
[International Workshop on Fundamental Research for the Future Generation of Natural Language
Processing (FGNLP), July 1992, Manchester]

Utility of Massively Parallel Computing Platform in

Natural Language Processing*

Hiroaki Kitano
Center for Machine Translation

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

hiroaki@cs.cmu.edu

July 23, 1992

Abstract

This paper demonstrates the utility of the Semantic Network Array Processor (SNAP)
as a massively parallel platform for high performance and large-scale natural language
processing systems. SNAP is an experimental massively parallel machine which is dedi-
cated to, but not limited to, the natural language processing using semantic networks. In
designing the SNAP, we have investigated various natural language processing systems
and theories to determine the scope of the hardware support and a set of micro-coded
instructions to be provided. As a result, SNAP employs an extended marker-passing
model and a dynamically modifiable network model. A set of primitive instructions
is micro-coded to directly support a parallel marker-passing, bit-operations, numeric
operations, network modifications, and other essential functions for natural language
processing. This paper demonstrates the utility of SNAP for various paradigms of nat-
ural language processing. We have discovered that the SNAP provides milliseconds or
microseconds performance on several important applications such as the memory-based
parsing and translation, classification-based parsing, and VLKB search. Also, we argue
that there are numerous opportunities in the NLP community to take advantages of the
computational power of the SNAP.
Keywords: Massively Parallel Computing, Memory Based Translation, VLKB, Clas-
sification based Parsing

*This research is supported by the National Science Foundation under grant MIP-9009111, and conducted
as a part of IMPACT (International Consortium for Massively Parallel Advanced Computing Technologies).
A version of this paper appears in COLING-92.

22

1 Introduction

In order to accomplish the high-performance natural language processing, we have de-
signed a highly parallel machine called Semantic Network Array Processor (SNAP) [Lee
and Moldovan, 1990]. The goal of our project is to develop and test the validity of the
massively parallel machine for high performance and large-scale natural language processing.
Thus, the architecture of the SNAP was determined reflecting extensive analysis of basic
operations essential to the natural language processing. As a result of the investigation, we
have decided to employ an extended marker-passing model and a dynamically modifiable
network. Also, a set of primitive instructions is micro-coded to directly support essential
operations in natural language systems.

Several approach can be taken to use SNAP as a platform for natural language processing
systems. We can fully implement NLP system on SNAP, or we can speed up existing systems
by implementing computationally expensive parts on SNAP. We have implemented some of
these approaches on SNAP, and obtained extremely high performance (order of milliseconds
for given tasks).

In this paper, we describe the design philosophy and architecture of SNAP, and present
several approaches toward high performance natural language processing systems on SNAP.

2 SNAP Architecture

2.1 Design Philosophy of SNAP

The Semantic Network Array Processor (SNAP) is a highly parallel array processor fully
optimized for semantic network processing with a marker-passing mechanism. The funda-
mental design decisions are (1) a semantic network as a knowledge representation scheme,
and (2) parallel marker-passing as an inference mechanism.

First, the use of a semantic network as a representation scheme can be justified from
the fact that most of the representation schemes of current AI and NLP theories (such as
frame, feature structure, sort hierarchy, systemic choice network, neural network, etc.) can
be mapped onto semantic networks. Also, there are numbers of systems and models which
directly use semantic networks [Sowa, 1991].

Second, the use of marker-passing can be justified from several aspects. Obviously, there
are many AI and NLP models which use some form of marker-passing as the central comput-
ing principle. For example, there are significant number of research being done on word-sense
disambiguation as seen in [Waltz and Pollack, 1985], [Hendler, 1988], [Hirst, 1986], [Char-
niak, 1983], [Tomabechi, 1987], etc. All of them assume passing of markers or values among
nodes interconnected via some types of links. There are studies to handle syntactic con-
straints using some type of networks which can be mapped onto semantic networks. Recent
studies on the Classification-Based Parsing [Kasper, 1989] and the Systemic Choice Network
[Carpenter and Pollard, 1991] assume hierarchical networks to represent various linguistic
constraints, and the search on these networks can be done by marker-passing. Also, there
are more radical approaches to implement entire natural language systems using parallel
marker-passing as seen in [Norvig, 1986], [Riesbeck and Martin, 1985], [Tomabechi, 1987],
and [Kitano, 1991]. There are, however, differences in types of information carried in each
marker-passing model. We will describe our design decisions later.

