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Abstract

Part-of-speech language modeling is com-
monly used as a component in statistical ma-
chine translation systems, but there is mixed
evidence that its usage leads to significant im-
provements. We argue that its limited effec-
tiveness is due to the lack of lexicalization.
We introduce a new approach that builds a
separate local language model for each word
and part-of-speech pair. The resulting mod-
els lead to more context-sensitive probabil-
ity distributions and we also exploit the fact
that different local models are used to esti-
mate the language model probability of each
word during decoding. Our approach is evalu-
ated for Arabic- and Chinese-to-English trans-
lation. We show that it leads to statistically
significant improvements for multiple test sets
and also across different genres, when com-
pared against a competitive baseline and a sys-
tem using a part-of-speech model.

1 Introduction

Language models are an important component of
current statistical machine translation systems. They
affect the selection of phrase translation candidates
and reordering choices by estimating the probability
that an application of a phrase translation is a flu-
ent continuation of the current translation hypoth-
esis. The size and domain of the language model
can have a significant impact on translation quality.
Brants et al. (2007) have shown that each doubling
of the training data from the news domain (used to
build the language model), leads to improvements of
approximately 0.5 BLEU points. On the other hand,

each doubling using general web data leads to im-
provements of approximately 0.15 BLEU points.

While large n-gram language models do lead
to improved translation quality, they still lack any
generalization beyond the surface forms (Schwenk,
2007). Consider example (1), which is a short sen-
tence fragment from the MT09 Arabic-English test
set, with the corresponding machine translation out-
put (1.b), from a phrase-based statistical machine
translation system, and reference translation (1.c).
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b. ... the background of press statements of
controversial and accused him ...

c. ... the background of controversial press
statements and accused him ...

Clearly, the adjective “controversial” should pre-
cede the nouns “press statement”, but since the AFP
and Xinhua portions of the Gigaword corpus, used
to build the language model for the translation sys-
tem, do not contain this surface n-gram, translations
with obviously ungrammatical constructions such as
(1.b) can result. For unseen n-grams, one would like
to model adjectives as being likely to precede nouns
in English, for example.

A straightforward approach to address this is to
exploit the part-of-speech (POS) tags of the tar-
get words during translation (Kirchhoff and Yang,
2005). Though models exploiting POS information
are not expressive enough to model long-distance
dependencies, they can account for locally ungram-
matical constructions such as (1.b). Several attempts
have been made to interpolate POS language models
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with surface models. Under constrained data condi-
tions, this can lead to improvements. But once larger
amounts of training data are used, the gains obtained
from adding POS language models decline substan-
tially. This raises the question of why POS language
models are not more effective. We argue that one of
the short-comings of previous approaches to using
POS language models is that these models are es-
timated globally, not lexically anchored, and hence
rather context insensitive.

In this paper, we introduce a novel approach that
builds and uses individual, local POS language mod-
els for each word in the vocabulary. Our experiments
show that it leads to statistically significant improve-
ments over a competitive baseline, using lexical-
ized reordering and a sizable 5-gram word language
model, as well as a standard 7-gram POS language
model approach.

2 Part-of-Speech Language Models

2.1 Background

Typically, POS language models are used like word-
based language models. N-grams are extracted from
a POS-tagged corpus and an n-gram language model
is built from that. While word-based models esti-
mate the probability of a string ofmwords by Equa-
tion 2, POS-based models estimate the probability of
string of m POS tags by Equation 3.

p(wm
1 ) ∝

m∏

i=1

p(wi|wi−1
i−n+1) (2)

p(tm1 ) ∝
m∏

i=1

p(ti|ti−1
i−n+1) (3)

where, n is the order of the language model, and wj
i

refers to the sub-sequence of words (or tags) from
positions i to j.

Word language models can be built directly from
large text corpora, such as LDC’s Gigaword corpus,
but POS models require texts that are annotated with
POS tags. Ideally, one would use manually anno-
tated corpora such as the Penn Treebank (Marcus et
al., 1993), but since those tend to be small, most ap-
proaches rely on larger corpora which have been au-
tomatically annotated by a POS tagger or a parser
(Koehn et al., 2008). Though automated annotation

inevitably contains errors, it is assumed that this is
ameliorated by the increased size of annotated data.

