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Abstract 

Due to its explicit modeling of the 
grammaticality of the output via target-side 
syntax, the string-to-tree model has been 
shown to be one of the most successful 
syntax-based translation models. However, 
a major limitation of this model is that it 
does not utilize any useful syntactic 
information on the source side. In this 
paper, we analyze the difficulties of 
incorporating source syntax in a string-to-
tree model. We then propose a new way to 
use the source syntax in a fuzzy manner, 
both in source syntactic annotation and in 
rule matching. We further explore three 
algorithms in rule matching: 0-1 matching, 
likelihood matching, and deep similarity 
matching. Our method not only guarantees 
grammatical output with an explicit target 
tree, but also enables the system to choose 
the proper translation rules via fuzzy use of 
the source syntax. Our extensive 
experiments have shown significant 
improvements over the state-of-the-art 
string-to-tree system. 

1 Introduction 

In recent years, statistical translation models based 
upon linguistic syntax have shown promising 
progress in improving translation quality. It 
appears that encoding syntactic annotations on 
either side or both sides in translation rules can 
increase the expressiveness of rules and can 
produce more accurate translations with improved 
reordering.  

One of the most successful syntax-based models 

is the string-to-tree model (Galley et al., 2006; 
Marcu et al., 2006; Shen et al., 2008; Chiang et al., 
2009). Since it explicitly models the 
grammaticality of the output via target-side syntax, 
the string-to-tree model (Xiao et al., 2010) 
significantly outperforms both the state-of-the-art 
phrase-based system Moses (Koehn et al., 2007) 
and the formal syntax-based system Hiero (Chiang, 
2007). However, there is a major limitation in the 
string-to-tree model: it does not utilize any useful 
source-side syntactic information, and thus to some 
extent lacks the ability to distinguish good 
translation rules from bad ones. 

The source syntax is well-known to be helpful in 
improving translation accuracy, as shown 
especially by tree-to-string systems (Quirk et al., 
2005; Liu et al., 2006; Huang et al., 2006; Mi et al., 
2008; Zhang et al., 2009).  The tree-to-string 
systems are simple and efficient, but they also have 
a major limitation: they cannot guarantee the 
grammaticality of the translation output because 
they lack target-side syntactic constraints.  

Thus a promising solution is to combine the 
advantages of the tree-to-string and string-to-tree 
approaches. A natural idea is the tree-to-tree model 
(Ding and Palmer, 2005; Cowan et al., 2006; Liu et 
al., 2009). However, as discussed by Chiang 
(2010), while tree-to-tree translation is indeed 
promising in theory, in practice it usually ends up 
over-constrained. Alternatively, Mi and Liu (2010) 
proposed to enhance the tree-to-string model with 
target dependency structures (as a language model). 
In this paper, we explore in the other direction: 
based on the strong string-to-tree model which 
builds an explicit target syntactic tree during 
decoding rather than apply only a syntactic 
language model, we aim to find a useful way to 
incorporate the source-side syntax. 
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First, we give a motivating example to show the 
importance of the source syntax for a string-to-tree 
model. Then we discuss the difficulties of 
integrating the source syntax into the string-to-tree 
model. Finally, we propose our solutions. 

Figure 1 depicts a standard process that 
transforms a Chinese string into an English tree 
using several string-to-tree translation rules. The 
tree with solid lines is produced by the baseline 
string-to-tree system. Although the yield is 
grammatical, the translation is not correct since the 
system mistakenly applies rule r2, thus translating 
the Chinese preposition 和 (hé ) in the example 
sentence into the English conjunction and. As a 
result, the Chinese prepositional phrase ‘和 恐怖 
组织  网’ (“with terrorist networks”) is wrongly 
translated as a part of the relevant noun phrase 
(“[Hussein] and terrorists networks”). Why does 
this happen? We find that r2 occurs 103316 times 
in our training data, while r3 occurs only 1021 
times. Thus, without source syntactic clues, the 
Chinese word 和 (h é ) is converted into the 
conjunction and in most cases. In general, this 
conversion is correct when the word 和(hé) is used 
as a conjunction. But 和(hé) is a preposition in the 
source sentence. If we are given this source 
syntactic clue, rule r3 will be preferred. This 
example motivates us to provide a moderate 
amount of source-side syntactic information so as 
to obtain the correct English tree with dotted lines 
(as our proposed system does). 

A natural question may arise that is it easy to 
incorporate source syntax in the string-to-tree 
model? To the best of our knowledge, no one has 
studied this approach before. In fact, it is not a 
trivial question if we look into the string-to-tree 
model. We find that the difficulties lie in at least 
three problems: 1) For a string-to-tree rule such as 
r6 in figure 1, how should we syntactically annotate 
its source string? 2) Given the source-annotated 
string-to-tree rules, how should we match these 
rules according to the test source tree during 
decoding? 3) How should we binarize the source-
annotated string-to-tree rules for efficient decoding? 