As reported in [Evett, et al., 1990], however, serial machines are not suitable for such
processing because it causes performance degradation as size of semantic network increases.

23

Figure 1: SNAP-1 Architecture

There axe clear needs for highly parallel machines. The rest of this section provides a brief
overview of the SNAP architecture.

2.2 The Architecture

SNAP consists of a processor array and an array controller (Figure 1). The processor array
has processing cells which contain the nodes and links of a semantic network. The SNAP
array consists of 160 processing elements each of which consists of a TMS320C30 DSP chip,
local SRAM, etc. Each processing elements stores 1024 nodes which act as virtual processors.
They are interconnected via a modified hypercube network. The SNAP controller interfaces
the SNAP array with a SUN 3/280 host and broadcasts instructions to control the operation
of the array. The instructions for the array are distributed through a global bus by the
controller. Propagation of markers and the execution of other instructions can be processed
simultaneously.

2.3 Parallel Marker-Passing

In the SNAP, content of the marker are: (1) bit-vector, (2) address, and (3) numeric value
(integer or floating point). In SNAP, the size of the marker is fixed. According to the
classification in [Blelloch, 1986], our model is a kind of Finite Message Passing. There
are types of marker-, or message-, passing that propagates feature structures (or graphs),
which are called Unbounded Message Passing. Although we have extended our marker-
passing model from the traditional bit marker-passing to the complex marker-passing which
carries bits, address, and numeric values, we decided not to carry unbounded messages.
This is because propagation of feature structures and heavy symbolic operations at each
PE are not practical assumptions to make, at least, on current massively parallel machines
due to processor power, memory capacity on each PE, and the communication bottleneck.
Propagation of feature structures would impose serious hardware design problems since the
size of the message is unbounded, which means that the designer can not be sure if the local
memory size is sufficient or not until the machine actually runs some applications. Also, PEs
capable of performing operations to manipulate these messages (such as unification) would

24

be large in physical size which causes assembly problems when thousands of processors are to
be assembled into one machine. Since we decide not to support unbounded message passing,
we decide to support functionalities attained by the unbounded message passing by other
means such as sophisticated marker control rules, dynamic network modifications, etc.

2.4 Instruction Sets

A set of 30 high-level instructions specific to semantic network processing are implemented
directly in hardware. These include associative search, marker setting and propagation,
logical/arithmetic operations involving markers, create and delete nodes and relations, and
collect a list of nodes with a certain marker set. Currently, the instruction set can be
called from C language so that users can develop applications with an extended version
of C language. From the programming level, SNAP provides data-parallel programming
environment similar to C* of the Connection Machine [Thinking Machines Corp., 1989], but
specialized for semantic network processing with marker passing.

Particularly important is the marker propagation rules. Several marker propagation rules
are provided to govern the movement of markers. Marker propagation rules enables us to
implement guided, or constraint, marker passing as well as unguided marker passing. This
is done by specifying the type of links that markers can propagate. The following are some
of the propagation rules of SNAP:

• Seq(r1,r2) : The Seq (sequence) propagation rule allows the marker to propagate
through r1 once then to r2.

• Spread(r1,r2) : The Spread propagation rule allows the marker to travel through a
chain of r1 links and then r2 links.

• Comb(r1,r2) : The Comb (combine) propagation rule allows the marker to propagate
to all r1 and r2 links without limitation.

2.5 Knowledge Representation on SNAP

SNAP provides four knowledge representation elements: node, link, node color and link
value. These elements offer a wide range of knowledge representation schemes to be mapped
on SNAP. On SNAP, a concept is represented by a node. A relation can be represented by
either a node called relation node or a link between two nodes. The node color indicates
the type of node. For example, when representing USC is in Los Angeles and CMU is
in Pittsburgh, we may assign a relation node for IN. The IN node is shared by the two
facts. In order to prevent the wrong interpretations such as USC in Pittsburgh and CMU
in Los Angeles, we assign IN#1 and IN#2 to two distinct IN relations, and group the two
relation nodes by a node color IN. Each link has assigned to it a link value which indicates
the strength of interconcepts relations. This link value supports probabilistic reasoning and
connectionist-like processing. These four basic elements allow SNAP to support virtually
any kind of graph-based knowledge representation formalisms such as KL-ONE [Brachman
and Schmolze, 1985], Conceptual Graphs [Sowa, 1984], KODIAK [Wilensky, 1987], etc.

