
APCOM’07 in conjunction with EPMESC XI, December 3-6, 2007, Kyoto, JAPAN

The Parsing Algorithm of Translation Corresponding Tree (TCT)
Grammar
Fai Wong*

Faculty of Science and Technology, University of Macau, Av. Pardre Tomás Pereira Taipa, Macau SAR,
China
e-mail: derekfw@umac.mo

Abstract In machine translation (MT), parsing acts as a kernel step to analyze and acquire the syntactic
information of an input sentence for the purpose to reproduce the corresponding translation in target
language according to the syntactic relationships between the source and target sentences. The parsing
process is guided by a set of language formalism, and the design of such algorithm is highly depending on
how the language information it represents, especially in the development of example-based machine
translation (EBMT) system, where the foundmental language information are the set of translation
examples. In this paper, a parsing algorithm is designed to parse the Translation Corresponding Tree
(TCT) structure based on the augmented GLR algorithm. The TCT, as the examples representation
schema, has been used to the annotation of bilingual text in EBMT system. In order to achieve in parsing
the tree language based on GLR parsing algorithm, a TCT equivalent synchronous formalism based on the
notation of context free grammar (CFG) is proposed. Where the feature properties of a TCT structure can
be fully expressed in term of the proposed formalism, and which, as a result, can be parsed by any CFG
parsers. In this paper, GLR algorithm is extended and adapted to this parsing task in the development of an
EBMT system for Portuguese to Chinese machine translation.

Key words: Machine Translation, Portuguese-Chinese MT, Translation Corresponding Tree (TCT),
synchronous formalism, parsing algorithm

INTRODUCTION

This paper presents a schema to extend known recognition (parsing) algorithm for context free grammar
(CFG) in order to obtain recognition algorithm for a type of grammaritcal formalism that models bilingual
languages in the sence of synchronous. In particular, we use this schema to give recognition algorithm for
Translation Corresponding Tree (TCT), the tree language that has been proposed by Wong [1] for
bilingual text annotation. In our previous work [2] in the development of example-based machine
translation (EBMT) system, TCT has been used as the representation structure to describe the translation
examples that forms the foundamental knownledge of the example database. In EBMT, translation
generally involves two operations: recognizing the constituent structure utterances of an input sentence
against the knowledge database to extract suitable examples and transferring (or recombining) the
fragments of examples in an analogical manner to determine the correct translation [3]. To be specific, the
transfer operation is actually the process of deciding which fragment in target language sentence
corresponds to the fragment in source language sentence. From the design point of view, the recognizing
and transferring algorithms are highly depending on the representation format of linguisitic data. For
example, in [4], an Earley algorithm is adapted for parsing the Tree Adjoining Grammars (TAG) [5]; and
more works of adapting known parsing algorithms for recognizing different language formalisms (or
language resources) can be found in [6]-[7]. However, to recognize the TCT language gives a different
challenge in our current work, as it models the translation examples in a parallel case. Both the source and
tareget (language) sentences are described with a single tree structure of TCT. Where the syntactic
relationships between the source and target sentences are modeled, as well as their corresponding sentence
utterances and constituent fragements are also captured by the inter levels of the structure tree. In addition,
the concept of parsing as translation by integrating the operations of recognizing and transferring into the

parsing algorithm has been the central idea behind our current research work. This motivates us to develop
an equivalent language formalism of CFG like production rules for the TCT language, such that it can be
parsed by known CFG parsing algorithms.

This paper is organized as follows. Section 2 describes the translation corresponding tree (TCT) structures.
Section 3 describes the proposed synchronous formalism which will be the intermediate parsable
formalism for the TCT (tree) language, and section 4 discusses the transformation method from TCT
languages into the synchronous formalism linked with lexical constraints. The augmented recognizing
algorithm based on GLR for the formalism will be introduced in section 5, and section 6 presents the
application of parsing algorithm in machine translation system, followed by a conculsion to end the paper.

