
Documentation of the Open-Source
Shallow-Transfer Machine Translation

Platform Apertium

AUTHORS:
Mikel L. Forcada

Boyan Ivanov Bonev
Sergio Ortiz Rojas

Juan Antonio Pérez Ortiz
Gema Ramı́rez Sánchez
Felipe Sánchez Martı́nez
Carme Armentano-Oller

Marco A. Montava
Francis M. Tyers

EDITOR:
Mireia Ginestı́ Rosell

Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant

March 10, 2010

Copyright c©2007 Grup Transducens, Universitat d’Alacant. Per-
mission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license can be found in
http://www.gnu.org/copyleft/fdl.html.

Contents

Introduction 1

1 The translation engine 5

2 Stream format specification 11
2.1 Introduction . 11
2.2 Data stream without format 12

2.2.1 Stream format . 13
2.3 Segmented data stream . 15

3 Modules specification 17
3.1 Lexical processing modules 17

3.1.1 Module description 17
3.1.2 Data format: the dictionaries 20
3.1.3 Automatic generation of the modules 54

3.2 Part-of-speech tagger . 56
3.2.1 Module description 56
3.2.2 Data for the part-of-speech tagger 57
3.2.3 Some questions about the training of the part-of-speech

tagger . 63
3.3 Transfer pre-processing . 65

3.3.1 Justification . 65
3.3.2 Behaviour and example 65

3.4 Lexical selection module . 66
3.4.1 Introduction . 66
3.4.2 Pre-processing of the bilingual dictionaries 69
3.4.3 Execution of the lexical selection module 71

3.5 Structural transfer module . 73
3.5.1 Introduction . 73
3.5.2 Shallow-transfer . 73
3.5.3 Advanced transfer . 77

iii

iv CONTENTS

3.5.4 Format specification for structural transfer rules . . . 79
3.5.5 Specification of the three modules that build an ad-

vanced transfer system 104
3.5.6 Preprocessing of the structural transfer module . . . 110

3.6 De-formatter and re-formatter 111
3.6.1 Format processing . 111
3.6.2 Data: format specification rules 114
3.6.3 Generation of de-formatters and re-formatters 119

4 Installing and running the system 121
4.1 System requirements . 121
4.2 Installing program packages 121
4.3 Installing data packages . 123
4.4 Using the translator . 123

5 Maintaining linguistic data 125
5.1 Description of current data . 125
5.2 Adding words to dictionaries 126

5.2.1 Adding direction restrictions 132
5.2.2 Adding multiwords 135
5.2.3 Consider contributing your improved lexical data . . 140

5.3 Adding structural transfer rules 140
5.4 Adding data for the part-of-speech tagger 147
5.5 Detecting errors . 149

5.5.1 Adjusting error symbols 150
5.5.2 Output of the different Apertium modules 151
5.5.3 Error examples . 154
5.5.4 Testing the integrity of the dictionaries 156

5.6 Generating a new Apertium system from modified data . . . 156

6 Data insertion web forms 157
6.1 Introduction . 157
6.2 Installing and managing . 157

6.2.1 Installing the tool . 157
6.2.2 Directory structure . 158
6.2.3 Php files . 161
6.2.4 Dictionary files . 167
6.2.5 Paradigm files . 168

6.3 Using the forms . 172
6.3.1 Introduction . 172
6.3.2 Insertion of entries . 172

CONTENTS v

6.3.3 Validating entries . 174

A XML DTDs 175
A.1 DTD for the format of dictionaries 175

A.1.1 Modification of the DTD of dictionaries for lexical
selection . 176

A.2 DTD for the tagger file . 177
A.3 DTD of the chunker module 178
A.4 DTD of the interchunk module 183
A.5 DTD of the postchunk module 187
A.6 DTD for the format rules . 191
A.7 DTD for the form paradigms 193

B Grammatical symbols 195
B.1 Dictionary symbols . 196

B.1.1 List of symbols . 196
B.1.2 Specification of lexical forms 198

B.2 Categories used in the part-of-speech tagger 200
B.2.1 Spanish tagger . 200
B.2.2 Catalan tagger . 202
B.2.3 Galician tagger . 203

C Abbreviations used in the text 205

vi CONTENTS

Introduction

This documentation describes the Apertium platform, one of the open-
source machine translation systems which originated within the project
”Open-Source Machine Translation for the Languages of Spain” (”Traducción
automática de código abierto para las lenguas del estado español”). It is
a shallow-transfer machine translation system, initially designed for the
translation between related language pairs, although some of its compo-
nents have been also used in the deep-transfer architecture (Matxin) that
has been developed in the same project for the pair Spanish-Basque. Aper-
tium can translate at present between the pairs Spanish-Galician, Spanish–
Catalan1 Catalan-Occitan, Catalan-French, and can be used to build trans-
lators between other related language pairs, such as Danish-Swedish,Czech–
Slovak, etc.

Existing machine translation systems available at present for the pairs
es–ca and es–gl are mostly commercial or use proprietary technologies,
which makes them very hard to adapt to new usages; furthermore, they
use different technologies across language pairs, which makes it very dif-
ficult to integrate them in a single multilingual content management sys-
tem.

One of the main novelties of the architecture described here is that it
has been released under open-source licenses (in most cases, GNU GPL;
some data still have a Creative Commons license) and is distributed free
of charge. This means that anyone having the necessary computational
and linguistic skills will be able to adapt or enhance the platform or the
language-pair data to create a new machine translation system, even for
other pairs of related languages. The licenses chosen make these improve-
ments immediately available to everyone. We therefore expect that the
introduction of this of open-source machine translation architecture will
solve some of the mentioned problems (having different technologies for
different pairs, closed-source architectures being hard to adapt to new

1With the name Catalan we refer also to the Valencian dialectal variant of this lan-
guage.

1

2 CONTENTS

uses, etc.) and promote the exchange of existing linguistic data through
the use of the XML-based formats defined in this documentation. On the
other hand, we think that it will help shift the current business model from
a license-centred one to a services-centred one.

It is worth mentioning that ”Open-Source Machine Translation for the
Languages of Spain” was the first large open-source machine translation
project funded by the central Spanish Government, although the adoption
of open-source software by the Spanish governments is not new.

This documentation describes in detail the characteristics of the Aper-
tium platform, and is organized as follows:

• Chapter 1: general description of the shallow-transfer machine trans-
lation system and of the modules that make it up.

• Chapter 2: description of the format of the data stream that circu-
lates from one module to the next one.