For the first problem, one may require the 
source side of a string-to-tree rule to be a 
constituent. However, such excessive constraints 
will exclude many good string-to-tree rules whose 
source strings are not constituents. Inspired by 
Chiang (2010), we adopt a fuzzy way to label 

every source string with the complex syntactic 
categories of SAMT (Zollmann and Venugopal, 
2006). This method leads to a one-to-one 
correspondence between the new rules and the 
string-to-tree rules. We will detail our fuzzy 
labeling method in Section 2. 

For the second problem, it appears simple and 
intuitive to match rules by requiring a rule’s source 
syntactic category to be the same as the category of 
the test string. However, this hard constraint will 
greatly narrow the search space during decoding. 
Continuing to pursue the fuzzy methodology, we 
adopt a fuzzy matching procedure to enable 
matching of all the rules whose source strings 
match the test string, and then determine the 
degree of matching between the test source tree 
and each rule. We will discuss three fuzzy 
matching algorithms, from simple to complex, in 
Section 3. 

The third question is a technical problem, and 
we will give our solution in Section 4. 

Our method not only guarantees the 
grammaticality of the output via the target tree 
structure, but also enables the system to choose 
appropriate translation rules during decoding 
through source syntactic fuzzy labeling and fuzzy 
matching.  

The main contributions of this paper are as 
follows: 

1) We propose a fuzzy method for both source 
syntax annotation and rule matching for 
augmenting string-to-tree models. 

2) We design and investigate three fuzzy rule 
matching algorithms: 0-1 matching, 
likelihood matching, and deep similarity 
matching. 

We hope that this paper will demonstrate how to 
effectively incorporate both source and target 
syntax into a translation model with promising 
results. 

2 Rule Extraction 

Since we annotate the source side of each string-to-
tree rule with source parse tree information in a 
fuzzy way, we will henceforward denote the 
source-syntax-decorated string-to-tree rule as a 
fuzzy-tree to exact-tree rule. We first briefly 
review issues of string-to-tree rule extraction; then 
we discuss how to augment the string-to-tree rules 
to yield fuzzy-tree to exact-tree rules. 
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Figure 1:  Two alternative derivations for a sample string-to-tree translation. The rules used are listed on the right. 

The target yield of the tree with solid lines is hussein and terrorist networks established relations. The target yield 
of the tree with dotted lines is hussein established relations with terrorist networks. 

 

2.1 String-to-Tree Rule Extraction 

Galley et al. (2004) proposed the GHKM algorithm 
for extracting (minimal) string-to-tree translation 
rules from a triple (f, et, a), where f is the source-
language sentence, et is a target-language parse tree 
whose yield e is the translation of f, and a is the set 
of word alignments between e and f. The basic idea 
of GHKM is to obtain the set of minimally-sized 
translation rules which can explain the mappings 
between source string and target parse tree. The 
minimal string-to-tree rules are extracted in three 
steps: (1) frontier set computation; (2) 
fragmentation; and (3) extraction. 
  The frontier set (FS) is the set of potential points 
at which to cut the graph G constructed by the 
triple (f, et, a) into fragments. A node satisfying the 
word alignment is a frontier. Bold italic nodes in 
the English parse tree in Figure 2 are all frontiers. 
   Given the frontier set, a well-formed 
fragmentation of G is generated by restricting each 
fragment to take only nodes in FS as the root and 
leaf nodes. 
   With fragmentation completed, the rules are 
extracted through a depth-first traversal of te : for 
each frontier being visited, a rule is extracted. 
These extracted rules are called minimal rules 
(Galley et al., 2004). For example, rules r ra i in 
Figure 2 are part of the total of 13 minimal rules.  

To improve the rule coverage, SPMT models 
can be employed to obtain phrasal rules (Marcu et 
at., 2006). In addition, the minimal rules which 
share the adjacent tree fragments can be connected 

together to form composed rules (Galley et al., 
2006). In Figure 2, jr  is a rule composed by 

combining cr and gr . 

2.2 Fuzzy-tree to Exact-tree Rule Extraction 

Our fuzzy-tree to exact-tree rule extraction works 
on word-aligned tree-to-tree data (Figure 2 
illustrates a Chinese-English tree pair).  Basically, 
the extraction algorithm includes two parts: 
(1) String-to-tree rule extraction (without 

considering the source parse tree); 
(2) Decoration of the source side of the string-to-

tree rules with syntactic annotations. 
We use the same algorithm introduced in the 

previous section for extracting the base string-to-
tree rules. The source-side syntactic decoration is 
much more complicated. 