3 The Memory-Based Natural Language Processing

Memory-based NLP is an idea of viewing NLP as a memory activity. For example, parsing
is considered as a memory-search process which identifies similar cases in the past from the

25

memory, and to provide interpretation based on the identified case. It can be considered
as an application of Memory-Based Reasoning (MBR) [Stanfill and Waltz, 1986] and Case-
Based Reasoning (CBR) [Riesbeck and Schank, 1989] to NLP. This view, however, counters
to traditional idea to view NLP as an extensive rule application process to build up meaning
representation. Some models has been proposed in this direction, such as Direct Memory
Access Parsing (DMAP) [Riesbeck and Martin, 1985] and ΦDMDIALOG [Kitano, 1991].
For arguments concerning superiority of the memory-based approach over the traditional
approach, see [Nagao, 1984], [Riesbeck and Martin, 1985], and [Sumita and Iida, 1991].

DMSNAP is a SNAP implementation of the ΦDMDIALOG speech-to-speech dialogue
translation system which is based on, in part, the memory-based approach. Naturally, it
inherits basic ideas and mechanisms of the ΦDMDIALOG system such as a memory-based
approach to natural language processing and parallel marker-passing. Syntactic constraint
network is introduced in DMSNAP whereas ΦDMDIALOG has been assuming unification
operation to handle linguistic processing.

DMSNAP consists of the memory network, syntactic constraint network, and markers to
carry out inference. The memory network and the syntactic constraint network are compiled
from a set of grammar rules written for DMSNAP.

Memory Network on SNAP The major types of knowledge required for language trans-
lation in DMSNAP are: a lexicon, a concept type hierarchy, concept sequences, and syn-
tactic constraints. Among them, the syntactic constraints are represented in the syntactic
constraint network, and the rest of the knowledge is represented in the memory network.
The memory network consists of various types of nodes such as concept sequence class
(CSC), lexical item nodes (LEX), concept nodes (CC) and others. Nodes are connected
by a number of different links such as concept abstraction links (ISA), expression links for
both source language and target language (ENG and JPN), Role links (ROLE), constraint
links (CONSTRAINT), contextual links (CONTEXT) and others. A part of the memory
network is shown in Figure 2.

Markers The processing of natural language on a marker-propagation architecture requires
the creation and movement of markers on the memory network. The following types of
markers are used: (1) A-Markers indicate activation of nodes. They propagate through
ISA links upward, carry a pointer to the source of activation and a cost measure, (2) P-
Markers indicate the next possible nodes to be activated. They are initially placed on the
first element nodes of the CSCs, and move through NEXT link where they collide with
A-MARKERs at the element nodes, (3) G-Markers indicate activation of nodes in the target
language. They carry pointers to the lexical node to be lexicalized, and propagate through
ISA links upward, (4) V-Markers indicate current state of the verbalization. When a V-
MARKER collides with the G-MARKER, the surface string (which is specified by the pointer
in the G-MARKER) is verbalized, (5) C-Markers indicate contextual priming. Nodes with
C-MARKERs are contextually primed. A C-MARKER moves from the designated contextual
root node to other contextually relevant nodes through contextual links, and (6) SC-Markers
indicate active syntax constraints, and primed and/or inhibited nodes by currently active
syntactic constraints. It also carries pointer to specific nodes. There are some other markers
used for control process and timing; they are not described here.

The parsing algorithm is similar to the shift-reduce parser except that our algorithms
handle ambiguities, parallel processing of each hypothesis, and top-down predictions of pos-
sible next input symbol. The generation algorithm implemented on SNAP is a version of

26

the lexically guided bottom-up algorithm which is described in [Kitano, 1990]. Details of the
algorithm is described in [Kitano et al., 1991b].

DMSNAP can handle various linguistic phenomena such as: lexical ambiguity, structural
ambiguity, referencing (pronoun reference, definite noun reference, etc), control, and un-
bounded dependencies. Linguistically complex phenomena are handled using the syntactic
constraint network (SCN). The SCN enables the DMSNAP to process sentences involving
unbounded dependencies, controls without passing feature structures. Details of the SCN
is described in [Kitano et al., 1991b]. One notable feature of DMSNAP is its capability
to parse and translate sentences in context. In other words, DMSNAP can store results of
previous sentences and resolve various levels of ambiguities using the contextual information.
Examples of sentences which DMSNAP can handle is shown below. It should be noted that
each example consists of a set of sentences (not a single sentence isolated from the context)
in order to demonstrate the contextual processing capability of the DMSNAP.