• Chapter 3: specification of the modules of the system. For each
module there is a description of: the program and its characteristics,
the format of the data that the module uses, and the compilers used for
it. This chapter is divided in the following sections:

- Section 3.1: Lexical processing modules, where the morphological
analyser, the lexical transfer module, the morphological gener-
ator and the post-generator are described (Section 3.1.1), along
with the format of the dictionaries used by these modules (sec-
tion 3.1.2) and their compilers (section 3.1.3)

- Section 3.2: Part-of-speech Tagger, which describes the tagger (Sec-
tion 3.2.1) and the format of the linguistic data used by the tag-
ger (section 3.2.2.

- Section 3.3: Pre-transfer module, which describes the module that
runs before the structural transfer module to perform some op-
erations on multiword units

- Section 3.5: Structural transfer module, where there is a descrip-
tion of the program (section 3.5.2) and of the format of the struc-
tural transfer rules (Section 3.5.4).

- Section 3.6: De-formatter and Re-formatter, which describes these
modules (section 3.6.1), the rules for format processing (section
3.6.2) and how these modules are generated (Section 3.6.3)

• Chapter 4: it describes the way to install the system and to run the
translator.

CONTENTS 3

• Chapter 5: here you will find an explanation of how to modify the
linguistic data used by the translator, that is, the dictionaries, the
part-of-speech disambiguation data and the structural transfer rules
created in this project for Spanish, Catalan and Galician. Further-
more, it contains a brief description of the characteristics of the avail-
able data for these three language pairs.

The files which this documentation refers to can be found at and down-
loaded from the project web page in Sourceforge: http://sourceforge.
net/projects/apertium/. From this page you can download the pack-
ages needed for installation, as well as view the individual files in the SVN
(main) and CVS (residual) repositories of the project. The machine trans-
lation systems for the different language pairs can also be tested on the
Internet at http://www.apertium.org/.

Acknowledgements:

The present work has benefited from the contribution of many people and
institutions:

• The Spanish Ministry of Industry, Commerce and Tourism has funded
the development of this toolbox through the projects “Open-Source
Machine Translation for the Languages of Spain”, code FIT-340101-
2004-3, and its extension FIT-340001-2005-2, and “EurOpenTrad: Open-
Source Advanced Machine Translation for the European Integration
of the Languages of Spain”, code FIT-350101-2006-5, all of them be-
longing to the PROFIT program.

• Workers and scholars from other machine translation projects at the
Universitat d’Alacant: Mı́riam Antunes Scalco, Carme Armentano i
Oller, Raül Canals i Marote, Alicia Garrido Alenda, Patrı́cia Gilabert
i Zarco, Maribel Guardiola i Savall, Javier Herrero Vicente, Amaia
Iturraspe Bellver, Sandra Montserrat i Buendia, Hermı́nia Pastor Pina,
Antonio Pertusa Ibáñez, Francisco Javier Ramos Salas, Marcial Sam-
per Asensio and Miguel Sánchez Molina.

• The companies and institutions that have funded these other ma-
chine translation projects: Spanish Ministry of Science and Technol-
ogy, Caja de Ahorros del Mediterráneo, Universitat d’Alacant and
Portal Universia, S.A.

4 CONTENTS

• Iñaki Alegria, from the Ixa group of the Euskal Herriko Unibertsi-
tatea (University of the Basque Country), for his close reading of
previous versions of this document.

• Google, who, through the Google Summer of Code programme, funded
the development of several new modules.

Chapter 1

The shallow-transfer machine
translation engine

This chapter describes briefly the structure of the shallow-transfer ma-
chine translation engine, which is largely based on that of the existing
systems for Spanish–Catalan interNOSTRUM [2, 5, 4] and for Spanish–
Portuguese Traductor Universia [7, 17], both developed by the Transducens
group of the Universitat d’Alacant. It is a classical indirect translation sys-
tem that uses a partial syntactic transfer strategy similar to the one used
by some commercial MT systems for personal computers.

The design of the system makes it possible to produce MT systems that
are fast (translating tens of thousands of words per second on ordinary
desktop computers) and that achieve results that are, in spite of the er-
rors, reasonably intelligible and easily correctable. In the case of related
languages such as the ones involved in the project (Spanish, Galician,
Catalan), a mechanical word-for-word translation (with a fixed equiva-
lent) would produce errors that, in most cases, can be solved with a quite
rudimentary analysis (a morphological analysis followed by a superficial,
local and partial syntactic analysis) and with an appropriate treatment of
lexical ambiguities (mainly due to homography). The design of our system
follows this approach with very interesting results. The Apertium archi-
tecture uses finite-state transducers for lexical processing, hidden Markov
models for part-of-speech tagging and finite-state-based chunking for struc-
tural transfer.

The translation engine consists of an 8-module assembly line, which
is represented in Figure 1.1. To ease diagnosis and independent testing,
modules communicate between them using text streams. This way, the in-
put and output of the modules can be checked at any moment and, when
an error in the translation process is detected, it is easy to test the output

5

6 CHAPTER 1. THE TRANSLATION ENGINE

SL
text
↓

de-
formatter

→ morph.
anal.

→ PoS
tagger → struct.

transf.
→ morph.

gen. →
post-
genera-
tor

→
re-
format-
ter

l ↓
lex.
trans-
fer

TL
text

Figure 1.1: The eight modules that build the assembly line of the shallow-transfer
machine translation system.

of each module separately to track down the origin of the error. At the
same time, communication via text allows for some of the modules to be
used in isolation, independently from the rest of the MT system, for other
natural-language processing tasks, and enables the construction of proto-
types with modified or additional modules.

We decided to encode linguistic data files in XML1-based formats due
to its interoperability, its independence of the character set and the avail-
ability of many tools and libraries that make easy the analysis of data in
this format. As stated in [8], XML is the emerging standard for data repre-
sentation and exchange in Internet. Technologies around XML include
very powerful mechanisms for accessing and editing XML documents,
which will probably have a significant impact on the development of tools
for natural language processing and annotated corpora.

The modules Apertium consists of are the following:

• The de-formatter, which separates the text to be translated from the
format information (RTF, HTML, etc.); its specification can be found
in Section 3.6.1. Format information is encapsulated so that the rest
of the modules treat it as blanks between words. For example, for
the HTML text in Spanish:

es una señal

(”it is a sign”) the de-formatter encapsulates in brackets the HTML
tags and gives the output:

1http://www.w3.org/XML/

7

es []una señal[]

The character sequences in brackets are treated by the rest of the
modules as simple blanks between words.