The simplest way to decorate, as mentioned in 
the Introduction, is to annotate the source-side of a 
string-to-tree rule with the syntactic tag that 
exactly covers the source string. This is what the 
exact tree-to-tree procedure does (Liu et al., 2009). 
However, many useful string-to-tree rules will 
become invalid if we impose such a tight 
restriction. For example, in Figure 2, the English 
phrase discuss … them is a VP, but its Chinese 
counterpart is not a constituent. Thus we will miss 
the rule rh although it is a useful reordering rule. 
According to the analysis of our training data, the 
rules with rigid source-side syntactic constraints 
account for only about 74.5% of the base string-to-
tree rules. In this paper, we desire more general 
applicability. 
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 VPJJ

  ADJPVBP

VP

S

NP

FW

rb: 乐意 JJ(happy)

String-to-Tree rules:

ra: 我 FW(i)

rm: 和{P} IN(with)

rd: 他们 NP(them)
re: 讨论 VB(discuss)
rf: 此事 NP(DT(the) NN(matter))
rg: x0 x1 PP(x0:IN x1:NP)
rh: x2 x0 x1 VP(x0:VB x1:NP x2:PP)
ri: x0 VP(TO(to) x0:VP)

rj: 和 x0 PP(IN(with) x0:VP)

Fuzzy-tree to exact-tree rules:

rk: 我{PN} FW(i)

rl: 乐意{AD} JJ(happy)

rc: 和 IN(with)

rn: x2 x0 x1{PP*VP} VP(x0:VB x1:NP x2:PP)

ro: x0{PP*VP} VP(TO(to) x0:VP)

...

...

 
Figure 2:  A sample Chinese-English tree pair for rule extraction. The bold italic nodes in the target English tree are 
frontiers. Note that string-to-tree rules are extracted without considering source-side syntax (upper-right). The new 

fuzzy-tree to exact-tree rules are extracted with both-side parse trees (bottom-right). 
 

Inspired by (Zollmann and Venugopal, 2006; 
Chiang, 2010), we resort to SAMT-style syntactic 
categories in the style of categorial grammar (Bar-
Hillel, 1953). The annotation of the source side of 
string-to-tree rules is processed in three steps: (1) 
If the source-side string corresponds to a syntactic 
category C in the source parse tree, we label the 
source string with C. (2) Otherwise, we check if 
there exists an extended category of the forms 
C1*C2, C1/C2 or C2\C1

1, indicating respectively that 
the source string spans two adjacent syntactic 
categories, a partial syntactic category C1 missing a 
C2 on the right, or a partial C1 missing a C2 on the 
left. (3) If the second step fails, we check if there is 
an extended category of the forms C1*C2*C3 or 
C1..C2, showing that the source string spans three 
adjacent syntactic categories or a partial category 
with C1 and C2 on each side. In the worst case, 
C1..C2 can denote every source string, thus all of 
the decorations in our training data can be 
explained within the above three steps. Using the 
SAMT-style grammar, each source string can be 
associated with a syntactic category. Thus our 
fuzzy-tree to exact-tree extraction does not lose 

                                                           
1 The kinds of categories are checked in order. This means that 
if C1*C2, C1/C2 can both describe the same source string, we 
will choose C1*C2. 

any rules as compared with string-to-tree 
extraction. For example, rule ro in Figure 2 uses the 
product category *PP VP  on the source side. 

A problem may arise: How should we handle the 
situation where several rules are observed which 
only differ in their source-side syntactic categories? 
For example, besides the rule rm in Figure 2, we 
encountered rules like    CC IN with和  in the 

training data. Which source tag should we retain? 
We do not make a partial choice in the rule 
extraction phase. Instead, we simply make a union 
of the relevant rules and retain the respective tag 
counts. Applying this strategy, the rule takes the 
form of    : 6, : 4P CC IN with和

2, indicating that 

the source-side preposition tag appears six times 
while the conjunction occurs four times. Note that 
the final rule format used in translation depends on 
the specific fuzzy rule matching algorithm adopted. 

3 Fuzzy Rule Matching Algorithms 

The extracted rules will ultimately be applied to 
derive translations during decoding. One way to 
apply the fuzzy-tree to exact-tree rules is to narrow 
the rule search space. Given a test source sentence 

                                                           
2 6 and 4 are not real counts. They are used for illustration 
only. 
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with its parse tree, we can according to this 
strategy choose only the rules whose source syntax 
matches the test source tree.  However, this 
restriction will rule out many potentially correct 
rules. In this study, we keep the rule search space 
identical to that of the string-to-tree setting, and 
postpone the use of source-side syntax until the 
derivation stage. During derivation, a fuzzy 
matching algorithm will be adopted to compute a 
score to measure the compatibility between the 
rule and the test source syntax. The translation 
model will learn to distinguish good rules from bad 
ones via the compatibility scores. 
   In this section, three fuzzy matching algorithms, 
from simple to complex, are investigated in order. 