The event space of a language models is of size
|V |n, where V is the vocabulary, and n is the order
of the language model. The vocabulary of POS mod-
els, (typically ranging between 40 and 100 tags), is
much smaller than the vocabulary of a word model,
which can easily approach a million words. Nev-
ertheless, most POS language modeling approaches
apply some form of smoothing to account for unseen
events (Bonneau-Maynard et al., 2007).

To deploy POS language models in machine
translation, translation candidates need to be anno-
tated with POS tags. Each target phrase ē in a phrase
pair (f̄ , ē) can be associated with a number of POS
tag sequences t̄ē. Heeman (1998) shows that using
the joint probability leads to improved perplexity for
POS models. For machine translation one can sum
over all possible tag sequences, as in Equation 4.

p(e|f) = arg maxe

∑

t

p(e, t|f) (4)

Summing over all possible tag sequences has the dis-
advantage that it requires one to keep this informa-
tion during decoding. Below, we opt for an approxi-
mate solution, where each target phrase is annotated
with the most likely POS tag sequence given the
source and target phrase: t̄ē = arg maxt̄ p(t̄|ē, f̄).

2.2 Effectiveness of POS Language Models

Reported results on the effectiveness of POS lan-
guage models for machine translation are mixed, in
particular when translating into languages that are
not morphologically rich, such as English. While
they rarely seem to hurt translation quality, there
does not seem to be a clear consensus that they sig-
nificantly improve quality either.

Koehn and Hoang (2007) have reported an in-
crease of 0.86 BLEU points for German-to-English
translation for small training data. After relaxing
phrase-matching to include lemma and morpholog-
ical information on the source side, POS language
models lead to a decrease of -0.42 BLEU points. Su-
pertagging encapsulates more contextual informa-
tion than POS tags and Birch et al. (2007) report
improvements when comparing a supertag language
model to a baseline using a word language model

870



only. Once the baseline incorporates lexicalized dis-
tortion (Tillmann, 2004; Koehn et al., 2005), these
improvements disappear. Factored language mod-
els have not resulted in significant improvements ei-
ther. Kirchhoff and Yang (2005) report slight im-
provements when re-ranking the n-best lists of their
decoder, which word tri-grams. But these improve-
ments are less than those gained by re-ranking the
n-best lists with a 4-gram word language model.

The impact of POS language models depends
among other things on the size of the parallel cor-
pus, the size and order of the word language model,
and whether lexicalized distortion models are used.
To gauge the potential effectiveness of POS lan-
guage models without taking into consideration all
these factors, we isolate the contribution of the lan-
guage model by simulating machine translation out-
put using English data only (Al-Onaizan and Pap-
ineni, 2006; Post and Gildea, 2008). Taking a set
of POS-tagged reference translations of the MT04
Arabic-to-English test set, each English sentence is
randomly chunked into n-grams of average length
three. The chunks of each sentence, with their cor-
responding POS tags, are randomly reordered. This
is repeated 500 times for each sentence in the test
set. The smoothed sentence BLEU score (ignor-
ing brevity penalty) is computed for each reordered
sentence with respect to all reference translations.
The higher the BLEU score, the more well-formed
the reordering is. As each reordered sentence only
contains words from at least one of the reference
translations, the uni-gram precision is always 1.0.
The language model probability is then computed
for each reordering. Table 1 shows the average cor-
relations between language model probabilities and
BLEU scores.

We can see that the surface language model corre-
lates moderately well with BLEU, explaining about
49% (r2 = 0.49) of the variation, whereas the POS
language model does not correlate with BLEU at
all.1 On the other hand, local language models alone
(as introduced in Section 3) correlate with BLEU
only slightly worse than surface models. The high-
est correlation is seen when they are interpolated
with word models. The BLEU scores in Table 1

1Interpolating both models does not lead to further correla-
tion improvements.

LM Kendall’s τ Pearson r BLEU[%]
wordLM 0.53 0.71 80.20
POS 7gLM 0.01 0.01 48.44
locLM 0.45 0.62 76.03
λwordLM+(1−λ)locLM 0.54 0.73 80.98
(λ = 0.92)

Table 1: Correlation between randomly permuted English
reference translations and BLEU.

are computed using the 1-best sentences after re-
ranking. These system-agnostic correlation results
look promising for our local models and the end-
to-end translation results in Section 5 confirm these
initial findings.