• The morphological analyser, which tokenizes the text in surface forms
(SF) (lexical units as they appear in texts) and delivers, for each SF,
one or more lexical forms (LF) consisting of lemma (the base form com-
monly used in classic dictionary entries), the lexical category (noun,
verb, preposition, etc.) and morphological inflection information
(number, gender, person, tense, etc.). Tokenization of a text in SFs
is not straightforward due to the existence, on the one hand, of con-
tractions (in Spanish, del, teniéndolo, vámonos; in English, didn’t, can’t)
and, on the other hand, of lexical units made of more than one word
(in Spanish, a pesar de, echó de menos; in English, in front of, taken into
account). The morphological analyser is able to analyse these com-
plex SFs and treat them appropriately so that they can be processed
by the next modules. In the case of contractions, the system reads a
single surface form and gives as output a sequence of two or more
lexical forms (for instance, the Spanish preposition-article contrac-
tion del would be analysed into two lexical forms, one for the prepo-
sition de and another one for the article el). Lexical units made of
more than one word (multiwords) are treated as single lexical forms
and processed specifically according to its type.2

Upon receiving as input the example text from the previous module,
the morphological analyser would deliver:

ˆes/ser<vbser><pri><p3><sg>$[]
ˆuna/un<det><ind><f><sg>/unir<vblex><prs><1><sg>/unir
<vblex><prs><3><sg>$
ˆseñal/señal<n><f><sg>$[]

where each surface form has been analysed into one or more lexi-
cal forms: es has been analysed as one SF with lemma ser (”to be”),
whereas una receives three analyses: lemma un (”one”), determiner,
indefinite, feminine, singular; lemma unir (”to join”), verb in sub-
junctive present, 1st person singular, and lemma unir, verb in sub-
junctive present, 3rd person singular.

This module is generated from a source language (SL) morphological
dictionary, the format of which is specified in section 3.1.2.

2For more information about the treatment of multiwords, please refer to page 43.

8 CHAPTER 1. THE TRANSLATION ENGINE

• The part-of-speech tagger chooses, using a statistical model (hidden
Markov model), one of the analyses of an ambiguous word accord-
ing to its context; in the previous example, the ambiguous word
would be the surface form una, which can have three different anal-
yses. A sizeable fraction of surface forms (in Romance languages,
for instance, around one out of every three words) are ambiguous,
that is, they can be analysed into more than one lemma, more than
one part-of-speech or have more than one inflection analysis, and are
therefore an important source of translation errors when the wrong
equivalent is chosen. The statistical model is trained on representa-
tive source-language text corpora.

The result of processing the example text delivered by the morpho-
logical analyser with the part-of-speech tagger would be:

ˆser<vbser><pri><p3><sg>$[]ˆun<det><ind><f><sg>$
ˆseñal<n><f><sg>$[]

where the correct lexical form (determiner) has been selected for the
word una.

The specification of the part-of-speech tagger is in section 3.2.

• The lexical transfer module, that uses a bilingual dictionary and is
called by the structural transfer module, reads each LF of the SL and
delivers the corresponding target language (TL) lexical form. The
dictionary contains a single equivalent for each SL lexical form; that
is, no word-sense disambiguation is performed . Multiwords are
translated as a single unit. The lexical forms in the running exam-
ple would be translated into Catalan as follows:

ser<vbser> −→ ser<vbser>
un<det> −→ un<det>
señal<n><f> −→ senyal<n><m>

This module is generated from a bilingual dictionary, which is de-
scribed in Section 3.1.2.

• The structural transfer module, which detects and processes patterns
of words (chunks or phrases) that need special processing due to
grammatical divergences between the two languages (gender and
number changes, word reorderings, changes in prepositions, etc.).

9

This module is generated from a file containing rules which describe
the action to be taken for each pattern. In the running example, the
pattern formed by ˆun<det><ind><f><sg>$ ˆseñal<n><f><sg>$
would be detected by a determiner–noun rule, which in this case
would change the gender of the determiner so that it agrees with the
noun; the result would be:

ˆser<vbser><pri><p3><sg>$[]ˆun<det><ind><m><sg>$
ˆsenyal<n><m><sg>$[]

The format of the structural transfer rules file, inspired in the one
described in [5], is specified in Section 3.5.

• The morphological generator, that, from a lexical form in the target lan-
guage, generates a suitably inflected surface form. The result for the
example phrase would be:

és[]un senyal[]

This module is generated from a morphological dictionary, which is
described in detail in Section 3.1.2.

• The post-generator, that performs some orthographic operations in
the TL such as contractions and apostrophations, and which is gener-
ated from a transformation rules file the format of which is very simi-
lar to the format of the mentioned dictionaries. Its format is specified
in Section 3.1.2. In the example text there is no need to perform any
contraction or apostrophation.

• The re-formatter, which restores the original format information into
the translated text; the result for the running example would be the
correct conversion of the text into HTML format:

és un senyal

The specification of the re-formatter is described in Section 3.6.1.

The four lexical processing modules (morphological analyser, lexical
transfer module, morphological generator and post-generator) use a sin-
gle compiler, based on a class of finite-state transducers [4], in particular,
letter transducers [14, 11]; its characteristics are described in Section 3.1.3.

10 CHAPTER 1. THE TRANSLATION ENGINE

Chapter 2

Format specification of the data
stream between modules

2.1 Introduction

The format of the data that circulate between the engine’s modules has to
be specified so that document processing is more effective and transpar-
ent. The proposed system design (see Section 1) imposes the need to use
three different data stream types, as shown in Figure 2.1.

The stream format is text-based to facilitate, among other things, the di-
agnosis of possible system errors, since it is easy to manipulate the stream
in order to reproduce the phenomena that are to be tested, and change it
to see the result. Other benefits of using text streams are that it is possible
to test independently the output of each module, and that it allows for fast
building of prototypes to test the system’s global performance, the validity
of linguistic data, etc.

The data stream types are:

• Data stream with format: It is the text in its original format, with no
further marks: XML, ANSI text, RTF, HTML, etc. Since it is the orig-
inal format of the documents, nothing needs to be specified about it
except the name of the format.

• Data stream without format: It is the text with superblanks, that is, with
special characters that encapsulate the format (see Section 3.6.1); su-
perblanks are treated by the linguistic modules as blanks between
words (with some exceptions). This is the format generated by the
de-formatter and used by the re-formatter when generating the final
translated document.

