 5 closest words in the representation spaces of the standard and LBL language models.
word (frequency) model space 5 most closest words
is standard context was are were be been
900, 350 standard prediction was has would had will

LBL both was reveals proves are ON
are standard context were is was be been
478, 440 standard prediction were could will have can

LBL both were is was FOR ON
have standard context had has of also the
465, 417 standard prediction are were provide remain will

LBL both had has Have were embrace
meeting standard context meetings conference them 10 talks
150, 317 standard prediction undertaking seminar meetings gathering project

LBL both meetings summit gathering festival hearing
Imam standard context PCN rebellion 116. Cuba 49
787 standard prediction Castro Sen Nacional Al- Ross

LBL both Salah Khaled Al- Muhammad Khalid
1947 standard context 36 Mercosur definite 2002-2003 era
774 standard prediction 1965 1945 1968 1964 1975

LBL both 1965 1976 1964 1968 1975
Castro standard context exclusively 12. Boucher Zeng Kelly
768 standard prediction Singh Clark da Obasanjo Ross

LBL both Clark Singh Sabri Rafsanjani Sen

Figure 2: Evolution of the perplexity on a development
set for various initialization regimes.

The evolution of the perplexity with respect to train-
ing epochs for this new method is plotted on Fig-
ure 2, where we only represent the evolution of the
perplexity during the third training step. As can be
seen, at convergence, the perplexity the model esti-
mated with this technique is about 10% smaller than
the perplexity of the standard model.

This result can be explained by considering the re-
initialization as a form of annealing technique: re-
initializing the context space allows to escape from
the local extrema the standard model converges to.
The fact that the prediction space provides a good
initialization of the context space also confirms our
analysis that one difficulty with the standard model
is the estimation of the context space parameters.

4.2 Iterative re-initialization

The re-initialization policy introduced in the previ-
ous section significantly reduces the perplexity, at
the expense of a longer training time, as it requires
to successively train two models. As we now know
that the parameters of the prediction space are faster
to converge, we introduce a second training regime
called iterative re-initialization which aims to take
advantage of this property. We summarize this new
training regime as follows:

1. Train the model for one epoch.

2. Use the prediction space parameters to reini-
tialize the context space.

3. Iterate steps (1) and (2) until convergence.
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Figure 3: Evolution of the perplexity on the training data
for various initialization regimes.

This regimes yields a model that is somewhat in-
between the standard and LBL models as it adds a
relationship between the two representation spaces,
which lacks in the former model. This relationship is
however not expressed through the tying of the cor-
responding parameters; instead we let the prediction
space guide the convergence of the context space.
As a consequence, we hope that it can achieve a con-
vergence speed as fast as the one of the LBL model
without degrading its prediction capacity.

The result plotted on Figure 2 shows that this in-
deed the case: using this training regime, we ob-
tained a perplexity similar to the one of the stan-
dard model, while at the same time reducing the
total training time by more than a half, which is
of great practical interest (each epoch lasts approxi-
mately 8 hours on a 3GHz Xeon processor).

Figure 3 displays the perplexity convergence
curve measured on the training data for the standard
learning regime as well as for the re-initialization
and iterative re-initialization. These results show
the same trend as for the perplexity measured on
the development data, and suggest a regularization
effect of the re-initialization schemes rather than al-
lowing the models to escape local optima.

4.3 One vector initialization

Principle The new training regimes introduced
above outperform the standard training regime both
in terms of perplexity and of training time. However,
exchanging information between the context and

prediction spaces is only possible when the same
vocabulary is used in both spaces. As discussed
in Section 2.4, this configuration is not realistic for
very large-scale tasks. This is because increasing the
number of predicted word types is much more com-
putationally demanding than increasing the number
of types in the context vocabulary. Thus, the former
vocabulary is typically order of magnitudes larger
than the latter, which means that the re-initialization
strategies can no longer be directly used.

It is nonetheless possible to continue drawing in-
spirations from the observations made in Section 3,
and, crucially, to question the random initialization
strategy. As discussed above, this strategy may ex-
plain why the neighborhoods in the induced con-
text space for the less frequent types were diffi-
cult to interpret. As a straightforward alternative,
we consider a different initialization strategy where
all the words in the context vocabulary are initially
projected onto the same (random) point in the con-
text space. The intuition is that it will be easier to
build meaningful neighborhoods, especially for rare
types, if all words are initially considered similar
and only diverge if there is sufficient evidence in the
training data to suggest that they should. This model
is termed the one vector initialization model.

Experimental evaluation To validate this ap-
proach, we compare the convergence of a standard
model trained (with the standard learning regime)
with the one vector initialization regime. The con-
text vocabulary is defined by the 532, 557 words oc-
curring in the training data and the prediction vo-
cabulary by the 10, 000 most frequent words6. All
other parameters are the same as in the previous
experiments. Based on the curves displayed on
Figure 4, we can observe that the model obtained
with the one vector initialization regime outperforms
the model trained with a completely random ini-
tialization. Moreover, the latter reaches conver-
gence in only 14 epochs, while the learning regime
we propose only needs 9 epochs. Convergence is
even faster than when we used the standard training
regime and a small context vocabulary.