3 Local Language Models

In this section, we introduce a novel approach to lan-
guage modeling that is more context-sensitive than
standard POS language models. Instead of using one
global POS language model that is built by using all
of a mono-lingual corpus in the target language, we
build individual models, or local models, for each
word-POS pair using the POS tags surrounding each
occurrence of that pair. This adds an aspect of lex-
icalization that is entirely absent in previous POS
language models. The effect is that the resulting n-
gram probability distributions of each local model
are more biased towards the contextual constraints
of each individual word-POS pair. This is similar to
the idea of cached language models (Kuhn, 1988),
but more fine-grained and with a tighter integration
of POS and lexical information.

3.1 Definition of Local Language Models
Each conditional probability of order n in a local
model for the word-POS pair w : t is of the form:

pw:t(tn, pn|t1 :p1, . . . , tn−1 :pn−1)

where ti refers to POS tags and pi to positions rel-
ative to an occurrence of the pair (w : t). For ex-
ample, consider the sentence fragment in Figure 1.
The conditional local n-gram probabilities (a–d) are
generated from the occurrence of the word told with
POS tag VBD. Probability (c) in Figure 1 estimates
that a word with POS tag NN occurs two positions
to the right of told, given the n-gram history that a
noun occurs to its left and a determiner to its right.
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position . . . 11 12 13 14 15 16 17 . . .
relative
position . . . -3 -2 -1 0 +1 +2 +3 . . .

word . . . the new mayor told the reporter to . . .
POS . . . DT JJ NN VBD DT NN TO . . .

(a) ptold:VBD(NN:-1|DT:-3 JJ:-2) (c) ptold:VBD(NN:+2|NN:-1 DT:+1)

(b) ptold:VBD(DT:+1|JJ:-2 NN:-1) (d) ptold:VBD(TO:+3|DT:+1 NN:+2)

Figure 1: Sentence fragment with the tri-gram probabilities (a–d) linked to told.

For each local model we use a sliding window con-
sidering all n-grams of length n starting n words to
the left and ending n words to the right of an occur-
rence of the word-POS pair of the model at hand.

All local model probabilities are smoothed us-
ing Witten-Bell smoothing and interpolation.2 POS
tags are annotated with positional information to
distinguish between lower-order estimates such as
ptold :VBD(NN+2) and ptold :VBD(NN+3) both of
which can arise when backing off during smooth-
ing. Without positional information, ptold :VBD(NN)
only estimates the probability of the tag NN occur-
ring within the proximity of told.3

A local model of order n contains the conditional
probabilities for words occurring at relative posi-
tions -1, +1, . . . +n. Therefore the probability of
a word occurrence is estimated by all local mod-
els covering this word’s position. Figure 2 shows
schematically how overlapping n-gram probabilities
interact. E.g., the probability of word wi+2 is based
on the probability of the local model for wi+1, wi,
wi−1, and wi−2 (the last two are not shown in Fig-
ure 2 for space reasons). Formally, the conditional
probability of a word-POS pair, given its word and
POS tag history is defined in Equation 5.

p(wi, ti |wi−1
i−n+1, t

i−1
i−n+1) =

pwi:ti(ti−1 : -1 | 〈ti−n : -n, . . . , ti−2 : -2〉)

·
n−1∏

j=0

pwi−n+j :ti−n+j (ti :n−j |Hi,n[j, ·]) (5)

2The smaller event space of local models often leads to in-
complete counts-of-counts, preventing the use of Kneser-Ney
smoothing (Chen and Goodman, 1999).

3Despite the notational similarities, our approach should not
be confused with projected POS models, which use source side
POS tags to model reordering (Och et al., 2004).

. . .

. . .