11

12 CHAPTER 2. STREAM FORMAT SPECIFICATION

Re-
formateador

Analizador
morfólogico Etiquetador

Transfer.
estructural Generador

Post-
generador

Transfer.
léxica

Texto
origen

Texto
meta

Flujo de texto segmentado

Flujo de texto original

Flujo de texto sin formato

Des-
formateador

Figure 2.1: The different data stream types in the machine translation system. See
the text for its description.

• Segmented data stream: In this format, apart from superblanks, lexical
units that are to be translated are delimited also with special char-
acters. These characters are put by the morphological analyser and
deleted by the generator, which delivers the final surface forms.

We describe next the characteristics of the data stream used between
the modules of the translator, that is, the second and the third stream
types. In general terms, it is a plain text format marked with characters
that have a special meaning. This format is intended for the processing in
servers that translate large volumes of text.

Some of the formats that the engine can process may contain exten-
sive blocks of information in binary format —RTF for instance, that may
include bitmap images—. To enable an efficient processing of this type
of documents, we designed a way to extract this information and restore
it after translation has been performed; see Section 3.6.1 for a complete
description.

2.2 Data stream without format

Data stream without format is output by the de-formatter and by the gen-
erator , and is used as input by the morphological analyser, the post-
generator and the re-formatter.

In the subsection of this section you can find a description of the method
to delimit superblanks and extensive superblanks. As an example we will use
the HTML document in Figure 2.2.

2.2. DATA STREAM WITHOUT FORMAT 13

<html>
<head>
<title>Title</title>

</head>
<body>
<p>Divided

sentence</p>
</body>

</html>

Figure 2.2: Example of HTML document

The structural elements that must include this data stream type are the
following:

• Superblanks. Blocks that contain segments of format information in-
cluded in the documents, when these are short.

• Extensive superblanks. Marks that are used to specify external docu-
ments that include segments of format information for the document
being processed, when these segments are long.

• Text. The document text that can be translated.

• Artificial sentence endings. When the format in the document suggests
a sentence separation that is not signalled by any punctuation mark
(for instance, titles with no full stop at the end, or the content of cells
in a table), the format processing must have a mechanism (invisible
for the user) that enables the marking of these sentence endings.

• Special characters protection (for non-XML stream). Characters that must
be protected to avoid conflict with the ones used in the data stream
format.

2.2.1 Stream format

This format is based on the one used in the machine translation systems
interNOSTRUM [2, 5, 4] and Traductor Universia [7, 17].

In this stream type, the characters [and] are used to indicate su-
perblanks, as shown in the following example:

[superblank content]

14 CHAPTER 2. STREAM FORMAT SPECIFICATION

In the case of extensive superblanks, the file name is specified using the
at sign @:

[@file name]

The text is outside the superblank marks.
Artificial sentence endings are expressed by a full stop and an empty su-

perblank right after it.

.[]

The following table shows the protected characters:

Name Character Protected form Meaning
At @ \@ External superblank
Slash / \/ Divider of meanings
Backslash \ \\ Protection character
Caret ˆ \ˆ Beginning of LF
Opening square bracket [\[Beginning of blank
Closing square bracket] \] End of blank
Dollar $ \$ End of LF
Greater than > \> Begin. of morph. symbol
Less than < \< End of morph. symbol

Figure 2.3 shows the document in Figure 2.2 after encapsulation.

[<html>
<head>
<title>]Title.[][</title>

</head>
<body>
<p>]Divided[

]sentence.[][</p>
</body>

<html>]

Figure 2.3: The document in Figure 2.2 with format encapsulated using square
brackets

2.3. SEGMENTED DATA STREAM 15

2.3 Segmented data stream

Segmented data stream is the stream that circulates between the mod-
ules that handle linguistic information in the translation engine. In this
stream, words are delimited and labelled. There are two types of seg-
mented stream:

• Ambiguous segmented stream. Its main characteristic is that words
have a surface form and potentially more than one lexical form (lexi-
cal multiform). This stream type is the format in which the morpho-
logical analyser provides the input data for the part-of-speech tagger
(see diagram 3.2 in page 58 for a detailed description of ambiguous
segmented stream).

• Unambiguous segmented stream. It has only one lexical form for each
word and it does not include the surface form. This is the format
in which data circulate from the part-of-speech tagger to the trans-
fer module, and from this module to the generator (see diagram 3.3
in page 63 for a detailed description of the format of unambiguous
segmented stream).

Furthermore, besides the information already marked in the data stream
without format, the new stream has to enable marking of the following in-
formation:

• Lexical units. A lexical unit is made of a surface form (in the case of
ambiguous segmented stream) plus one or more lexical forms (the
different possible analyses of the SF) with their grammatical sym-
bols.

• Surface forms (ambiguous segmented stream). The word as it appears in
the original text.

• Lexical forms. The lemma of the word and its grammatical symbols.

• Grammatical symbols. They describe the morphological and gram-
matical attributes of a surface form.

The symbols ’ˆ’ for word beginning and ’$’ for word end are used to
delimit words, as shown in this example:

ˆword$

16 CHAPTER 2. STREAM FORMAT SPECIFICATION

[<html>
<head>
<title>]ˆTitle/Title<n><m><sg>$ˆ./.<sent>$[][</title>

</head>
<body>
<p>]ˆDivided/Divide<vblex><pp>/Divided<vblex><past>$[

]ˆsentence/sentence<n><sg>/sentence<vblex><inf>$ˆ./.
<sent>$[][</p>
</body>

<html>]

Figure 2.4: Example of segmented stream with format encapsulated in non-XML
format, corresponding to the HTML document in Figure 2.2.

To separate the surface form and the following lexical forms, the symbol /
is used. This separator only has sense in the ambiguous segmented stream,
since in the unambiguous stream there is only the lexical form. It is used
as follows:

ˆsurface form/lexical form 1/...$

Lexical forms can include symbols (generally located at the end), as
shown in the example of Figure 2.4.

Chapter 3

Modules specification

3.1 Lexical processing modules

3.1.1 Module description

One of the most efficient approaches to lexical processing is based on the
use of finite-state transducers (FST) [10, 15]. FST are a type of finite-state
automata, which may be used as one-pass morphological analysers and
generators and may be very efficiently implemented. In this project, we
have used a class of FST called letter-transducers [15, 6, 4]; in fact, any
finite-state transducer may always be turned into a letter-transducer. Gar-
rido and collaborators [4, 6] give a formal definition of the letter transduc-
ers used in this project; describing them informally, a letter-transducer is
an idealised machine consisting of:

1. A (finite) set of states, that is, of situations in which the transducer
can be while it is reading, from left to right, the input letters or sym-
bols. Among the states of the set, we can distinguish:

(a) A single initial state: this is the state in which the transducer is
before processing the first letter or the first symbol of the input.