3.1 0-1 Matching 

0-1 matching is a straightforward approach that 
rewards rules whose source syntactic category 
exactly matches the syntactic category of the test 
string and punishes mismatches. It has mainly been 
employed in hierarchical phrase-based models for 
integrating source or both-side syntax (Marton and 
Resnik, 2008; Chiang et al., 2009; Chiang, 2010). 
Since it is verified to be very effective in 
hierarchical models, we borrow this idea in our 
source-syntax-augmented string-to-tree translation.  

In 0-1 matching, the rule’s source side must 
contain only one syntactic category, but a rule may 
have been decorated with more than one syntactic 
category on the source side. Thus we have to 
choose the most reliable category and discard the 
others. Here, we select the one with the highest 
frequency. For example, the tag P in the rule 

   : 6, : 4P CC IN with和  appears more frequently, 

so the final rule used in 0-1 matching will be 
   P IN with和 . Accordingly, we design two 

features: 
1. match_count calculates in a derivation the 

number of rules whose source-side syntactic 
category matches the syntactic category of the 
test string. 

2. unmatch_count counts the number of 
mismatches. 

For example, in the derivations of Figure 1, we 
know the Chinese word 和(hé)  is a preposition in 
this sentence (and thus can be written as P(和)), 
therefore, match_count += 1 if the above rule 

   P IN with和 is employed. 

These two features are integrated into the log-
linear translation model and the corresponding 
feature weights will be tuned along with other 
model features to learn which rules are preferred. 

3.2 Likelihood Matching 

It appears intuitively that the 0-1 matching 
algorithm does not make full use of the source-side 
syntax because it keeps only the most-frequent 
syntactic label and discards some potentially useful 
information. Therefore, it runs the risk of treating 
all the discarded source syntactic categories of the 
rule as equally likely. For example, there is an 
extracted rule as follows: 

   :11233, :11073, : 65DEC DEG DEV IN of的  

 0-1 matching converts it into    DEC IN of的 . 

The use of this rule will be penalized if the 
syntactic category of the test string 的(dē) is parsed 
as DEG or DEV. On one hand, the frequency of the 
tag DEG is just slightly less than that of DEC, but 
the 0-1 matching punishes the former while 
rewarding the latter. On the other hand, the 
frequency of DEG is much more than that of DEV, 
but they are penalized equally. It is obvious that 
the syntactic categories are not finely distinguished. 
   Considering this situation, we propose the 
likelihood matching algorithm. First, we compute 
the likelihood of the rule’s source syntactic 
categories. Since we need to deal with the potential 
problem that the rule is hit by the test string but the 
syntactic category of the test string is not in the 
category set of the rule’s source side, we apply the 
m-estimate of probability (Mitchell, 1997) to 
calculate a smoothed likelihood 

c
c

n mp
likelihood

n m




                     (1) 

in which nc is the count of each syntactic category 
c in a specific rule, n denotes the total count of the 
rule, m is a constant called the equivalent sample 
size, and p is the prior probability of the category c. 
In our work, we set the constant m=1 and the prior 
p to 1/12599 where 12599 is the total number of 
source-side syntactic categories in our training data.  
For example, the rule    : 6, : 4P CC IN with和  

becomes    : 0.545, : 0.364, 7.2 -6P CC e IN with和   

after likelihood computation. Then, if we apply 
likelihood matching in the derivations in Figure 1 
where the test string is 和 and its syntax is P(和), 
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the matching score with the above rule will be 
0.545. When the test Chinese word 和 is parsed as 
a category other than P or CC, the matching score 
with the above rule will be 7.2e-6. 
   Similar to 0-1 matching, likelihood matching will 
serve as an additional model feature representing 
the compatibility between categories and rules. 

3.3 Deep Similarity Matching 

Considering the two algorithms above, we can see 
that the purpose of fuzzy matching is in fact to 
calculate a similarity. 0-1 matching assigns 
similarity 1 for exact matches and 0 for mismatch, 
while likelihood matching directly utilizes the 
likelihood to measure the similarity. Going one 
step further, we adopt a measure of deep similarity, 
computed using latent distributions of syntactic 
categories. Huang et al. (2010) proposed this 
method to compute the similarity between two 
syntactic tag sequences, used to impose soft 
syntactic constraints in hierarchical phrase-based 
models. Analogously, we borrow this idea to 
calculate the similarity between two SAMT-style 
syntactic categories, and then apply it to calculate 
the degree of matching between a translation rule 
and the syntactic category of a test source string 
for purposes of fuzzy matching. We call this 
procedure deep similarity matching. 

Instead of directly using the SAMT-style 
syntactic categories, we represent each category by 
a real-valued feature vector. Suppose there is a set 
of n latent syntactic categories  1, , nV v v   (n=16 

in our experiments). For each SAMT-style 
syntactic category, we compute its distribution of 
latent syntactic categories       1 , ,c c c nP V P v P v


 .  