...w1 wi-3 wi-2 wi-1 wi wi+1wi+2wi+3 ... wm

n-gram history
predicted word
position of current
local model

Figure 2: Schema of overlapping local language model
applications.

where Hi,n is an n×n matrix specifying the history
of the word at position i. Each row j of Hi,n rep-
resents the history of the conditional probability be-
longing to the local model associated with position
i−n+j. Each entry Hi,n[j, k] is defined as follows:

Hi,n[j, k] =

{
ti−n+k :k − j if j 6= k

ε otherwise

where ti−n+k is the POS tag at position i − n + k
and k − j is the relative position with respect to the
diagonal of Hi,n, i.e., the position of the local lan-
guage model corresponding to row j. Hi,n[j, ·] is the
jth row vector from which the jth entry (the empty
element) has been removed. For instance, given the
example in Figure 1, H14,3 is

H14,3 =




ε JJ:+1 NN:+2
DT:-1 ε NN:+1
DT:-2 JJ:-1 ε




For convenience we assume that the row and col-
umn indices are 0-based, i.e., the upper-left entry of
a matrix is referred to by Hi,n[0, 0]. In this example,
H14,3[1, ·] = 〈DT:-1, NN:+1〉.
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position 0 1 2 3 4 5 6
token <s> cuba frees more dissidents . </s>

POS tag <s> NNP VBZ JJR NNS . </s>

p(cuba, NNP|w0
0, t

0
0) = pcuba:NNP(<s>:-1) · p<s>:<s>(NNP:+1)

p(frees, VBZ|w1
0, t

1
0) = pfrees:VBZ(NNP:-1|<s>:-2) · p<s>:<s>(VBZ:+2|NNP:+1)

·pcuba:NNP(VBZ:+1|<s>:-1)

p(more, JJR|w2
0, t

2
0) = pmore:JJR(VBZ:-1|NNP:-3 VBZ:-2) · p<s>:<s>(JJR:+3|NNP:+1 VBZ:+2)

·pcuba:NNP(JJR:+2|<s>:-1 VBZ:+1) · pfrees:VBZ(JJR:+1|<s>:-2 NNP:-1)

p(dissidents, NNS|w3
1, t

3
1) = pdissidents:NNS(JJR:-1|NNP:-3 VBZ:-2) · pcuba:NNP(NNS:+3|VBZ:+1 JJR:+2)

·pfrees:VBZ(NNS:+2|NNP:-1 JJR:+1) · pmore:JJR(NNS:+1|NNP:-2 VBZ:-1)

p(. , .|w4
2, t

4
2) = p.:.(NNS:-1|VBZ:-3 JJR:-2) · pfrees:VBZ(.:+3|JJR:+1 NNS:+2)

·pmore:JJR(.:+2|VBZ:-1 NNS:+1) · pdissidents:NNS(.:+1|VBZ:-2 JJR:-1)

p(</s>, </s>|w5
3, t

5
3) = p</s>:</s>(.:-1|JJR:-3 NNS:-2) · pmore:JJR(</s>:+3|NNS:+1 .:+2)

·pdissidents:NNS(</s>:+2|JJR:-1 .:+1) · p.:.(</s>:+1|JJR:-2 NNS:-1)

Figure 3: Language model probability computation for the sentence “Cuba frees more dissidents.” using our local
language modeling approach.

The example in Figure 3 shows word-by-word
how tri-gram local language models are used to
compute the probability of a whole sentence.

Our local language model approach also bears
some resemblance to statistical approaches to mod-
eling subcategorization frames (Manning, 1993).
While our approach is more general by considering
all words and not just focusing on verbal subcatego-
rization frames, it is also more shallow in the sense
that only part-of-speech categories are considered
which does not model any contextual relationships
on the phrase level.

3.2 Building Local Language Models
To build the local language models, we use the
SRILM toolkit (Stolcke, 2002), which is commonly
applied in speech recognition and statistical machine
translation. While SRILM collects n-gram statistics
from all n-grams occurring in a corpus to build a
single global language model, we build a language
model for each word-POS pair only using the n-
grams within the proximity of occurrences for that
word-POS pair in a POS-tagged corpus. This results
in separate n-gram count files, which are then pro-
cessed by SRILM to build the individual language
models.4 Charniak’s parser (Charniak, 2000) is used
to POS tag the corpus.

4The pre-processing scripts are available at http://www.
science.uva.nl/˜christof/locLM/.

3.3 Decoder Integration

Several approaches that integrate POS language
models have focused on n-best list re-ranking only
(Hasan et al., 2006; Wang et al., 2007). Often this
is due to the computational (and implementational)
complexities of integrating more complex language
models with the decoder, although it is expected that
a tighter integration with the decoder itself leads to
better improvements than n-best list re-ranking.