(b) One or more acceptance states, which are only reached after
having completely read a valid entry and, therefore, are used
to detect valid words.

2. A set (also finite) of state transitions consisting of:

(a) the origin state

(b) the destination state

17

18 CHAPTER 3. MODULES SPECIFICATION

(c) the input letter or symbol

(d) the output letter or symbol

To make possible that input and output have different lengths at any
time, it is allowed that there is no input symbol, that there is no out-
put symbol or that there is neither input nor output symbol. This
case is generally represented using a special symbol (the empty sym-
bol).

Every time the transducer reads an entry symbol, it creates a list of live
or active states, each one of which has an associated output (a sequence of
symbols). The way the letter transducer works is different for each type of
lexical processing operation. For example, in the morphological analysis,
the transducer tries to read the longest entry recognised by the dictionary
(“left-to-right, longest-match” mode).

1. Beginning: the set of live states is given a single live state: the initial
state, with the empty word (””) as output associated to the state.

2. When from one of the states in the current set of live states it is pos-
sible to reach other states through transitions that do not have input
symbol, these states are added to the set of live states, and are asso-
ciated to the output obtained when extending the associated outputs
with the output symbol found in the corresponding transitions. This
expansion operation of the set of live states continues until it is not
possible to add more states.

3. A symbol from the input word is read.

4. A new set of live states is created, made with the states reached
through transitions that have that symbol as input, and this states
are associated to the outputs extended by adding the corresponding
output symbols found in the transitions.

5. If the current set has any live state, the process continues on step 2.

6. The sets of live states are read backwards until a set is found which
contains acceptance states. The morphological analyses will be the
outputs associated to these states, and the reading position is set to
the position immediately after this set (so that it can be processed
again by the transducer in the next pass).

3.1. LEXICAL PROCESSING MODULES 19

Not all acceptance states have the same characteristics, and this fact adds
more conditions to the acceptance process, in order to be able to deal with
unknown words or with words that are joined to other words, as will be
explained later.

The transducer reads the input word only once on average, from right
to left and symbol by symbol, and keeps a tentative list of possible partial
outputs that is updated and pruned as the input is being read. When letter
transducers are used as morphological analysers or as lemmatizers, they
read a surface form and write the resulting lexical form(s). In this case,
input symbols are the letters of the surface form, and output symbols are
the letters needed to write the lemmas, as well as the letters and special
symbols needed to represent the morphological analysis, such as in <n>,
<f>, <p2>, etc.

The transducers work in a similar way for other lexical processing
tasks.

3.1.1.1 Letter case handling in dictionaries

The same input word in a lexical processing module can be written differ-
ently regarding letter case. The most frequent cases are:

• The whole word is in lower case.

• The whole word is in upper case.

• The first letter is capitalised and the rest is in lower case (typical case
for proper nouns).

The transductions in the dictionary can also be found in these three
states. The way in which one word is written in the dictionary is used to
discard possible analysis of the word, according to the following rules:

• If the input letter is upper case and in the current analysis state there
are concordant transitions in lower case, these transductions are made.

• If the input letter is lower case and in the current state there are not
concordant transitions in lower case, the transductions are not made.

Thanks to this policy, a surface form that is not capitalised can not be
analysed as a proper noun.

The case of an input word will be maintained in the output of the trans-
lator unless it is decided not to do so. The case can be changed in the struc-
tural transfer module; this option is useful, for example, when there is a

20 CHAPTER 3. MODULES SPECIFICATION

reordering of words or when a word is added before a capitalised word
at the beginning of a sentence, such as in the translation of the Catalan
phrase Vindran into English: They will come.

3.1.2 Data format: the dictionaries

3.1.2.1 General criteria for dictionary design

The experience of the Transducens group at the Universitat d’Alacant in
the creation of machine translation systems between Romance languages
(es, ca and pt) already operative and publicly accessible has inspired
the main characteristics of the whole shallow-transfer machine translation
system described in this document, as well as its application to the Ro-
mance languages of Spain (es, ca and gl). In some sense, it could be
stated that in the present project the only work was to adapt (rewrite in
a standardised and interoperable format) the specifications and programs
used in already operative projects.

In particular, the design of the dictionaries has been based in an ar-
chitecture that pretends to separate, as far as possible, the source lan-
guage from the target language, even knowing that these dictionaries are
translation-oriented and, therefore, that it is not advisable to elaborate
them completely separately. The chosen format is used for the specifica-
tion of both morphological dictionaries (monolingual) and bilingual dic-
tionaries.

The format for dictionaries, as well as for the rest of linguistic data (def-
inition file for part-of-speech tagger and structural transfer rules) is XML1,
an international standard used in numerous natural language processing
projects which, thanks to the availability of many utilities and libraries,
it is becoming a very powerful tool for linguistic data representation and
exchange (see article [8]).

Dictionaries are designed so that they can be compiled into letter trans-
ducers , for efficiency reasons. For more information on letter transducers
as a particular case of finite-state transducers, see Section 3.1.1 or the arti-
cle [6].

The letter transducers that are generated from the system dictionaries
(morphological, bilingual and post-generation dictionaries) process input
character strings to produce output strings. According to this, dictionaries
are made of entries consisting of string pairs that correspond to the inputs
and outputs of the transducer.

1http://www.w3.org/XML/

3.1. LEXICAL PROCESSING MODULES 21

The most powerful tool in these dictionaries is the definition and use
of paradigms. Since in Romance languages a lot of lemmas share the same
inflection pattern (there are regularities in their inflection), it is useful and
straightforward to group these regularities in inflection paradigms to avoid
having to write all the forms of every word. Paradigms allow the rep-
resentation of dictionary entries compactly and help optimise the speed
for building a dictionary. Once the most frequent paradigms in a dictio-
nary are defined, the linguist does not need to bother, in most cases, with
the whole inflection of a new term, since entering an inflective word is
generally limited to writing the lemma and choosing one inflection pat-
tern among the previously defined paradigms. Furthermore, the use of
paradigms reduces the memory requisites, facilitates the construction of
efficient letter transducers and speeds up the compilation process [11]. We
did not use paradigms in bilingual dictionaries (although it is possible to)
because most of the inflection information is processed implicitly in these
dictionaries, as explained in page 39.