KNOWLEDGE REPRESENTATION SCHEMA

Translation Corresponding Tree (TCT) [2] structure, as a translation example representation schema, has
been used to the construction of bilingual knowledge base in EBMT system development, where each
translation example is being described by a TCT structure. The main advantages in application to machine
translation include: 1) it models bilingual text by using a single syntactic tree structure, it requires only one
language parser to acquire the syntactic structure instead of two for the case of synchronous representation;
2) the use of sequence of mapping functions makes it suitable for describing translation examples that are
not parallel translations nor close syntactic structures [8]. That is, the source sentence and target sentence
do not have explicit corresponding constituents. The second property is quite important since in practical
application, most of the translation examples are of free translations. This gives the language annotator
enough flexibility to describe the linguistic relationship between the pair of sentences.

Following the definition of [1], the TCT structure is a general structure. It can flexibly associate a sentence
string not only to its syntactic structure in the source language, but also explicitly to its translation in the
target language. Therefore, it can describe the linguistic correspondences between different languages.

Definition 1 A TCT can be described as a 4-tuple (Τs, ξs, ξt, σ), where Τs is any syntactic tree that
describes the internal structure of a sentence in the source language, ξs and ξt are the sentence-pairs in the
source and target languages, and σ is the correspondence between the syntactic tree Τs and the sentences ξs
and ξt.

Definition 2 The correspondence σ between the syntactic tree Τs and the sentences ξs and ξt can be
further defined as a triple (SNODE, STREE, TTREE), where SNODE and STREE are the substring
intervals in the source sentence, and STC is the substring intervals in the target sentence.

The TCT structure uses triple sequence intervals [SNODE(n)/STREE(n)/TTREE(n)∈σ] encoded for each
node in the tree to represent the corresponding relationships between the structure of the source sentence
and the substrings from both the source and target sentences. Each set of corresponding information is
made up of the following three interrelated correspondences: 1) between the node and the substring of the
source sentence encoded by the interval SNODE(n), which denotes the interval containing the substring
corresponding to the node; 2) between the subtree and the substring of the source sentence represented by
the interval STREE(n), which indicates the substring interval dominated by the subtree with the node as
root; 3) between the subtree and the substring of the target sentence represented by the interval TTREE (n),
which indicates the interval containing the target sentence substring corresponding to the source sentence
subtree. The associated substrings may be discontinuous in all cases. It preserves the ability to describe
non-standard and non-projective linguistic phenomena for a language [9]. The schema also allows the
annotator to flexibly define the corresponding translation from the target sentence to the source sentence
structure when necessary. In practical use, the structure is extended to include extra linguistic constraints
beside the syntactic part of speech that are useful to the specific purpose. For example, in the EBMT
application, syntactic relationship between the source and target languages is included in the inter nodes of
the structure for use to constraint the generation order for the translation in target language. In the
construction of the example database in EBMT system, collection of constructed TCTs form the

elementary knowledge to facilitate the sentence translation. Fig. 1 shows the portions of translation
examples represented in terms of the TCT structures.

Fig. 1 Collection of translation examples annotated with TCT structures as the basic elements in the
translation knowledge databse

SYNCHRONOUS FORMALISM

Before the TCT language can be parsable, the structure must be first transformed into some formalism that
can be recognized by any known CFG parsing algorithm. The choice of the formalism is essential for the
representation and the understanding of linguistic phenomena. It is also important to consider its
applicability for MT applications. In our work, we propose to use the formalism of Constraint
Synchronous Grammar (CSG) [10] as the equivalent grammar for the TCT. CSG is a variation of
synchronous grammars [11] that is based on the formalism of CFG. In CSG formalism, it consists of a set
of production rules that describes the sentential patterns of the source text and target translation patterns.
Every production rule of CSG is in the form of:

S source sentential pattern { [target sentential pattern; control conditions] ,
 [target sentential pattern; control conditions] ,
 ...

}

In the left hand side, S is the reduced syntactic symbol. In the right hand side of the production, it is divided
into two components: the sentential pattern of the source language, and the translation pattern of the target
language. Furthermore, in each sentential pattern of the source language, it may consist of one or more
translation patterns associated with control conditions based on the features of non-terminal symbols of the
source rule for describing the possible generation correspondences in target translation. These conditions
are not only used for inferring the structure of source input in the parsing module, but also for the structure
of the target output pattern in the generation module. Formally, the formalism is defined as:

Definition 3 A Constraint-Based Synchronous Grammar (CSG) is 5-tuple G = (VN, VT, P, CT, S) which
satisfies the following conditions:

− VN is a finite set of non-terminal symbols;
− VT is a finite set of terminal symbols which is disjoint with VN;
− CT is a finite set of target components;
− P is a finite set of productions of the form A → α β, where α ∈ (Γ(VN)∪VT)* and, β ∈ CT, the

non-terminal symbols that occur from both the source and target rules are linked under the index given
by Γ(VN).