Example I
s1 John wanted to attend Coling-92.
s2 He is at the conference.
s3 He said that the quality of the paper is superb.

Example II
s4 Dan planned to develop a parallel processing

computer.
s5 Eric built a SNAP simulator.
s6 Juntae found bugs in the simulator.
s7 Dan tried to persuade Eric to help Juntae modify

the simulator.
s8 Juntae solved a problem with the simulator.
s9 It was the bug that Juntae mentioned.

These sentences in examples axe not all the sentences which DMSNAP can handle. Cur-
rently, DMSNAP handles a substantial portion of the ATR conference registration domain
(vocabulary 450 words, 329 sentences) and sentences from other corpora.

The following are examples of translation into Japanese generated by the DMSNAP for
the first set of sentences (s1, s2 and s3):

t1 Jon ha koringu-92 ni sanka shitakatta.
t2 Kare ha kaigi ni iru.

 t3 Kare ha ronbun no shitsu ga subarashii to itta.

DMSNAP completes the parsing in the order of milliseconds. Table 1 shows parsing
time for some of the example sentences.

4 Classification-Based Parsing

Classification-Based Parsing is a new parsing model proposed in [Kasper, 1989]. In the
classification-based parsing, feature structures are indexed in the hierarchical network, and
an unifiability of two feature structures are tested by searching the Most Specific Subsumer
(MSS). The unification, a computationally expensive operation which is the computational
bottleneck of many parsing systems, is replaced by search in the lattice of pre-indexed feature
structures.

27

Figure 2: Part of Memory Network

Sentence Length Time at
 (words) 10 MHz (msec)

s2: He is at ... 4 0.65
s3: He said that ... 10 1.50
s5: Eric build ... 5 0.55
s6: Juntae found ... 6 1.05
s8: Juntae solved ... 7 1.65

Table 1: Execution times for DMSNAP

F3
gender male
number singular
person 3rd

Fl F2
gender male number singular

person 3rd

Figure 3: A part of a simple example of classification lattice

28

For example, in Figure 3, the feature structure F3 is a result of successful unification of
the feature structure F1 and F2 (F3 = F1 F2). All feature structures are pre-indexed in a
lattice so that the unification is replaced by an intersection search in the lattice with complex
indexing. To carry out a search, first we set distinct markers on each feature structures F1
and F2. For example, set marker M1 on F1, and M2 on F2. Then, markers Ml and M2
propagate upward in the lattice. Ml and M2 first co-exist at F3. The most simple program
(without disjunctions and conjunctions handling) for this operation follows:

set_marker(Ml,f1);
set_marker(M2,f2);
propagate(M1,M1,UP,UP,SPREAD);
propagate(M2,M2,OP,UP,SPREAD);
marker_and(Ml,M2,M3);
propagate (M3, m_tmp, UP, UP, SPREAD);
cond_clear_marker(m_tmp,M3);
collect_nodes(M3);

Of course, nodes for each feature structure may need to be searched from a set of features,
instead of direct marking. In such a case, a set of markers will be propagated from each node
representing each feature, and takes disjunction and conjunction at all nodes representing a
feature structure root. This operation can be data-parallel.

There are several motivations to use classification-based parsing, some of which are de-
scribed in [Kasper, 1989]. The efficiency consideration is one of the major reasons for using
classification-based parsing. Since over 80% of parsing time has been consumed on unifica-
tion operations, replacing unification by a faster and functionally equivalent method would
substantially benefit the overall performance of the system. The classification-based parsing
is efficient because (1) it maximizes structure sharing, (2) it utilizes indexing dependencies,
and (3) it avoids redundant computations. However, these advantages of the classification-
based parsing can not be fully obtained if the model was implemented on the serial machine.
This is because a search on complex index lattice would be computationally expensive for
serial machines. Actually, the time-complexity of the sequential classification algorithm is
O(Mn2), and that of the retrieval algorithm is O(RavelogM), where M is a number of con-
cepts, n is an average number of property links per concept, Rave is an average number of
roleset relations for one concept. We can, however, circumvent this problem by using SNAP.
Theoretically, time-complexity of the classification on SNAP is O(logFoutM), and that of the
parallel retrieval is O(FinDave + Rave), where Fout is an average fan-out (average number of
subconcepts for one concept), Fin is an average fan-in (average number of superconcept for
one concept), and Dave is an average depth of the concept hierarchy [Kim and Moldovan,
1990].