3.1.2.2 Dictionary types

In our system there are three types of dictionaries: morphological (mono-
lingual) dictionaries for each of the languages involved (Spanish, Cata-
lan and Galician); bilingual dictionaries for the different translation pairs
(Spanish–Catalan and Spanish–Galician), and post-generation dictionar-
ies for each of the languages (a post-generation dictionary is not a typical
dictionary, with lemmas and morphological information, but is like a little
dictionary of the orthographic transformations that words may undergo
when they come together). The structure of the three dictionary types is
specified by the same DTD (Document Type Definition), which can be found
in Appendix A.1.

Morphological dictionaries are used both for building morphological
analysers —the translation system module used to obtain all the possible
lexical forms for a certain surface form in the source language — and mor-
phological generators —the module that generates the surface form in the
target language from the lexical form of each word—. These two modules
are obtained from a single morphological dictionary, depending on the di-
rection in which it is read by the system: read from left to right, we obtain
the analyser, and read from right to left, the generator.

The block structure typical for these dictionaries is the following:

• An alphabet definition. This definition is used exclusively for build-
ing the morphological analyser; specifically, it enables the morpho-

22 CHAPTER 3. MODULES SPECIFICATION

logical analyser to appropriately tokenize unknown words and the
ones in the conditional sections (see the description of the element
<section> in page 25); the morphological generator does not need
this definition.

• A definition of symbols. It consists of a declaration of the grammat-
ical symbols that will be used in dictionary entries (you can find in
Appendix B a list with the grammatical symbols used in this project).

• A definition of paradigms. Paradigms need to be defined here in order
to be used in the dictionary sections or in other paradigms.

• One or more dictionary sections with conditional tokenization, type standard.
To include most of the words of the dictionary.

• One or more dictionary sections with unconditional tokenization. To in-
clude certain words that follow a regular pattern or that are tok-
enized regardless the text directly after them (see description of the
element <section> in page 25). In the Catalan morphological dic-
tionaries, words requiring an unconditional tokenization are distributed
in two sections: one for the forms that require the introduction of a
blank immediately after (due to processing requirements of the lexi-
cal forms), like the apostrophized forms l’ or d’, and another one for
punctuation marks, numbers and other signs.

Bilingual dictionaries represent in the system the lexical transfer pro-
cess, that is, the assignment of the TL lexical form that corresponds to each
SL lexical form. Two products are obtained from each bilingual dictionary,
depending on the direction in which it is read by the system: when the
dictionary is read from left to right, we obtain the lexical transfer module
in one translation direction, and when it is read from right to left, in the
other direction. For the bilingual dictionaries of our project, it has been es-
tablished that Spanish will be put always on the left side of the entries, and
the rest of the languages (Catalan and Galician), on the right side. Thus,
for example, the bilingual Spanish–Galician dictionary will be read from
left to right for the translation es–gl and from right to left for the transla-
tion gl–es. In applications like the ones in this project, these dictionaries
do not have paradigms: they are build with generic entries which almost
always have no more information than lemma and part of speech, and
there is no inflection information.

The block structure used in the bilingual dictionaries of this project is
the following:

3.1. LEXICAL PROCESSING MODULES 23

• A definition of symbols. It consists of a declaration of the grammatical
symbols that will be used in dictionary entries.

• A single dictionary section. Where bilingual correspondences are spec-
ified.

Since 2007, bilingual dictionaries allow the specification of more than
one TL translation, so that a lexical selection module (see Section 3.4) can
choose the most suitable equivalent according to the context. To that end,
an attribute has been added to bilingual dictionaries. You can find its de-
scription in section 3.1.2.4.

Post-generation dictionaries are used to perform some transforma-
tions (orthographic changes, contractions, apostrophation, etc.) required
after surface forms in the target language have been generated and come
into contact with each other. Since this kind of operation can be expressed
as a translation of character strings, it has been decided to use the same
type of dictionaries. It is implicitly assumed that the parts of the text
whose processing has not been specified are copied just as they arrive. In
these dictionaries, the definition of paradigms is useful to express system-
atic changes in the word contact phenomena. Unlike the other dictionary
types, these do not include grammatical symbols, since they process sur-
face forms.

The block structure of post-generation dictionaries is the following:

• A definition of paradigms. To use in entries.

• A dictionary section. Where the patterns for post-generation opera-
tions are specified.

The following table contains an overview of the possible reading di-
rections of dictionaries and their application to the Romance languages in
this project:

Dictionary Reading direction Function
Morphological left–right analysis for es, ca and gl

right–left generation for es, ca and gl
Bilingual left–right translation for es-ca and es-gl

right–left translation for ca-es and gl-es
Post-generation left–right post-generation for ca, es and gl

24 CHAPTER 3. MODULES SPECIFICATION

<?xml version="1.0" encoding="utf-8"?>
<dictionary>
<alphabet>abcdefghijk ... ABCDEFGH ... çñáéı́óú</alphabet>
<sdefs>
<!-- ... -->

</sdefs>
<pardefs>
<!-- ... -->

</pardefs>
<section ...>
<!-- ... -->

</section>
<!-- ... -->

</dictionary>

Figure 3.1: Use of the elements <dictionary> and <alphabet>

3.1.2.3 Description of the dictionary format

This section presents the main elements of the format in which dictionar-
ies are built. The formal definition (a DTD) can be found in Appendix
A.1. Section 3.1.2.4 describes the characteristics of a bilingual dictionary
that works in an Apertium system with lexical selection module. Finally,
from pages 38 to 41 there is a description of the different particularities of
entries for the three dictionary types (morphological, bilingual and post-
generation).

Element for dictionary <dictionary>

This is the root element and includes the whole dictionary. It contains
an alphabetic character definition, a definition of symbols (which are the
morphological tags for the words), a definition of inflection paradigms
and one or more dictionary sections, which contain the entries for the lex-
ical forms (consisting of pairs made of surface form–lexical form). Figure
3.1 shows the basic block structure of a generic dictionary.

Element for alphabet <alphabet>

It is used to specify a definition of alphabetic characters. The purpose of
this specification is enabling the modules that process the input by means
of letter transducers to tokenize it in individual words.

3.1. LEXICAL PROCESSING MODULES 25

<sdefs>
<sdef n="n"/>
<sdef n="det"/>
<sdef n="sg"/>
<sdef n="pl"/>
<!-- ... -->

</sdefs>

Figure 3.2: Use of the element <sdefs>

In the present design, the definition of an alphabet only has sense in
morphological dictionaries, since it is needed for the analysis. Figure 3.1
shows a use example for this element.

Element for symbol definition section <sdefs>

It groups all the symbol definitions in a dictionary (<sdef>). There is an
example of its use in Figure 3.2.