Integrating our local language modeling approach
with a decoder is straightforward. Our baseline
decoder already uses SRILM’s API for computing
word language model probabilities. Since SRILM
supports arbitrarily many language models, local
language models can be added using the same func-
tionalities of SRILM’s API. For the experiments dis-
cussed in Section 4, we add about 150,000 local
language models to the word model. All local lan-
guage model probabilities are coupled with the same
feature weight. Potentially, improvements could be
gained from using separate weights for individual
local models, but this would require an optimiza-
tion procedure such as MIRA (Chiang et al., 2009),
which can handle a larger number of features.

During decoding no POS tagging ambiguities are
resolved. Each target phrase is associated with its
most likely POS tag sequence, given the source and
target side of the phrase pair; see Section 2.1.

873



4 Experimental Setup

Three approaches are compared in our experiments:
the baseline system is a phrase-based statistical ma-
chine translation system (Koehn et al., 2003), very
similar to Moses (Koehn et al., 2007), using a word-
based 5-gram language model. The second approach
extends the baseline by including a 7-gram POS-
based language model. The third approach repre-
sents the work described in this paper, extending the
baseline by including 4-gram local language models.

Translation quality is evaluated for two language
pairs: Arabic-to-English and Chinese-to-English.
NIST’s MT-Eval test sets are used for both pairs.
Only resources allowed under NIST’s constrained
data conditions are used to train the language, trans-
lation, and lexicalized distortion models.

To see whether our local language models result
in improvements over a competitive baseline, we
designed the baseline to use a large 5-gram word
language model and lexicalized distortion model-
ing, both of which are known to cancel-out improve-
ments gained from POS language models (Birch et
al., 2007; Kirchhoff and Yang, 2005). The 5-gram
word language model is trained on the Xinhua and
AFP sections of the Gigaword corpus (3rd edition,
LDC2007T40) and the target side of the bitext. We
removed from the training data all documents re-
leased during the periods that overlap with the pub-
lication dates of the documents included in our de-
velopment or test data sets. In total, 630 million to-
kens were used to build the word language model.
The language model was trained using SRILM with
modified Kneser-Ney smoothing and interpolation
(Chen and Goodman, 1999). It is common practice
not to include higher-order n-grams that occur fewer
than a predefined number of times. Here, we applied
rather conservative cut-offs, by ignoring 3-, 4-, and
5-grams that occurred only once. The 7-gram POS
and 4-gram local language models were both trained
on the POS tagged English side of the bitext and
10M sentences from Gigaword’s Xinhua and AFP
sections.

The data for building the translation models
were primarily drawn from the parallel news re-
sources distributed by the Linguistic Data Consor-
tium (LDC).5 The Arabic-English bitext consists

5LDC catalog numbers for Arabic-English: LDC2004E72,

of 11.4M source and 12.6M target tokens, and the
Chinese-English bitext of 10.6M source and 12.3M
target tokens. Word alignment was performed run-
ning GIZA++ in both directions and generating the
symmetric alignments using the ‘grow-diag-final-
and’ heuristics.

All three approaches, including the baseline, use
lexicalized distortion, distinguishing between mono-
tone, swap, and discontinuous reordering, all with
respect to the previous and next phrase (Koehn et
al., 2005). The distortion limit is set to 5 for Arabic-
to-English, and 6 for Chinese-to-English. For each
source phrase the top 30 translations are considered.

For tuning and testing we use NIST’s official MT-
Eval test sets. MT04 was used as the development
set for both language pairs. Testing was carried out
on MT05 to MT09 for Arabic-English and MT05
to MT08 for Chinese-English. NIST did not re-
lease a new Chinese-English test set for MT-Eval
2009. Parameter tuning of the decoder was done
with minimum error rate training (MERT) (Och,
2003), adapted to BLEU maximization.

As evaluation metrics we used NIST’s adapta-
tion of BLEU-4 (Papineni et al., 2001), version 13a,
where the brevity penalty is based on the reference
translation with the closest length, and translation
error rate (TER) version 0.7.25 (Snover et al., 2006).
All results reported here are case-insensitive. TER
scores are shown as 1-TER.

To see whether the differences between the ap-
proaches we compared in our experiments are sta-
tistically significant, we apply approximate random-
ization (Noreen, 1989); Riezler and Maxwell (2005)
have shown that approximate randomization is less
sensitive to Type-I errors, i.e., less likely to falsely
reject the null hypothesis, than bootstrap resampling
(Koehn, 2004) in the context of machine translation.