In our model, possible feature structures are pre-computed and indexed using our clas-
sification algorithms. While a large set of feature structures need to be stored and indexed,
SNAP provides sufficiently large memory/processor space to load an entire feature structure
lattice. It is analogous to the idea behind the memory-based parsing which pre-expand all
possible syntactic/semantic structures. Here again, we see the conversion of time-complexity
into space-complexity.

Figure 4 shows performance of retrieval of classification lattice with varying fan-out
and size. The clock cycle is 10 MHz. It demonstrates that we can attain micro-seconds
response for each search. Given the fact that the fastest unification algorithm, even on
the parallel machines, takes over few milliseconds per unification, the performance obtained
in our experiment promises a significant improvement in parsing speed for many of the
unification-based parsers by replacing unification by classification-based approach.

29

Figure 4: Retrieved Performance on Classification Network

5 VLKB Search: Integration with the Knowledge-Based
Machine Translation

Language processing is a knowledge-intensive process. Knowledge-Based Machine Transla-
tion (KBMT) [Goodman and Nirenburg, 1991] has been proposed and developed based on the
assumption that intensive use of linguistic and world knowledge would provide high quality
automatic translation.

One of the central knowledge sources of the KBMT is the ontological hierarchy which
encodes abstraction hierarchies of concepts in the given domain, property information of
each concept, etc. When a parser creates ambiguous parses or when some parts of the
meaning representation (as represented in an interlingua) are missing, this knowledge source
is accessed to disambiguate or to fill-in missing information.

However, as the size of the domain scales up, access time to the knowledge source grows
to the extent that cost-effective bulk processing would not be possible. For example, [Evett,
et al., 1990] reports that access to large frame systems on serial computers have a time-
complexity of O(M x Bd) where M is the number of conjuncts in the query, B is the average
branching factor in the network, and d is the depth of the network. Thus, even a simplest
form of search takes over 6 seconds on a VLKB with 28K nodes measured on a single user
mode VAX super mini-computer. Since such search on a VLKB must be performed several
times for each parse, the performance issue would be a major concern. Considering the fact
that VLKB projects such as CYC [Lenat and Guha, 1990] and EDR [EDR, 1988] aim at
VLKBs containing over a million concepts, the performance of VLKB search would be an
obvious problem in practical use of these VLKBs. In the massively parallel machines such
as SNAP, we should be able to attain time-complexity of O(D + M) [Evett, et al., 1990].

We have carried out experiments to measure KB access time on SNAP. Figure 5 shows
the search time for various size of VLKBs ranging from 800 to 64K nodes. Performance
was compared with SUN-4 and the CM-2 connection machine. SNAP-1 consistently out-
performed other machines (performance curve of SNAP-1 is hard to see in the figure as it
exhibited execution time far less than a second.

30

VLKB Retrieval in PACE Benchmark

Figure 5: Retrieval time vs. KB size

31

6 Other Approaches

One clear extension of the currently implemented modules is to integrate the classification-
based parsing and the VLKB search. The classification-based parsing carry out high per-
formance syntactic analysis and the VLKB search would impose semantic constraints. In-
tegration of these two would require that the SNAP-1 to have a multiple controller because
two different marker control processes need to be mixed and executed at the same time.
Currently SNAP-1 has only one controller. This would be one of the major items for the
up-grade of the architecture. However, the performance gain by this approach would be
significant and its impact can be far reaching because a lot of current NLP research has been
carried out on the framework of the unification-based grammar formalism and use VLKBs
as major knowledge sources.

A more radical approach, however rooted in the traditional model, is to fully map the
typed unification grammars [Emele and Zajac, 1990] on the SNAP. The typed unification
grammar is based on the Typed Feature Structure (TFS) [Zajac, 1989] and HPSG [Pollard
and Sag, 1987], and represents all objects in TFS. Objects includes Phrasal Sign, Lexical
Sign, general principles such as the "Head Feature Principle", the "Subcat Feature Principle",
grammar rules such as the "Complement Head Constituent Order Feature Principle," the
"Head Complements Constituent Order Feature Principle," and lexical entries. The lexical
entries can be indexed under the lexical hierarchy. In this approach, all linguistic knowledge
is precompiled into a huge network. Parsing and generation will be carried out as a search
on this network. We have not yet complete a feasibility study for this approach on SNAP.
However, as of today, we consider this approach is feasible and expect to attain single-
digit millisecond order performance on an actual implementation. The dynamic network
modification, address propagation, and marker propagation rules are especially useful in
implementing this approach.