For example,    * 0.4, 0.2, 0.3, 0.1VP NPP V 


 means that 

the latent syntactic categories v1, v2, v3, v4 are 
distributed as p(v1)=0.4, p(v2)=0.2, p(v3)=0.3 and 
p(v4)=0.1 for the SAMT-style syntactic category 
VP*NP. Then we further transform the distribution 
to a normalized feature vector 
     c cF c P V P V
  

 to represent the SAMT-style 

syntactic category c. 
With the real-valued vector representation for 

each SAMT-style syntactic category, the degree of 
similarity between two syntactic categories can be 
simply computed as a dot-product of their feature 
vectors: 

       
1

' 'i i
i n

F c F c f c f c
 

  
 

                  (2) 

This computation yields a similarity score ranging 
from 0 (totally different syntactically) to 1 (totally 
identical syntactically). 

Since we can now compute the similarity of any 
syntactic category pair, we are currently ready to 
compute the matching degree between the 
syntactic category of a test source string and a 
fuzzy-tree to exact-tree rule. To do this, we first 
convert the original fuzzy-tree to exact-tree rule to 
the rule of likelihood format without any 
smoothing. For example, the rule 

   : 6, : 4P CC IN with和  becomes 

   : 0.6, : 0.4P CC IN with和 after conversion. We 

then denote the syntax of a rule’s source-side RS 
by weighting all the SAMT-style categories in RS 

     RS
c RS

F RS P c F c


 
 

                    (3) 

where  RSP c  is the likelihood of the category c. 

Finally, the deep similarity between a SAMT-style 
syntactic category tc of a test source string and a 
fuzzy-tree to exact-tree rule is computed as follows: 

     ,DeepSim tc RS F tc F RS 
 

                  (4) 

This deep similarity score will serve as a useful 
feature in the string-to-tree model which will 
enable the model to learn how to take account of 
the source-side syntax during translation. 

We have ignored the details of latent syntactic 
category induction in this paper. In brief, the set of 
latent syntactic categories is automatically induced 
from a source-side parsed, word-aligned parallel 
corpus. The EM algorithm is employed to induce 
the parameters. We simply follow the algorithm of 
(Huang et al., 2010), except that we replace the tag 
sequence with SAMT-style syntactic categories.  

4 Rule Binarization 

In the baseline string-to-tree model, the rules are 
not in Chomsky Normal Form. There are several 
ways to ensure cubic-time decoding. One way is to 
prune the extracted rules using a scope-3 grammar 
and do SCFG decoding without binarization 
(Hopkins and Lengmead, 2010). The other, and 
most popular way is to binarize the translation 
rules (Zhang et al., 2006). We adopt the latter 
approach for efficient decoding with integrated n-
gram language models since this binarization 
technique has been well studied in string-to-tree 
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translation. However, when the rules’ source string 
is decorated with syntax (fuzzy-tree to exact-tree 
rules), how should we binarize these rules? 
    We use the rule rn in Figure 2 for illustration: 

   2 0 1 0 1 2: * : : :nr x x x PP VP VP x VB x NP x PP . 

Without regarding the source-side syntax, we 
obtain the following two binarized rules: 

 
 

0 1

0 1

2 0*1 0*1 * 2

0 1 * 0 1

1: : :

2 : : :

x x

x x

B x x VP x V x PP

B x x V x VB x NP




 

Since the source-side syntax PP*VP in rule rn 
only accounts for the entire source side, it is 
unclear how to annotate the source side of a partial 
rule such as the second binary rule B2.  

Analyzing the derivation process, we observe 
that a partial rule such as binary rule B2 never 
appears in the final derivation unless the rooted 
binary rule B1 also appears in the derivation. 
Based on this observation, we design a heuristic3 
strategy: we simply attach the syntax PP*VP in the 
rooted binary rule B1, and do not decorate other 
binary rules with source syntax. Thus rule rn will 
be binarized as: 

     
   

0 1

0 1

2 0*1 0*1 * 2

0 1 * 0 1

1 * : :

2 : :

x x

x x

x x PP VP VP x V x PP

x x V x VB x NP




 

5 Translation Model and Decoding 

The proposed translation system is an 
augmentation of the string-to-tree model. In the 
baseline string-to-tree model, the decoder searches 
for the optimal derivation *d  that parses a source 
string f into a target tree et from all possible 
derivations D: 

    

 

*
1 2

3

arg max log

|

LM
d D

d p d d

d R d f

   




 

 
                  (5) 

where the first element is a language model score 
in which  d  is the target yield of derivation d ; 

the second element is the translation length penalty; 
the third element is used to control the derivation 
length; and the last element is a translation score 
that includes six features: 

                                                           
3 We call it heuristic because there may be other syntactic 
annotation strategies for the binarized rules. It should be noted 
that our strategy makes the annotated binarized rules 
equivalent to the original rule. 