5 Results and Analysis

The Arabic-to-English results are shown in Ta-
ble 2, and the Chinese-to-English results in Ta-
ble 3. All results are subdivided by genre following
NIST’s genre classification. Note that MT06 con-

LDC2004T17, LDC2004T18, LDC2005E46, LDC2005E83,
LDC2006E25, LDC2006E34, LDC2006E85, LDC2006E92,
and LDC2007T08. For Chinese-English: LDC2002E18,
LDC2003E07, LDC2003E14, LDC2005E83, LDC2005T06,
LDC2006E34, LDC2006E85, and LDC2006E92.
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systems and MT04 MT05 MT06 MT08 MT09 MT05–09
improvements tune NW NW WB ALL NW WB ALL NW WB ALL NW WB ALL

BLEU[%]
1a wordLM 51.90 53.83 46.76 34.69 43.41 48.77 33.26 42.37 52.97 34.25 44.34 50.51 34.00 45.63
2a +posLM 51.92 54.29 47.02 34.44 43.51 48.81 33.30 42.31 53.52 34.04 44.36 50.89 33.87 45.70
3a > wordLM +0.02 +0.46N +0.26 −0.25 +0.10 +0.04 +0.04 −0.06 +0.55N −0.21 +0.02 +0.38N −0.13 +0.07

4a +locLM 52.65 55.08 47.24 35.17 43.88 49.61 33.67 42.92 54.39 34.40 44.82 51.57 34.33 46.22
5a > wordLM +0.75N +1.25N +0.48N +0.48M +0.47N +0.84N +0.41 +0.55N +1.42N +0.15 +0.48N +1.06N +0.33M +0.59N

6a > +posLM +0.73N +0.79N +0.22 +0.73N +0.37M +0.80N +0.37 +0.61N +0.87N +0.36 +0.46N +0.68N +0.46N +0.52N

1-TER[%]
1b wordLM 58.32 59.04 54.27 45.62 51.68 55.59 44.41 50.69 59.90 46.43 53.03 56.94 45.49 53.13
2b +posLM 58.54 59.72 54.90 45.67 52.14 55.75 44.64 50.89 60.49 46.72 53.47 57.46 45.70 53.55
3b > wordLM +0.22M +0.68N +0.63N +0.05 +0.46N +0.16 +0.23 +0.20M +0.59N +0.29M +0.44N +0.52N +0.21N +0.42N

4b +locLM 58.95 60.06 54.88 45.62 52.11 56.42 44.91 51.38 60.91 46.84 53.74 57.79 45.83 53.81
5b > wordLM +0.63N +1.02N +0.61N +0.00 +0.43N +0.83N +0.50N +0.69N +1.01N +0.41M +0.71N +0.85N +0.34N +0.68N

6b > +posLM +0.41N +0.34M −0.02 −0.05 −0.03 +0.67N +0.27 +0.49N +0.42M +0.12 +0.27M +0.33N +0.13 +0.26N

# segments 1,353 1,056 1,033 764 1,797 813 547 1,360 586 727 1,313 3,488 2,038 5,526

Table 2: Results for Arabic-to-English translation. Comparison of our approach (+locLM, rows 4a/b) to the baseline
using a word language model (wordLM, rows 1a/b) and a competing approach using a POS-based language model
(+posLM, rows 2a/b). Results are presented using BLEU[%] (rows 1a–6a) and 1-TER[%] (rows 1b–6b) and broken
down by genre: NW=newswire, WB=web, and ALL=NW∪WB. Rows 3a/b, 5a/b, and 6a/b show the relative improve-
ments over the system mentioned to the right of the > sign. Statistically significant improvements/declines (using
approximate randomization) at the p < .01 level are marked N/ H and M/ O at the p < .05 level.

tains the genres ‘broadcast news’ and ‘newsgroup’.
In both tables, the former has been classified under
‘newswire’ and the latter under ‘web’.

The first approach is the baseline system
‘wordLM’ (rows 1a/b in Tables 2 and 3), which uses
a 5-gram word-based language model. The next ap-
proach ‘+posLM’ extends the baseline by adding a
7-gram POS language model (rows 2a/b in both ta-
bles). Rows 3a/b show the relative improvements
over the baseline. The third approach ‘+locLM’
(rows 4a/b) uses local language models in addition
to the baseline’s word-based model. Note that +lo-
cLM does not use the 7-gram POS language model
as well. Rows 5a/b show the relative improvements
of the local modeling approach over the baseline and
rows 6a/b the improvements over the approach using
a POS language model.