− S ∈ VN is the initial symbol.

Where target component, CT, can be defined as a ordered vector of target rules in γ (pair of rule and
constraint, [r∈R*, c∈C*], and γ = R*×C* in form of [r, c]) having the form σ = {γ1, …, γ q}, where 1 ≤ i ≤
q to denote the i-th tuple of σ. The target rules are being arranged in the order of γ1 p γ2p …p γq
determined by the degree of generalization rule according to the associated constraint.

Based on this synchronous formalism, pair of languages can be modeled and analyzied simultaneously.
For example, the following CSG productions can generate both of the parallel texts [“Ele deu um livro ao
José. (He gave a book to José)”, “他給了若澤一本書”] and [“Ele comprou um livro ao José. (He bought a
book from José)”, “他向若澤買了一本書”]:

S → NP1 VP* NP2 PP NP3 {[NP1 VP1 NP3 VP2 NP2;VPcategory=vb1,
VPsense of subject = NP1sense,
Psense of indirect object=NP2sense,
VPsense of object=NP3sense],

 [NP1 VP NP3 NP2 ; VP =vb0,
VPsense of subject =NP1sense,
VPsense of indirect object =NP2sense]

}

(1)

VP → v {[v ; ∅]} (2)
NP → det NP* {[NP ; ∅]} (3)
NP → num NP* {[num 本 NP; NPsense=sense of book]} (4)
NP → n {[n ; ∅]} (5)
NP → pro {[pro ; ∅]} (6)
PP → p {[p ; ∅]} (7)
n → José {[若澤 ; ∅]}| livro {[書 ; ∅]} (8)
pro → ele {[他 ; ∅]} (9)
v → deu{[給了 ; ∅]} | comprou {[向, 買了 ;∅]} (10)
num → um {[一 ; ∅]} (11)
p → a {∅} (12)
det → o {∅} (13)

Production (1), as a typical rule representation, has two generative rules associated with the sentential
pattern of the source NP1 VP* NP2 PP NP3. The determination of the suitable generative rule is based on the
control conditions defined by rule. The one satisfying all the conditions determines the relationship
between the source and target sentential pattern. For example, if the category of the verb is vb1, and the
sense of the subject, indirect, and direct objects governed by the verb, VP, corresponds to the first, second,
and the third nouns (NP), then the source pattern NP1 VP* NP2 PP NP3 is associated with the target pattern
NP1 VP1 NP3 VP2 NP2. Their relationship is established by their given subscripts and the sequence is based
on the target sentential pattern. In other words, in the production S NP1 VP* NP2 PP NP3 [NP1 VP NP3
NP2], although the first NP and the verb corresponds to each other in the same sequence, the sequence for
the second and third NP in the source are changed in the target sentential pattern. The asterisk “*” indicates

the head element, and its usage is to propagate all the related features/linguistic information of the head
symbol to the reduced non-terminal symbol in the left hand side. The use of the “*” is to achieve the
property of features inheritance in CSG formalism. The superscripts of the syntactic symbols represents the
fan-out relationship for distinuous constitiuents of sentences, due to the structure deviations of two
different languages, in particular for languages from different families such as Portuguese and Chinese
[12]. This allows the source and target production components rewritten indepently, and is flexibly enough
for the description of typical linguistic phenomena.

CONVERSION OF TCT STRUCTURE

The objective to convert the collection of TCT structures into the proposed synchronous formalism, as
discussed in the first section, is obvious. The transformation involves the extraction of generalized
syntactic and lexicalized grammar rules from the set of elementary structures. The lexicalization of a
syntactic grammar consisits of the association of a set of lexicons to the syntactic constituents. Which
merged the lexicon(s) and grammar in a single entity. Lexicalization provides at least two advantages:
First, the ability to describe syntactically each specific lexical entry allows us to choose the required
complexity of the syntactic structures with flexibility. Too much generalization in syntactic descriptions
generally results in unexpected border effects. Secondly the lexicalization allows parsing heuristics
according to the lexical constraints which can greatly reduce the search space as well as the number of
analytical structures due to the ambiguaties of language [13]. During the conversion process, the possible
syntactic constituents (inter levels) of trees are first extracted and rewritten into corresponding grammar
rules together with the associated lexical items starting from the leaves, in the manner of bottom up, and
level by level towards the root node. The syntactic symbol of each structure node which has different
lexical items in its dominated leaves is distinct by appending with unqiue subscripts. Following shows the
rewritten (lexicalized) synchronous grammars for, T3, one of the TCT structures in Fig. 1:

S1→ NPos_req VPVPdeser_com_PPaotri ሼNPos_req VPVPdeser_com_PPaotriሽ (14)
VPVPdeser_com_PPaotri→ VPdevser_com PPaotri ሼVPdevser_com PPaotriሽ (15)

VPdevser_com→ VPdev_ser vcom ሼVPdev_ser vcomሽ (16)
VPdev_ser→ vdev vser ሼvdev vserሽ (17)
NPos_req→ detos nreq ሼdetos nreqሽ (18)
PPao_itri→ pao ntri ሼpao ntriሽ (19)
detos→ os ሼሽ (20)
pao→ ao {} (21)
vdev→ deven ሼ應ሽ (22)
vser→ ser ሼሽ (23)
vcom→ comunicados ሼ通知ሽ (24)
nreq→ requerentes ሼ申請人ሽ (25)
ntri→ tribunal ሼ法院ሽ (26)

In order to make this example grammar more readable, each syntactic symbol is distinguished with the
subscripts by using the prefix of the associated lexicon. In practice, we use the sequence subscripts for
labeling the syntactic (reduced) symbols of production rules for the easy of manipulation and processing.

Following up the transformation, in order to resolve the effects of sparse data when working with
production rules, we would like to generate generalized productions, which include nonterminal symbols
that can be filled with other constituents. Therefore, after extracting the initial lexicalized rules from the
TCT structures, we recursively generalize each existing rule. However, we abstract only if rules contains
common lexical elements both in the source and target components, by replacing with corresponding
nonterminal syntactic symbol. After the abstraction, both the used lexicalized rules and the generalized
rules will be retained as the final grammar for parsing.

PARSING ALGORITHM

The transformed synchronous formalism can be parsed by any known CFG recognition algorithm
including the Earley [14] and GLR [15] algorithms. In our work, the generalized LR algorithm is adapted to
recognize our formalism augmented by taking into account the features constraints and the inference of
target structure, hence to realize the recognition algorithm for synchronous grammar. The extension of
GLR algorithm involves two parts: the parse table and the recognition mechanism. Since GLR algorithm
uses a parse table to achieve a considerable efficiency over the Earley’s non-compiled method which has to
compute a set of LR items at each stage of parsing [15]. The parse table is further extended by engaging
with the features constraints and the target rules into the actions table. Our strategy is thus to parse the
source rules of the productions through the normal shift actions proposed by the parsing table, while at the
time reduce action to be fired, the associated conditions are checked to determine if the active reduction is
a valid action or not depending on if the working symbols of patterns fulfill the constraints on features.

Fig. 2 Extended LR(1) parse table

Extended Parse Table

Fig. 2 shows an extended LR(1) parsing table for Productions (1)-(13)1 as constructed using the LR table
construction method described in [16] extended to consider the rule components of productions by
associating the corresponding target rules with constraints, which are explicitly expressed in table. The

1 For simplicity, the productions used for building the parse table are deterministic, so no conflict actions such as shift/reduce and

reduce/reduce appear in the parse table in Fig. 2

ACTIONs/GOTOs
Ste

pr
o

nu
m

n v de
t

p N
P

VP

PP

S ⊥

o a um

el
e

Jo
sé

liv
ro

de
u

co
m

pr
ou

 Reduced Rules
Constraints/Target

Rules
0 s8 s9 s10 s11 s7 s6 s5 s2 s1 s4 s3
1 r1 (1) pro → ele {[他 ; ∅]}
2 r1 (1) num → um
3 r1 (1) n → livro {[書 ; ∅]}
4 r1 (1) n → José {[若澤 ; ∅]}
5 r1 (1) det → o
6 acc
7 s14 s15 s12 s13
8 r1 (1) NP → pro
9 s8 s9 s10 s11 s16 s5 s2 s1 s4 s3
10 r1 (1) NP → n
11 s8 s9 s10 s11 s17 s5 s2 s1 s4 s3
12 r1 (1) v → deu {[給了 ; ∅]}
13 r1 (1) v → comprou {[向, 買了 ;∅]}
14 r1 (1) VP → v
15 s8 s9 s10 s11 s18 s5 s2 s1 s4 s3