6In this case, the distinction between the context and the pre-
diction vocabulary rules out the possibility of a relevant compar-
ison based on perplexity between the continuous space language
model and a standard back-off language model.
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Figure 4: Perplexity with all-10, 000, 200− 200 models

Table 2: Summary of the perplexity (PPX) results mea-
sured on the same development set with the different con-
tinuous space language models. For all of them, the prob-
abilities are combined with the back-off n-gram model
Vc size Model # epochs PPX
10000 log bilinear 6 239

standard 13 227
iterative reinit. 6 223

reinit. 11 211
all standard 14 276

one vector init. 9 260

To illustrate the impact of our initialization
scheme, we also used a principal component anal-
ysis to represent the induced word representations
in a two dimensional space. Figure 5 represents the
vectors associated with numbers7 in red, while all
other words are represented in blue. Two different
models are used: the standard model on the left, and
the one vector initialization model on the right. We
can observe that, for the standard model, most of
the red points are scattered all over a large portion
of the representation space. On the opposite, for
the one vector initialization model, points associated
with numbers are much more concentrated: this is
simply because all the points are originally identi-
cal, and the training aim to spread the point around
this starting point. We also created the closest word
list reported in Table 3, in a manner similar to Ta-
ble 1. Clearly, the new method seems to yield more

7Number are all the words consisting only of digits, with an
optional sign, point or comma such as: 1947; 0,001; -8,2.

(a) with the standard model (b) with the one vector initial-
ization model

Figure 5: Comparison of the word embedding in the con-
text space for numbers (red points).

meaningful neighborhoods in the context space.
It is finally noteworthy to mention that when used

with a small context vocabulary (as in the experi-
mental setting of Section 4.1) this initialization strat-
egy underperforms the standard initialization. This
is simply due to the much greater data sparsity in
the large context vocabulary experiments, where the
rarer word types are really rare (they typically occur
once or twice). By contrast, the rarer words in the
small vocabulary tasks occurred more than several
hundreds times in the training corpus, which was
more than sufficient to guide the model towards sat-
isfactory projection matrices. This finally suggests
that there still exists room for improvement if we
can find more efficient initialization strategies than
starting from one or several random points.

4.4 Statistical machine translation experiments

As a last experiment, we compare the various mod-
els on a large scale machine translation task. Sta-
tistical language models are key component of cur-
rent statistical machine translation systems (Koehn,
2010), where they both help disambiguate lexical
choices in the target language and influence the
choice of the right word ordering. The integration of
a neural network language model in such a system is
far from easy, given the computational cost of com-
puting word probabilities, a task that is performed
repeatedly during the search of the best translation.
We then had to resort to a two pass decoding ap-
proach: the first pass uses a conventional back-off
language model to produce a n-best list (the n most
likely translations and their associated scores); in the
second pass, the probability of the neural language
model is computed for each hypothesis and the n-
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Table 3: The 5 closest words in the context space of the standard and one vector initialization language models
word (freq.) model 5 closest words
is standard was are were been remains
900, 350 1 vector init. was are be were been
conducted standard undertaken launched $270,900 Mufamadi 6.44-km-long
18, 388 1 vector init. pursued conducts commissioned initiated executed
Cambodian standard Shyorongi $3,192,700 Zairian depreciations teachers
2, 381 1 vector init. Danish Latvian Estonian Belarussian Bangladeshi
automatically standard MSSD Sarvodaya $676,603,059 Kissana 2,652,627
1, 528 1 vector init. routinely occasionally invariably inadvertently seldom
Tosevski standard $12.3 Action,3 Kassouma 3536 Applique
34 1 vector init. Shafei Garvalov Dostiev Bourloyannis-Vrailas Grandi
October-12 standard 39,572 anti-Hutu $12,852,200 non-contracting Party’s
8 1 vector init. March-26 April-11 October-1 June-30 August4
3727th standard Raqu Tatsei Ayatallah Mesyats Langlois
1 1 vector init. 4160th 3651st 3487th 3378th 3558th

best list is accordingly reordered to produce the final
translations.

The different language models discussed in this
article are evaluated on the Arabic to English
NIST 2009 constrained task. For the continuous
space language model, the training data consists
in the parallel corpus used to train the translation
model (previously described in section 3.1). The de-
velopment data is again the 2006 NIST test set and
the test data is the official 2008 NIST test set. Our
system is built using the open-source Moses toolkit
(Koehn et al., 2007) with default settings. To set
up our baseline results, we used an extensively op-
timized standard back-off 4-grams language model
using Kneser-Ney smoothing described in (Allauzen
et al., 2009). The weights used during the reranking
are tuned using the Minimum Error Rate Training
algorithm (Och, 2003). Performance is measured
based on the BLEU (Papineni et al., 2002) scores,
which are reported in Table 4.

Table 4: BLEU scores on the NIST MT08 test set with
different language models.
Vc size Model # epochs BLEU

all baseline - 37.8
10000 log bilinear 6 38.2

standard 13 38.3
iterative reinit. 6 38.4

reinit. 11 38.4
all standard 14 38.6

one vector init. 9 38.7

All the experimented neural language models
yield to a significant BLEU increase. The best re-
sult is obtained by the one vector initialization stan-
dard model which achieves a 0.9 BLEU improve-
ment. While this results is similar to the one ob-
tained with the standard model, the training time is
reduced here by a third.

5 Conclusion

In this work, we proposed three new methods
for training neural network language models and
showed their efficiency both in terms of computa-
tional complexity and generalization performance in
a real-word machine translation task. These meth-
ods rely on conclusions drawn from a careful study
of the convergence rate of two state-of-the-art mod-
els and are based on the idea of sharing the dis-
tributed word representations during training.

Our work highlights the impact of the initializa-
tion and the training scheme for neural network lan-
guage models. Both our experimental results and
our new training methods can be closely related to
the pre-training techniques introduced by (Hinton
and Salakhutdinov, 2006). Our future work will thus
aim at studying the connections between our empir-
ical observations and the deep learning framework.
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