Let us first take a closer look at the Arabic-to-
English results in Table 2. The approach using a
POS language model results in statistically signifi-
cant improvements for only one test set (MT05) and
the newswire documents of MT09. The average im-
provements across all sets and genres are negligible
(+0.07 BLEU). Our local language modeling ap-
proach achieves the highest BLEU scores for all test

sets and across all genres. In particular, the improve-
ments of +1.06 BLEU for newswire documents are
substantial. With the exception of MT08-WB and
MT09-WB all BLEU improvements over the base-
line are statistically significant.

When evaluating with 1-TER, local language
modeling also achieves the best results, with the ex-
ception of MT06, where the POS language model
approach performs slightly better.

Turning to the Chinese-English results in Table 3,
we see similar improvements in BLEU. The im-
provements of using a POS language model are neg-
ligible (+0.04 BLEU). Here as well, local language
modeling leads to the best results, with substantial
improvements of +0.88 BLEU for web documents.

The major difference between Arabic-English and
Chinese-English is the discrepancy between BLEU
score improvements and decreases in 1-TER. While
we cannot explain this discrepancy, it is worth not-
ing that similar discrepancies between BLEU and
TER and Arabic-to-English and Chinese-to-English
translation can be found in the literature. The results
described in Shen et al. (2009) show a strong cor-
relation between BLEU and 1-TER improvements6

6Shen et al. (2009) report TER rather than 1-TER scores.
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systems and MT04 MT05 MT06 MT08 MT05–08
improvements tune NW NW WB ALL NW WB ALL NW WB ALL

BLEU[%]
1a wordLM 37.32 32.55 33.33 23.40 31.16 28.67 17.57 24.03 31.93 19.82 29.30
2a +posLM 37.32 32.47 33.13 23.67 31.06 28.63 18.46 24.35 31.82 20.46 29.34
3a > wordLM +0.00 −0.08 −0.20 +0.27 −0.10 −0.04 +0.89N +0.32 −0.11 +0.64N +0.04

4a +locLM 38.15 33.05 33.33 24.62 31.42 29.52 18.24 24.79 32.36 20.70 29.82
5a > wordLM +0.83N +0.50M +0.00 +1.22N +0.26 +0.85N +0.67M +0.76N +0.43N +0.88N +0.52N

6a > +posLM +0.83N +0.58N +0.20 +0.95N +0.36M +0.89N −0.22 +0.44M +0.54N +0.24 +0.48N

1-TER[%]
1b wordLM 42.81 40.73 42.99 39.42 42.15 40.42 36.77 38.78 41.53 37.77 40.63
2b +posLM 42.50 40.60 42.75 38.87 41.84 39.76 36.75 38.41 41.23 37.55 40.34
3b > wordLM −0.31O −0.13 −0.24 −0.55 −0.31O −0.66H −0.02 −0.37O −0.30H −0.22 −0.29H

4b +locLM 42.77 40.49 42.62 39.40 41.86 40.00 36.11 38.26 41.20 37.35 40.27
5b > wordLM −0.04 −0.24 −0.37 −0.02 −0.29 −0.42 −0.66H −0.52H −0.33O −0.42O −0.36H

6b > posLM +0.27 −0.11 −0.13 +0.53 +0.02 +0.24 −0.64H −0.15 −0.03 −0.20 −0.07

# segments 1,788 1,082 1,181 483 1,664 691 666 1,357 2,954 1,149 4,103

Table 3: Comparison of our system for Chinese-to-English translation. See Table 2 for details on notation.

for Arabic-to-English on the MT06 and MT08 sets,
but for Chinese-to-English the correlation seems to
be much weaker and BLEU improvements of +0.75
can correspond to decreases of up to -0.80 in 1-TER.

One of the motivations of using POS language
models in general, and local language models in our
case, is to improve the fluency of translations, which
should be reflected in increased precision for higher-
order n-grams. Table 4 shows that this is the case
when comparing local modeling to both word and
POS language models for Arabic-to-English trans-
lation. The same trend, but to a somewhat weaker
degree can be observed for Chinese-to-English.