     

   
   

4 5

6 7

8 9

| log | ( ) log | ( )

log | ( ) log ( ) | ( )

log ( ) | ( ) _

r d

lex

lex

R d f p r root r p r lhs r

p r rhs r p lhs r rhs r

p rhs r lhs r is comp

 

 

  



 

 

 


(6) 

In equation (6), the first three elements denote the 
conditional probability of the rule given the root, 
the source-hand side, and the target-hand side. The 
next two elements are bidirectional lexical 
translation probabilities. The last element is the 
preferred binary feature for learning: either the 
composed rule or the minimal rule. 
    In our source-syntax-augmented model, the 
decoder also searches for the best derivation. With 
the help of the source syntactic information, the 
derivation rules in our new model are much more 
distinguishable than that in the string-to-tree model: 

    

 

*
1 2

3

arg max log

|

LM
d D

d p d d

d R d f

   




 

 
            (7) 

Here, all elements except the last one are the same 
as in the string-to-tree model. The last item is: 

   
    

    
      

10

11

12 13

| |

log ,

log ,

01

r d

R d f R d f

DeepSim DeepSim tag r

likelihood likelihood tag r

match unmatch

 

 

    









 

      (8) 

The 0-1 matching4 is triggered only when we set 
 01 1  . The other two fuzzy matching algorithms 

are triggered in a similar way. 
During decoding, we use a CKY-style parser 

with beam search and cube-pruning (Huang and 
Chiang, 2007) to decode the new source sentences. 

6 Experiments 

6.1 Experimental Setup 

The experiments are conducted on Chinese-to-
English translation, with training data consisting of 
about 19 million English words and 17 million 
Chinese words5. We performed bidirectional word 
alignment using GIZA++, and employed the grow-
diag-final balancing strategy to generate the final 
                                                           
4  In theory, the features unmatch_count, match_count and 
derivation_length are linearly dependent, so the 
unmatch_count is redundant. In practice, since the derivation 
may include glue rules which are not scored by fuzzy 
matching. Thus, "unmatch_count + match_count + 
glue_rule_number = derivation_length". 
5  LDC catalog number: LDC2002E18, LDC2003E14, 
LDC2003E07, LDC2004T07 and LDC2005T06. 
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symmetric word alignment. We parsed both sides 
of the parallel text with the Berkeley parser (Petrov 
et al., 2006) and trained a 5-gram language model 
with the target part of the bilingual data and the 
Xinhua portion of the English Gigaword corpus. 
    For tuning and testing, we use NIST MT 
evaluation data for Chinese-to-English from 2003 
to 2006 (MT03 to MT06). The development data 
set comes from MT06 in which sentences with 
more than 20 words are removed to speed up 
MERT6 (Och, 2003). The test set includes MT03 
to MT05. 
   We implemented the baseline string-to-tree 
system ourselves according to (Galley et al., 2006; 
Marcu et al., 2006). We extracted minimal GHKM 
rules and the rules of SPMT Model 1 with source 
language phrases up to length L=4. We further 
extracted composed rules by composing two or 
three minimal GHKM rules. We also ran the state-
of-the-art hierarchical phrase-based system Joshua 
(Li et al., 2009) for comparison. In all systems, we 
set the beam size to 200. The final translation 
quality is evaluated in terms of case-insensitive 
BLEU-4 with shortest length penalty. The 
statistical significance test is performed using the 
re-sampling approach (Koehn, 2004). 

6.2 Results 

Table 1 shows the translation results on 
development and test sets. First, we investigate the 
performance of the strong baseline string-to-tree 
model (s2t for short). As the table shows, s2t 
outperforms the hierarchical phrase-based system 
Joshua by more than 1.0 BLEU point in all 
translation tasks. This result verifies the superiority 
of the baseline string-to-tree model. 
   With the s2t system providing a baseline, we 
further study the effectiveness of our source-
syntax-augmented string-to-tree system with 
fuzzy-tree to exact-tree rules (we use FT2ET to 
denote our proposed system). The last three lines 
in Table 1 show that, for each fuzzy matching 
algorithm, our new system TF2ET performs 
significantly better than the baseline s2t system, 
with an improvement of more than 0.5 absolute 
BLEU points in all tasks. This result demonstrates 
the success of our new method of incorporating 
source-side syntax in a string-to-tree model. 

                                                           
6 The average decoding speed is about 50 words per minute in 
the baseline string-to-tree system and our proposed systems. 