Natural language processing model on semantic networks such as [Norvig, 1986], SNePS
[Neal and Shapiro, 1987], and TRUMP, KING, ACE, and SCISOR at GE Lab. [Jacobs, 1991]
should fit well with the SNAP-1 architecture. For [Norvig, 1986], SNAP provides floating
point numbers to be propagated. As for SNePS, the implementation should be trivial, yet
we are not sure the level of parallelism gain by the SNePS model. When the parallelism was
found to be low, the coarse-grain processor may fit well with this model. Although we do
not have space to discuss in this paper, there are, of course, many other NLP and AI models
which can be implemented on SNAP.

7 STAR: Subsumptive Translation Architecture

Let us now put all these things into one perspective. We wish to build a theory which
takes maximum advantages of memory-based processing, and rule-based processing. The
architecture should entail memory-based process at the most specific layer, VLKB search
for symbolical-level of constraint satisfaction operation, and classification-based parsing or
TFS system to handle abstract grammar-based processing. Memory-based and rule-based
processes are no longer mutually exclusive, they are complementary processes (Figure 6).

Also, we have seen elsewhere [Kitano, 1991] that there are several levels of translation
such as lexical, phrasal, and sentential.

We argue that the architecture for machine translation systems should entail all these
levels of processing in a consistent manner. The STAR Theory is under development to
satisfy the requirements argued above.

32

Figure 6: Translation at different levels of abstraction

In the STAR theory, there are several levels of translation which are executed au-
tonomously but influenced by higher-levels of processing. Lexical translation which is a
autonomous process is governed by phrasal-leve of translation which, in turn, governed by
sentence-level translation. This is analogous to the subsumption architecture [Brooks, 1986].

It is subsumptive from the different point of view, too. Memory-based process is sub-
sumed by the processing level of the generalized-case. The processing at the generalized-case
level is subsumed by the rule-base processing. The subsumptive relation in this context is
the range of coverage, and should be distinguished from the subsumption relation in between
lexical, phrasal, and sentence translation.

Partial implementation on massively parallel machines has been made in DMSNAP
and in ASTRAL [Kitano and Higuchi, 1991b]. These systems has been derived from the
ΦDMDIALOG system which, in retrospect, was the first machine translation system based on
the STAR theory, though it was an incomplete model of the STAR theory.

Justification of this theory comes from several psycholinguistic studies, but the strongest
motivation was the author's intuition as a professional simultaneous interpreter.

It is often the case that, when a human interpreter make mistake or when her/his trans-
lation collapse, mis-translation or confusion start from the middle of the sentence leaving
initial part of the sentence unaffected. Obviously, there is an incremental understanding,
translation and generation mechanism which prevents total catastrophe of the translation.

Most current machine translation system would simply halt when it encounters serious
flaw in parsing process or when the middle of the sentence was completely ungrammatical.

It is our speculation that the source of the robustness of the human interpreters (against
ungrammatical sentences and against the interpreter's own error) is the basic architecture
for translation process which is distributed, incremental, parallel, and subsumptive.

Unfortunately, the current implementations are not yet to explore the robustness of the
STAR theory as the theory itself is under development.

33

8 Conclusion

In this paper, we have demonstrated that semantic network array processor (SNAP) speeds
up various natural language processing tasks. We have demonstrated this fact using three
examples: the memory-based parsing, VLKB processing, and Classification-based parsing.

In the memory-based parsing approach, we have attained the speed of parsing in the
order of milliseconds without making substantial compromises in linguistic analysis. To the
contrary, our model is superior to other traditional natural language processing models in
several aspects, particularly, contextual processing.

Next, we have applied the SNAP architecture for a new classification-based parsing model.
Here, SNAP is used to search the MSS to test the unifiability of the two feature graphs. We
have attained, again, sub-milliseconds order performance per unifiability test. In addition,
this approach exhibited desirable scalability characteristics. The search time asymptotically
researches to 450 cycles as the size of classification network increases. Also, search time
decreases as average fan-out gets larger. These are natural advantages of using parallel
machines.