16 r1 (1) NP → num NP*
{[num 本 NP; NPsem=SEM_book]}

17 r1 (1) NP → det NP* {[NP ; ∅]}
18 s21 s20 s19
19 r1 (1) p → a
20 s8 s9 s10 s11 s22 s5 s2 s1 s4 s3
21 r1 (1) PP → p
22 r1 (1) S → NP1 VP* NP2 PP NP3 {[...]}

parsing table consists of two parts: a compact ACTION-GOTO table2 and CSONTRAINT-RULE table.
The ACTION-GOTO table s indexed by a state symbol s (row) and a symbols x ∈VN∪VT, including the
end marker “⊥”. The entry ACTION[s, x] can be one of the following: s n, r m, acc or blank. s n denotes a
shift action representing GOTO[s, x]=n, defining the next state the parser should go to; r m means a
reduction by the mth production located in the entry of CONSTRAINT-RULE in state s, and acc denotes the
accept action and blank indicates a parsing error. The CONSTRAINT-RULE table is indexed by state
symbol s (row) and the number of productions m that may be applied for reduction in state s. The entry
CONSTRAINT-RULE[s, m] consists of a set of involved productions together with the target rules and
features constraints that are used for validating if the active parsing node can be reduced or not, then try to
identify the corresponding target generative rule for reduced production.

Modified Recognition Algorithm

In the parsing process, the algorithm operates by maintaining a number of parsing processes in parallel,
each of which represents an individual parsed result, hence to handle the case of non-deterministic. In
general, there are two major components in the process, shift(i) and reduce(i), which are called at each
position i=0, 1, …, n in an input string I = x1x2…xn. The shift(i) process with top of stack vertex v shifts on
xi from its current state s to some successor state s’ by creating a new leaf v’; establishing edge from v’ to
the top of stack v; and making v’ as the new top of stack vertex. The reduce(i) executes a reduce action on
a production p by following the chain of parent links down from the top of stack vertex v to the ancestor
vertex from which the process began scanning for p earlier, then popping intervening vertices off the stack.
Now, for every reduction action in reduce(i), there exists a set C of ordered constraints, c1p…p cm, with
the production, each of which is associated with a target rule that may be the probable corresponding target
structure for the production, depending on whether the paired constraint gets satisfied or not according to
the features of the parsed string p. Before reduction takes place, the constraints cj (1 ≤ j ≤ m) are tested in
order started from the most specific one, the evaluation process stops once a positive result is obtained from
evaluation. The corresponding target rule for the parsed string is determined and attached to the reduced
syntactic symbol, which will be used for rewriting the target translation in phase of generation. At the mean
while, the features information will be inherited from the designated head element of production. The
parsing algorithm for the formalism is given in Fig. 3.

PARSE(grammar,x1 … xn)
xn+1⇐ ⊥
Ui⇐∅ (0 ≤ i ≤ n)
U0⇐v0
for each terminal symbol xi (1 ≤ i ≤ n)
P⇐∅
for each node v ∈ Ui-1
P⇐P∪v
if ACTION[STATE(v),xi] = “shift s’”, SHIFT(v,s’)
for each “reduce p”∈ACTION[STATE(v),xi], REDUCE(v,p)
if “acc”∈ACTION[STATE(v),xi], accept

if Ui=∅, reject

SHIFT(v,s)
if v’∈Ui s.t. STATE(v’)=s and ANCESTOR(v’,1)=v and state transition δ(v,x)=v’
do nothing

else
create a new node v’
s.t. STATE(v’)=s and ANCESTOR(v’,1)=v and state transition δ(v,x)=v’
Ui⇐Ui∪v’

REDUCE(v,p)
for each possible reduced parent v1’∈ANCESTOR(v,RHS(p))
if UNIFY(v,p)=“success”
s” ⇐ GOTO(v1’,LHS(p))