Element for symbol definition <sdef>

It is an empty element (it does not delimit any content): it is used to spec-
ify, through the values of the attribute n, the names of the grammatical
symbols that are used in the dictionary to morphologically label lexical
forms. In Figure 3.2 you can find a use example for this element. Refer
to Appendix B if you need a list with all the grammatical symbols used in
the dictionaries of this project.

Element for dictionary section <section>

It contains the words that will be recognised by the dictionary. The reason
to divide a dictionary in sections is that some forms —for example, the
ones coming from the identification of certain regular patterns, or some
forms that pertain to a specific dialect— may need a different processing.

One of the problems that the definition of sections in a dictionary helps
to solve is the tokenization procedure during morphological analysis. Most
of the forms are tokenized following a conditional criterion: identifying if
the character being processed is followed by a non-alphabetic character
—that is, not defined in <alphabet>—. However, there are other forms,
like the Catalan apostrophized words l’ or d’, that need an unconditional
tokenization model: there is no need to analyse what comes after them,

26 CHAPTER 3. MODULES SPECIFICATION

<section id="principal" type="standard">
<!-- ... -->
</section>
<section id="patterns" type="inconditional">
<!-- ... -->
</section>

Figure 3.3: Use of the element <section>

since, if it is an alphabetic character, it will belong to the next word. The
forms that require unconditional tokenization are included in a specific
section of the dictionary. Other kinds of processing can also be solved
through these divisions.

The value of the attribute type is used to express the kind of string
tokenization applied in each dictionary section: the possible values of this
attribute are: standard, for almost all the forms of the dictionary (con-
ditional mode), preblank and postblank, for the forms that require an
unconditional tokenization and the placing of a blank (before and after,
respectively), and inconditional for the rest of forms that require un-
conditional tokenization.

The attribute id is used to assign an identifier (a name) to the dictio-
nary sections.

Element for entries <e>

An entry is the basic unit of a dictionary or of a paradigm definition. En-
tries consist of a concatenation in any order of string pairs <p>, identity
transductions <i>, references to paradigm <par> or regular expressions
<re>. The structure and meaning of these elements is explained later in
this section (in pages 27, 29, 32 and 34 respectively).

Two optional attributes are used with this entry. The first one is r (for
restriction), which specifies if the entry has to be considered only when
reading the dictionary from left to right (LR) or when reading it from right
to left (RL). If nothing is specified, it is assumed that the entry must be
considered in both directions.

In morphological dictionaries, the restriction LR causes that a LF is
analysed but not generated (for example, when the LF belongs to a di-
alectal variant that we wish to recognise but not to generate) and the re-
striction RL causes that a word is generated but not analysed (needed, for
example, for forms with post-generator activation mark, see page 35 for

3.1. LEXICAL PROCESSING MODULES 27

more details).
In bilingual dictionaries, the restrictions LR and RL cause that the trans-

lation is done only in one direction: for example, in a bilingual es–ca dic-
tionary, LR indicates that the LF is only translated from Spanish to Catalan,
and RL only from Catalan to Spanish. Let’s illustrate it with an example:
the Spanish adverbs aún and todavı́a (”still”) are translated into Catalan as
the same word, encara. We can only translate the Catalan adverb encara
as one of both words into Spanish (there is no difference in meaning); we
decide to translate it as todavı́a. In this case, we have to write two entries
in the bilingual dictionary: the entry that matches aún with encara needs
to have the restriction LR (translation only from es to ca) and the one that
matches todavı́a with encara does not need to have any restriction (transla-
tion in both directions).

Direction restrictions are also necessary in bilingual dictionaries when
we have words with gender to be determined (”GD”) or number to be
determined (”ND”) (consult page 39 for more information).

The other optional attribute in entries is the lemma name lm. Due to
the employment of paradigms to represent the inflection regularities of
lexical units, an entry in morphological dictionaries contains the part of
the lemma that is common to all the inflected forms, that is, it contains the
lemma cut at the point in which the paradigm regularity begins (for exam-
ple, the Spanish adjectives distinto, absoluto and marino appear in entries as
distint, absolut and marin, since the rest of the inflected forms is common to
all of them and specified in a paradigm). This fact can make the dictionary
difficult to understand. Therefore entries have this attribute, which con-
tains the whole lemma of the lexical form, so that the dictionary becomes
more understandable and linguists can solve problems quickly. In bilin-
gual dictionaries, which normally do not have references to paradigms,2

this attribute is not used.

Element for string pair <p>

This basic element of dictionaries is used in any kind of entry to indicate
the correspondence between two strings; this correspondence specifies a
lexical transformation that will be carried out by a state path in the result-
ing finite-state transducer [4].

It is defined by a pair of internal elements: The left element (<l>) and
the right element (<r>). Its structure is shown in Figure 3.4.

2They could have references to paradigms, but we did not judge it necessary for the
languages involved .

28 CHAPTER 3. MODULES SPECIFICATION

<p>
<l><!-- ... --></l>
<r><!-- ... --></r>

</p>

Figure 3.4: Use of the element <p>

A pair <p> must include these two parts although one can be empty,
which means deleting (or inserting) a string. The elements <l> and <r>
have the same internal structure and the same requisites. They can contain
text and references to grammatical symbols (which, for the languages of
the present project, inflected by suffixation, are usually placed at the end
in any amount). Outside the tags <l> and <r> of a string pair there is
nothing.

Element for reference to symbol <s>

References to symbols (or tags) are used to specify the morphological in-
formation of a LF and are used in any place inside a string pair, that is,
inside the elements <l> and <r>, as if they were individual characters;
for the languages of our project, however, they are put at the end of the
pairs and always in the same order for the same word type. This order
is decided by the linguist according to how he/she wishes to characterise
morphologically the LF in the dictionaries, and must be the same in all the
dictionaries of a system if we want that the lexical and structural trans-
fer operations work correctly. So, for example, in the Romance language
dictionaries of this project, a noun has in the first place the symbol for
part of speech (n, noun), then for gender (m, masculine, f, feminine, mf,
masculine–feminine), and finally for number (sg, singular, pl, plural, sp,
singular–plural). The list in Appendix B contains all the grammatical sym-
bols used in the dictionaries of this project and shows the order which has
been established for each type of word.

In morphological dictionaries, references to symbols are used in paradigms
as well as in entries which do not include any reference to a paradigm. In
bilingual dictionaries, usually only the first symbol of each LF is specified,
since the rest is automatically copied from the source language LF to the
target language LF (in the case they are identical in both languages).