SNAP is not only useful for the new and radical approach, but also beneficial in speeding
up traditional NLP systems such as KBMT. We have evaluated the performance to search
VLKB which is the major knowledge source for the KBMT system. We have attained sub-
milliseconds order performance per a search. Traditionally, on the serial machines, this
process has been taking a few seconds posing the major thread to performance on the scaled
up systems.

Also, there are many other NLP models (Typed Unification Grammar [Emele and Zajac,
1990], SNePS [Neal and Shapiro, 1987], and others) which may exhibit high performance
and desirable scaling property on SNAP.

Currently, we are designing the SNAP-2 reflecting various findings made by the research
with SNAP-1. SNAP-2 will be built upon the state-of-the-art VLSI technologies using RISC
architecture. At least 32K virtual nodes will be supported by each processing element,
providing the system with a minimum of 16 million nodes. SNAP-2 will feature multi-user
supports, intelligent I/O, etc. One of the significant features in SNAP-2 is the introduction
of a programmable marker propagation rules. This feature allows users to define their own
and more sophisticated marker propagation rules.

In summary, we have shown that the SNAP architecture can be a useful development
platform for high performance and large-scale natural language processing. This has been
empirically demonstrated using SNAP-1. SNAP-2 is expected to explore opportunities of
massively parallel natural language processing.

References

[Blelloch, 1986] Blelloch, G. E., "CIS: A Massively Parallel Concurrent Rule-Based System," Pro-
ceeding of AAAI-86, 1986.

[Brachman and Schmolze, 1985] Brachman, R. J. and Schmolze, J. G., "An Overview of The KL-
ONE Knowledge Representation System," Cognitive Science 9, 171-216, August 1985.

[Brooks, 1986] Brooks, R., "A robust layered control system for a mobile robot," IEEE J. Robotics
and Automation, RA-2, April 14-23,1986.

[Charniak, 1983] Charniak, E., "Passing markers: A theory of contextual influence in language
comprehension," Cognitive Science, 7(3), 1983.

34

[Carpenter and Pollard, 1991] Carpenter, B. and Pollard, C., "Inclusion, Disjointness and Choice:
The Logic of Linguistic Classification," Proc. of ACL-91, 1991.

[EDR, 1988] Japan Electric Dictionary Research Institute, EDR Electric Dictionaries, Technical
Report, Japan Electric Dictionary Research Institute, 1988.

[Emele and Zajac, 1990] Emele, M. and Zajac, R., "Typed Unification Grammars," Proc. of Coling-
90, 1990.

[Fahlman, 1979] Fahlman, S., NETL: A System for Representing and Using Real-World Knowledge,
The MIT Press, 1979.

[Evett, et al., 1990] Evett, M., Hendler, J., and Spector, L., PARKA: Parallel Knowledge Repre-
sentation on the Connection Machine, UMIACS-TR-90-22, University of Maryland, 1990.

[Hendler, 1988] Hendler, J., Integrating Marker-Passing and Problem-Solving, Lawrence Erlbaum
Associates, 1988.

[Hirst, 1986] Hirst, G., Semantic Interpretation and the Resolution of Ambiguity, Cambridge Uni-
versity Press, Cambridge, 1986.

[Jacobs, 1991] Jacobs, P., "Integrating Language and Meaning," Sowa, J. (Ed.) Principles of Se-
mantic Networks, Morgan Kaufmann, 1991.

[Kasper, 1989] Kasper, R., "Unification and Classification: An Experiment in Information-Based
Parsing," Proceedings of the International Workshop on Parsing Technologies, Pittsburgh,
1989.

[Kim and Moldovan, 1990] Kim, J. and Moldovan, D., "Parallel Classification for Knowledge Rep-
resentation on SNAP" Proceedings of the 1990 International Conference on Parallel Processing,
1990.

[Kitano, 1991] Kitano, H., "ΦDmDialog: An Experimental Speech-to-Speech Dialogue Translation
System," IEEE Computer, June, 1991.

[Kitano and Higuchi, 1991a] Kitano, H. and Higuchi, T., "Massively Parallel Memory-Based Pars-
ing", Proceedings of IJCAI-91, 1991.

[Kitano and Higuchi, 1991b] Kitano, H. and Higuchi, T., "High Performance Memory-Based Trans-
lation on IXM2 Massively Parallel Associative Memory Processor", Proceedings of AAAI-91,
1991.