2 Original version introduced in [15] maintains two tables, ACTION and GOTO.

if node v”∈Ui-1 s.t. STATE(v”)=s”
if δ(v1’, LHS(p))=v”
do nothing

else
if node v2’∈ANCESTOR(v”,1)
let vc” s.t. ANCESTOR(vc”,1)=v1’ and STATE(vc”)=s”
for each “reduce p” ∈ ACTION[STATE(vc”),xi]

REDUCE(vc”,p)
else
if v”∈P
let vc” st. ANCESTOR(vc”,1)=v1’ and STATE(vc”)=s”
for each “reduce p” ∈ ACTION[STATE(vc”),xi]

REDUCE(vc”,p)
else
create a new node vn
s.t. STATE(vn)=s” and ANCESTOR(vn,1)=v1’ and
state transition δ(vn,x)=v1’
Ui-1⇐Ui-1∪vn

else current reduction failed

UNIFY(v,p)
for “constraint cj” ∈ CONSTRAINT(STATE(v)) (1 ≤ j ≤ m, c1p …p cm)
if ξ(cj,p)=“true” (ξ(∅,p)=“true”)
TARGET(v)⇐j
return “success”

Fig. 3 Modified generalized LR Parsing algorithm

The parser takes two arguments PARSE(grammar, x1 … xn), where the grammar is provided in form of
parsing table. It calls upon the functions SHIFT(v, s) and REDUCE(v, p) to process the shifting and rule
reduction as described. The UNIFY(v, p) function is called for every possible reduction in REDUCE(v, p)
to verify the legal reduction and select the target rule for the source structure for synchronization. The
function TARGET(v) after unification passed is to dedicate the jth target rule as correspondence.

PARSING AS TRANSLATION

In our current research work, TCT language has been used to construct the translation knowledge base in
the development of Portuguese to Chinese machine translation system based on example-based translation
approach. In addition, the TCT structures are further rewritten into the synchronous formalism as the final
representation for these knowledge. Where both the syntactic constituents and corresponding lexical items
between the source and target sentences are being modeled and described through the pair of CFG like
production rules as discussed in this paper. The translation of sentence based on the proposed formalism
and the corresponding recognition algorithm is totally achieved by the parser component. Formally, the
analysis of sentence can be described as follows:

Definition 4 A set P of productions is said to accept an input string s iff there is a derivation sequence Q
for s using source rules of P, and any of the constraint associated with every target component in Q is
satisfied3. Similarly, P is said to translate s iff there is a synchronized derivation sequence Q for s such
that P accepts s, and the link constraints of associated target rules in Q is satisfied. The derivation Q then
produces a translation t as the resulting sequence of terminal symbols included in the determined target
rules in Q.

Hence, to the translation of an input text, it essentially consists of three steps. First, for an input sentence s,
the structure of string is analyzed by using the rules of source components from the syncrhonous
productions; by using the augmented generalized LR parsing algorithm as described. Secondly, the link
constraints that are determined during the rule reduction process are propagated to the corresponding
target rules R (as selection of target rules) to construct a target derivation sequence Q. And finally, based

3 If there is no any constraint associated to a target rule, during the parsing phase, the reduction of the source rule is assumed to be valid all the

time.

on the derivation sequence Q, translation of the input sentence s is generated by referencing the set of
generative rules R that attached to the corresponding constituent nodes in the parsed tree, hence to realize
the translation in target language.

In the preliminary experiement, 500 TCT annotated translation example of Portuguese-Chinese sentences
are used to construct the synchronous formalism by extracting the syntactic and lexicalized rules from the
fragments of structures. The average sentence length is 12.5 words. To test the system, another 50
sentences excluded from the training set are used for translation. According to the evaluation creation, the
translations of 31 sentences are classified as good (74%), 6 of them belong to acceptable (12%), while 7 of
them are failure (14%) or cannot be translated by the system due to the lack of unknown words and the
syntactic rules. The overall translation accuracy of the system reaches 86%. This illustrates the feasibility
of our proposed algorithm to integrate the process of transferring into the recognition algorithm. That is the
parsing of source sentence and obtaining the translation in target language are carried out in parallel at the
same phase.