Prec-1 Prec-2 Prec-3 Prec-4 BP

Arabic-English (MT05–09)
wordLM 81.38 54.51 38.10 26.99 0.987
+posLM 81.81 54.82 38.34 27.17 0.983
+locLM 81.90 55.35 39.01 27.86 0.981

Chinese-English (MT05–08)
wordLM 75.03 40.56 22.55 12.93 0.955
+posLM 74.81 40.30 22.41 12.83 0.962
+locLM 74.24 40.70 22.83 13.19 0.966

Table 4: BLEU n-gram precision (1≤n≤4) and Brevity
Penalty (BP) scores over all test sets.

The effectiveness of a POS language model of-
ten diminishes with improved translation quality of
the base system to which it is added. Naturally,
we are interested in the extent that this diminish-
ing effect also holds for our local language mod-

els. A full experimental setup, varying all relevant
factors, such as language, translation, and distor-
tion model size, and the various meta-parameters,
is beyond the scope of this paper. Nevertheless,
we can gauge this by taking a closer look at the
distribution of improvements within our experi-
ments. Figure 4 shows performance improvements
in document-level BLEU for both language pairs.
The document-level BLEU score for the baseline
system is plotted on the x-axis and improvements are
plotted on the y-axis. The dotted line is the linear
fit (using least square regression). If the effective-
ness of either added model (POS or local) dimin-
ishes with increasing translation quality, we would
expect a declining regression line. This is not the
case for Arabic-to-English translation. Relative im-
provements for both added models increase as the
translation quality of the baseline increases. The
slope of both regression fits is almost identical, but
the y-intercept is larger for our local modeling ap-
proach. Note that the small slope is also due to dif-
ference in scale between full BLEU scores and rel-
ative improvements. We can observe the opposite
for Chinese-to-English translation, where the slope
is negative. Both models seem to help more for
documents with lower baseline translation quality.
For the POS model, the regression line intersects
with the neutral line (±0 improvement) at around
31 BLEU, which is close to the average BLEU score
and in line with its negligible improvements (see Ta-
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Figure 4: Correlation between baseline BLEU scores for individual documents and the relative, absolute improvements
achieved by +posLM (left) and +locLM (right). BLEU scores (and improvements) are computed at the document level.

ble 3). For the local language model, the regres-
sion line intersects with the neutral line at about
40 BLEU, suggesting that until translation quality
improves substantially, local language models could
still have a positive impact.

6 Related Work

The main goal of this paper is to show that by tying
POS language models to lexical items, we get more
accurate distributions for specific words. The work
on factored language models (Bilmes and Kirchhoff,
2003) is related to our work to the extent that it also
mixes POS tags with lexical information, albeit in
a very different manner. Factored language models
use more general representations, such as POS tags
or stems, only during back-off. Kirchhoff and Yang
(2005) applied factored language models to machine
translation but the improvements were negligible.

Collins et al. (2005) proposed a discriminative
language modeling approach that uses mixtures of
POS and surface information and showed that it
leads to a reduction in speech recognition word er-

ror rates. On the other hand, their approach seems
more suited for n-best list re-ranking and it is not
clear whether those improvements carry over to ma-
chine translation. Li and Khudanpur (2008) adapted
this discriminative approach to machine translation
re-ranking but used surface forms only.

Wang et al. (2007) and Zheng et al. (2008)
use elaborately enriched representations, called su-
per abstract role values (Wang and Harper, 2002),
which capture contextual dependencies using lexi-
cal categories, role labels, and dependency grammar
structures. So far their approach has been limited to
re-ranking n-best lists only.

7 Conclusion

Though POS language models do not lead to signif-
icant improvements over a competitive baseline, we
have shown that a competitive phrase-based baseline
system can benefit from using POS information by
building lexically anchored local models. Our local
model approach does not only lead to more context-
specific probability distributions, but also takes ad-
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vantage of the language model probability of each
word being based on all surrounding local models.
The evaluations for Arabic- and Chinese-to-English
show that local models lead to statistically signifi-
cant improvements across different test sets and gen-
res. Correlating the translation quality of the base-
line with the improvements that result from adding
local models, further suggests that these improve-
ments are sustainable and should carry over to im-
proved baseline systems.
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