[Kitano et al., 1991a] Kitano, H., Hendler, J., Higuchi, T., Moldovan, D., and Waltz, D., "Massively
Parallel Artificial Intelligence," Proc. of IJCAI-91, 1991.

[Kitano et al., 1991b] Kitano, H., Moldovan, D., and Cha, S., "High Performance Natural Language
Processing on Semantic Network Array Processor," Proc. of IJCAI-91, 1991.

[Kitano, 1990] Kitano, H., "Parallel Incremental Sentence Production for a Model of Simultane-
ous Interpretation," Dale, R., Mellish, C., and Zock, M. (Eds.) Current Research in Natural
Language Generation, Academic Press, London, 1990.

[Kitano et al., 1989] Kitano, H., Tomabechi, H., and Levin, L., "Ambiguity Resolution in DmTrans
Plus," Proceedings of the European Chapter of the Association of Computational Linguistics,
1989.

[Lee and Moldovan, 1990] Lee, W. and Moldovan, D., "The Design of a Marker Passing Architecture
for Knowledge Processing", Proceedings of AAAI-90, 1990.

[Lenat and Guha, 1990] Lenat, D.B. and Guha, R.V., Building Large Knowledge-Based Systems,
Addison-Wesley, 1990.

35

[Nagao, 1984] Nagao, M., "A Framework of a Mechanical Translation between Japanese and English
by Analogy Principle," Artificial and Human Intelligence, Elithorn, A. and Banerji, R. (Eds.),
Elsevier Science Publishers, B.V. 1984.

[Neal and Shapiro, 1987] Neal, J. and Shapiro, S., "Knowledge-Based Parsing," Bolc, L., (Ed.)
Natural Language Parsing Systems, Springer-Verlag, 1987.

[Goodman and Nirenburg, 1991] Goodman, K., and Nirenburg, S., Knowledge-Based Machine
Translation Project: A Case Study, Morgan Kaufmann, 1991.

[Norvig, 1986] Norvig, P., Unified Theory of Inference for Text Understanding, Ph.D. Thesis, Uni-
versity of California Berkeley, 1986.

[Pollard and Sag, 1987] Pollard, C. and Sag, I., Information-Based Syntax and Semantics, Vol. I:
Fundamentals, CSLI Lecture Note Series, Chicago University Press, 1987.

[Quillian, 1968] Quillian, M. R., "Semantic Memory," Semantic Information Processing, Minsky,
M. (Ed.), 216-270, The MIT press, Cambridge, MA, 1968.

[Riesbeck and Martin, 1985] Riesbeck, C. and Martin, C., "Direct Memory Access Parsing", Yale
University Report 354, 1985.

[Riesbeck and Schank, 1989] Riesbeck, C. and Schank, R., Inside Case-Based Reasoning, Lawrence
Erlbaum Associates, 1989.

[Sowa, 1991] Sowa, J. F. (Ed.), Principles of Semantic Networks, Morgan Kaufmann, 1991.

[Sowa, 1984] Sowa, J. F., Conceptual Structures, Reading, Addison Wesley, 1984.

[Stanfill and Waltz, 1986] Stanfill, C., and Waltz, D., "Toward Memory-Based Reasoning," Com-
munication of the ACM, 1986.

[Sumita and Iida, 1991] Sumita, E., and Iida, H., "Experiments and Prospects of Example-Based
Machine Translation," Proceedings of ACL-91, 1991.

[Thinking Machines Corp., 1989] Thinking Machines Corp., Model CM-2 Technical Summary, Tech-
nical Report TR-89-1, 1989.

[Tomabechi, 1987] Tomabechi, H., "Direct Memory Access Translation", Proceedings of the IJCAI-
87, 1987.

[Waltz and Pollack, 1985] Waltz, D.L. and Pollack, J., "Massively Parallel Parsing: A Strongly
Interactive Model of Natural Language Interpretation" Cognitive Science, 9(1): 51-74, 1985.

[Wilensky, 1987] Wilensky, R., "Some Problems and Proposals for Knowledge Representation",
Technical Report UCB/CSD 87/351, University of California, Berkeley, Computer Science
Division, 1987.

[Zajac, 1989] Zajac, R., "A Transfer Model Using a Typed Feature Structure Rewriting System
with Inheritance," Proc. of ACL-89, 1989.

36