CONCLUSION

Translation system based on example-based paradigm involves the processes of parsing the source
sentence and transferring the recognized sentence fragments into the corresponding translation sentence.
The operations concern with the type of linguistic data it uses, and TCT language has been the knowledge
representation schema applied in our existing translation system. Which is a synchronous based annotation
schema for describing the pair of translation sentences. Parsing of it requires us to propose an equivanlent
intermediate synchronous formalism based on CFG productions such that it can be parsed by any known
CFG parsing algorithm. In this research, we extended the generalized LR algorithm by introducing the
feature constraints and the inference of target sentence syntax into the mechanism, to obtain a recognition
algorithm for the TCT tree language. The preliminary empirical result shows that the proposed algorithm is
feasible, and has been applied to the machine translation system for Portuguese to Chinese translation.

Acknowledgements The research work reported in this paper was partially supported by “Fundo para o
Desenvolvimento das Ciências e da Tecnologia” (Science and Development Fund) under grant
041/2005/A and Center of Scientific and Technological Research (University of Macau) under Cativo:
5571.

REFERENCES

[1] F. Wong, M. C. Dong, and D. C. Hu, Machine Translation Based on Translation Corresponding Tree
Structure, Tsinghua Science and Technology, 11, (2006), 25-31,.

[2] F. Wong, D. C. Hu, Y. H. Mao, and M. C. Dong, A Flexible Example Annotation Schema: Translation
Corresponding Tree Representation, in Proceedings of The 20th International Conference on
Computational Linguistics, Switzerland, Geneva (2004), pp. 1079-1085.

[3] S. Sato and M. Nagao, Toward Memory-Based Translation, in Proceedings of The 13th International
Conference on Computational Linguistics, Finland, Helsinki (1990), pp. 247-252.

[4] Y. Schabes and A. K. Joshi, An Earley-Type Parsing Algorithm for Tree Adjoining Grammars, in
Proceedings of The 26th Annual Meeting on Association for Computational Linguistics, Morristown,
NJ, USA (1988), pp. 258-269.

[5] A. K. Joshi, An Introduction to Tree Adjoining Grammars, Alexis Manaster Ramer ed. John
Benjamins Publishing Co., Amsterdam/Philadephia (1987).

[6] K. V. Shanker and D. J. Weir, Parsing Some Constrained Grammar Formalisms, Computational
Linguistics, 19, (1994), pp. 591-636.

[7] M. A. Alonso, D. Cabrero, E. d. l. Clergerie, and M. Vilares, Tabular Algorithms for TAG Parsing, in
Proceedings of EACL'99, Ninth Conference of the European Chapter of the Association for
Computational Linguistics, Bergen, Norway (1999), pp. 150-157.

[8] R. Grishman, Iterative Alignment of Syntactic Structures for a Bilingual Corpus, in Proceedings of
Second Annual Workshop on Very Large Corpora (WVLC2), Kyoto, Japan (1994), pp. 57-68.

[9] C. Boitet and Y. Zaharin, Representation trees and string-tree correspondences, in Proceedings of
COLING-88, Budapest (1988), pp. 59-64.

[10] F. Wong, D. C. Hu, Y. H. Mao, M. C. Dong, and Y. P. Li, Machine Translation Based on
Constraint-Based Synchronous Grammar, in Proceedings of The Second International Joint
Conference on Natural Language (IJCNLP-05), Jeju Island, Republic of Korea (2005), pp. 612-623.

[11] P. M. Lewis and R. E. Stearns, Syntax-directed transduction, Association for Computing Machinery,
15, (1968), pp. 456-488.

[12] F. Wong and Y. H. Mao, Framework of Electronic Dictionary System for Chinese and Romance
Languages, Automatique des Langues (TAL), 44, (2003), pp. 225-245.

[13] A. Abeillé, B. Daille, and A. Husson, FTAG: An Implemented Tree Adjoining Grammar for Parsing
French Sentences, in Proceedings of TAG+3, Paris (1994).

[14] J. Earley, An Efficient Context-Free Parsing Algorithm, CACM, 13, (1970), pp. 94-102.
[15] M. Tomita, An Efficiency Augmented Context-Free Parsing Algorithm, Computational Linguistics,

13, (1987), pp. 31-46.
[16] A. V. Aho, R. Sethi, and J. D. Ullman, Compiler: Principles, Techniques and Tools Addison-Wesley

(1986).