System MT06
(dev)

MT03 MT04 MT05

Joshua 29.42 28.62 31.52 31.39 

s2t 30.84 29.75 32.68 32.41 

0-1 31.61** 30.60** 33.45** 33.37**

LH 31.35* 30.34* 33.21* 33.05*

 
FT2ET

DeepSim 31.77** 30.82** 33.69** 33.50**

Table 1: Results (in BLEU scores) of different 
translation models in multiple tasks. LH=likelihood. 
*or**=significantly better than s2t system (p<0.05 or 

0.01 respectively). 
 

 Very similar 

   'F c F c
 

>0.9 

Very dissimilar 

   'F c F c
 

<0.1

ADJP JJ;  AD\ADJP VP;  ADVP\NP 
NP DT*NN;  LCP*P*NP CP;  BA*CP 

Table 2: Example of similar and dissimilar categories. 
 
Specifically, the FT2ET system with deep 

similarity matching obtains the best translation 
quality in all tasks and surpasses the baseline s2t 
system by 0.93 BLEU points in development data 
and by more than 1.0 BLEU point in test sets. The 
0-1 matching algorithm is simple but effective, and 
it yields quite good performance (line 3). The 
contribution of 0-1 matching as reflected in our 
experiments is consistent with the conclusions of 
(Marton and Resnik, 2008; Chiang, 2010). By 
contrast, the system with likelihood matching does 
not perform as well as the other two algorithms, 
although it also significantly improves the baseline 
s2t in all tasks. 

6.3 Analysis and Discussion 

We are a bit surprised at the large improvement 
gained by the 0-1 matching algorithm. This 
algorithm has several advantages: it is simple and 
easy to implement, and enhances the translation 
model by enabling its rules to take account of the 
source-side syntax to some degree. However, a 
major deficiency of this algorithm is that it does 
not make full use of the source side syntax, since it 
retains only the most frequent SAMT-style 
syntactic category to describe the rule’s source 
syntax. Thus this algorithm penalizes all the other 
categories equally, although some may be more 
frequent than others, as in the case of DEG and 
DEV in the rule 

   :11233, :11073, : 65DEC DEG DEV IN of的 .  

To some extent, the likelihood matching 
algorithm solves the main problem of 0-1 matching. 
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Instead of rewarding or penalizing, this algorithm 
uses the likelihood of the syntactic category to 
approximate the degree of matching between the 
test source syntactic category and the rule. For a 
category not in the rule’s source syntactic category 
set, the likelihood algorithm computes a smoothed 
likelihood. However, the likelihood algorithm does 
not in fact lead to very promising improvement. 
We conjecture that this disappointing performance 
is due to the simple smoothing method we 
employed. Future work will investigate more fully. 

Compared with the above two matching 
algorithms, the deep similarity matching algorithm 
based on latent syntactic distribution is much more 
beautiful in theory. This algorithm can successfully 
measure the similarity between any two SAMT-
style syntactic categories (Table 2 gives some 
examples of similar and dissimilar category pairs).  
Then it can accurately compute the degree of 
matching between a test source syntactic category 
and a fuzzy-tree to exact-tree rule. Thus this 
algorithm obtains the best translation quality. 
However, the deep similarity matching algorithm 
has two practical shortcomings. First, it is not easy 
to determine the number of latent categories. We 
have to conduct multiple experiments to arrive at a 
number which can yield a tradeoff between 
translation quality and model complexity. In our 
work, we have tried the numbers n=4, 8, 16, 32, 
and have found n=16 to give the best tradeoff. The 
second shortcoming is that the induction of latent 
syntactic categories has been very time consuming, 
since we have applied the EM algorithm to the 
entire source-parsed parallel corpus. Even with 
n=8, it took more than a week to induce the latent 
syntactic categories on our middle-scale training 
data when using a Xeon four-core computer 
( 2.5 2 16GHz CPU GB  memory). When the training 
data contains tens of millions of sentence pairs, the 
computation time may no longer be tolerable. 

Table 3 shows some translation examples for 
comparison. In the first example, the Chinese 
preposition word 和 is mistakenly translated into 
English conjunction word and in Joshua and 
baseline string-to-tree system s2t, however, our 
source-syntax-augmented system FT2ET-DeepSim 
correctly converts the Chinese word 和  into 
English preposition with and finally yield the right 
translation. In the second example, our proposed 
system moves the prepositional phrase at an early 

date after the sibling verb phrase. It is more 
reasonable compared with the baseline system s2t. 
In the third example, the proposed system FT2ET-
DeepSim successfully recognizes the Chinese long 
prepositional phrase 在 与 中国 总理 温家宝 举行 峰
会 后 发布 的联合 声明 中 and short verb phrase 说, 
and obtains the correct phrase reordering at last. 

7 Related Work 

Several studies have tried to incorporate source or 
target syntax into translation models in a fuzzy 
manner. 

Zollmann and Venugopal (2006) augment the 
hierarchical string-to-string rules (Chiang, 2005) 
with target-side syntax. They annotate the target 
side of each string-to-string rule using SAMT-style 
syntactic categories and aim to generate the output 
more syntactically. Zhang et al. (2010) base their 
approach on tree-to-string models, and generate 
grammatical output more reliably with the help of 
tree-to-tree sequence rules. Neither of them builds 
target syntactic trees using target syntax, however. 
Thus they can be viewed as integrating target 
syntax in a fuzzy manner. By contrast, we base our 
approach on a string-to-tree model which does 
construct target syntactic trees during decoding. 

(Marton and Resnik, 2008; Chiang et al., 2009 
and Huang et al., 2010) apply fuzzy techniques for 
integrating source syntax into hierarchical phrase-
based systems (Chiang, 2005, 2007). The first two 
studies employ 0-1 matching and the last tries deep 
similarity matching between two tag sequences. By 
contrast, we incorporate source syntax into a 
string-to-tree model. Furthermore, we apply fuzzy 
syntactic annotation on each rule’s source string 
and design three fuzzy rule matching algorithms. 

Chiang (2010) proposes a method for learning to 
translate with both source and target syntax in the 
framework of a hierarchical phrase-based system. 
He not only executes 0-1 matching on both sides of 
rules, but also designs numerous features such as 

. 'X Xroot  which counts the number of rules whose 
source-side root label is X  and target-side root 
label is 'X .  This fuzzy use of source and target 
syntax enables the translation system to learn 
which tree labels are similar enough to be 
compatible, which ones are harmful to combine, 
and which ones can be ignored. The differences 
between us are twofold: 1) his work applies fuzzy 
syntax in both sides, while ours bases on the string- 
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Source sentence 海珊 也 [和 恐怖 组织网] 建立 了 联系 

Reference hussein also established ties with terrorist networks 

Joshua hussein also and terrorist networks established relations 

s2t hussein also and terrorist networks established relations 

 
 
1 

FT2ET- DeepSim hussein also established relations with terrorist networks 

Source sentence … [以 期] [早日] [结束] [以 巴 之间 多年 的 流血 冲突] 

Reference .. to end years of bloody conflict between israel and palestine as soon as possible 

.. to end at an early date years of bloody conflict between israel and palestine 

Joshua … in the early period to end years of blood conflict between israel and palestine 

s2t … at an early date to end years of blood conflict between israel and palestine 

 
 
 
2 

FT2ET- DeepSim … to end years of blood conflict between israel and palestine at an early date 

Source sentence 欧盟 [在 与 中国 总理 温家宝 举行 峰会 后 发布 的联合 声明 中] [说] … 

 
Reference 

the europen union said in a joint statement issued after its summit meeting with china ‘s 
premier wen jiabao … 
in a joint statement released after the summit with chinese premier wen jiabao , the 
europen union said … 

Joshua the europen union with chinese premier wen jiabao in a joint statement issued after the 
summit meeting said … 

s2t the europen union in a joint statement issued after the summit meeting with chinese 
premier wen jiabao said … 

 
 
 
 
 
3 

FT2ET- DeepSim the europen union said in a joint statement issued after the summit meeting with chinese 
premier wen jiabao … 

 
Table 3: Some translation examples produced by Joshua, string-to-tree system s2t and source-syntax-augmented 

string-to-tree system FT2ET with deep similarity matching algorithm 
 
to-tree model and applies fuzzy syntax on source 
side; and 2) we not only adopt the 0-1 fuzzy rule 
matching algorithm, but also investigate likelihood 
matching and deep similarity matching algorithms. 

8 Conclusion and Future Work 

In this paper, we have proposed a new method for 
augmenting string-to-tree translation models with 
fuzzy use of the source syntax. We first applied a 
fuzzy annotation method which labels the source 
side of each string-to-tree rule with SAMT-style 
syntactic categories. Then we designed and 
explored three fuzzy rule matching algorithms: 0-1 
matching, likelihood matching, and deep similarity 
matching. The experiments show that our new 
system significantly outperforms the strong 
baseline string-to-tree system. This substantial 
improvement verifies that our fuzzy use of source 
syntax is effective and can enhance the ability to 
choose proper translation rules during decoding 
while guaranteeing grammatical output with 
explicit target trees. We believe that our work may 
demonstrate effective ways of incorporating both-
side syntax in a translation model to yield 
promising results. 

   Next, we plan to further study the likelihood 
fuzzy matching and deep similarity matching 
algorithms in order to fully exploit their potential. 
For example, we will combine the merits of 0-1 
matching and likelihood matching so as to avoid 
the setting of parameter m in likelihood matching. 
We also plan to explore another direction: we will 
annotate the source side of each string-to-tree rule 
with subtrees or subtree sequences. We can then 
apply tree-kernel methods to compute a degree of 
matching between a rule and a test source subtree 
or subtree sequence. 
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