To specify which symbol we are referring to, we use the (mandatory)
attribute n. The symbol must be defined in the symbol definition section
(<sdefs>).

3.1. LEXICAL PROCESSING MODULES 29

[1]

<e lm="perro">
<p>
<l>perr</l><r>perr</r>

</p>
<par n="abuel/o__n"/>

</e>

[2]

<e lm="perro">
<i>perr</i>
<par n="abuel/o__n"/>

</e>

Figure 3.5: Use of the element <i> entries [1] and [2] are equivalent

<pardefs>
<pardef n="abuel/o__n">
<!-- ... -->

</pardef>
<!-- ... -->

</pardefs>

Figure 3.6: Use of the element <pardefs>

Element for identity transduction <i>

It is a way to write a string pair in which left side and right side are iden-
tical. For example, the two entries shown in Figure 3.5 are completely
equivalent. The advantage of writing entries with this element is that the
result is more compact and more readable.

Element for paradigm definition section <pardefs>

This element includes all the paradigm definitions of a dictionary, each
definition in an element <pardef>, as shown in Figure 3.6.

30 CHAPTER 3. MODULES SPECIFICATION

Element for paradigm definition <pardef>

It defines an inflection paradigm in the dictionary. A paradigm can be
understood as a small dictionary of alternative transformations that can
be concatenated to parts of words (or to entries of another paradigm) to
specify regularities in the lexical processing of the dictionary entries, such
as inflection regularities. To specify these regularities, each paradigm is a
list of entries <e> like the ones in the dictionary, that is, it has the same
structure as a dictionary section <section>; therefore, paradigm entries
consist of a pair (<p>) with left side (<l>) and right side (<r>). These
elements can contain text or grammatical symbols <s>.

As in symbol definitions, paradigm definitions have an attribute nwhich
specifies the paradigm name, so that it can be referred to inside dictio-
nary entries. In a dictionary entry, therefore, one only needs to indicate
the corresponding paradigm name in order that all its possible forms get
specified.

The example of paradigm definition pointed out in Figure 3.6 appears
developed in Figure 3.7. The following table shows the information ex-
pressed by the paradigm:

Root (SF and LF) Ending (SF) Analysis (LF)
abuel o o<n><m><sg>
abuel a o<n><f><sg>
abuel os o<n><m><pl>
abuel as o<n><f><pl>

This paradigm is assigned to all Spanish nouns (n) that inflect like
abuelo, such as alumno, amigo or gato, and is designed to be used as a suffix
in dictionary entries. In general, paradigms can be applied to any posi-
tion of a dictionary entry (if it makes sense, of course). We can think of
paradigms as transducers that are inserted at the point where they are
specified. Figure 3.8 shows an example of paradigm defined to be used as
a prefix. It is the paradigm used to analyse and generate Spanish words
beginning with ex, ex-, etc., like ex-presidente, exministro, ex director, etc.,
with all the orthographic variations (ex with hyphen, without hyphen and
joined, without hyphen and with a blank , see page 3.1.2.3); the out-
put lemma simply adds ex without hyphen nor blank to the accompanying
lemma. The direction restrictions ("LR") that appear in the example are
used to determine which form will the translator generate. The empty
identity transduction (<i/>) is necessary in this case to analyse and gen-
erate the word without the prefix ex.

3.1. LEXICAL PROCESSING MODULES 31

<pardef n="abuel/o__n">
<e>
<p>
<l>o</l>
<r>o<s n="n"/><s n="m"/><s n="sg"/></r>

</p>
</e>
<e>
<p>
<l>a</l>
<r>o<s n="n"/><s n="f"/><s n="sg"/></r>

</p>
</e>
<e>
<p>
<l>os</l>
<r>o<s n="n"/><s n="m"/><s n="pl"/></r>

</p>
</e>
<e>
<p>
<l>as</l>
<r>o<s n="n"/><s n="f"/><s n="pl"/></r>

</p>
</e>

</pardef>

Figure 3.7: Use of the element <pardef> to define the inflective morphology of
Spanish nouns with four endings, such as abuelo, -a, -os, -as (”grandfather, grand-
mother”)

<pardef n="ex">
<e r="LR"><p><l>ex</l><r>ex</r></p></e>
<e><i>ex</i></e>
<e r="LR"><p><l>ex-</l><r>ex</r></p></e>
<e><i/></e>

</pardef>

Figure 3.8: Use of the element <pardef> in the paradigm for the prefix ex.

32 CHAPTER 3. MODULES SPECIFICATION

<e lm="perro">
<i>perr</i>
<par n="abuel/o__n"/>

</e>

Figure 3.9: Use of the element <par>

Entries in a paradigm can contain references to other paradigms pro-
vided that these have been defined upper in the file. On the other hand,
for the moment a paradigm definition can not include itself neither di-
rectly nor indirectly.

Paradigms are used in morphological dictionaries for the analysis and
generation of lexical forms. For the language pairs of this project, there is
no need to define paradigms in bilingual dictionaries (see page 39).

From Apertium 2 on, there is a new type of paradigm, called meta-
paradigm, that allows the definition of paradigms with variations accord-
ing to the value of an attribute specified in each entry that refers to that
paradigm. Section 3.1.2.7 describes the characteristics and use of meta-
paradigms.

Element for reference to a paradigm <par>

It is used inside an entry to indicate which inflection paradigm, among the
ones defined in <pardefs>, follows the entry. Thanks to the references
to paradigms there is no need to write all the inflected forms of a lemma
in a morphological dictionary entry. The attribute n is used to specify the
name of the paradigm we want to refer to.

The result of inserting a reference to a paradigm in an entry is the cre-
ation of so many string pairs as cases specified in the paradigm. For exam-
ple, the entry in Figure 3.9, with a reference to the paradigm ”abuel/o n”
(defined in Figure 3.7), is equivalent to an entry where each string pair of
the paradigm is concatenated to the lemma (that is, an entry with every in-
flected form of the lemma), as shown in Figure 3.10. In this figure, you can
see that the paradigm delivers always in the right string (<r>) the lemma
(perro) with the grammatical symbols that apply to the surface form, since
it is from the lemma that transfer operations are carried out.

The appropriate use of paradigms, besides enabling the creation of
compact dictionaries, improves compilation speed and reduces memory
requirements during this process, since in compilation it is possible to cre-
ate a single data structure for each one of most paradigms [11].

3.1. LEXICAL PROCESSING MODULES 33

<e>
<p>
<l>perro</l>
<r>perro<s n="n"/><s n="m"/><s n="sg"/></r>

</p>
</e>
<e>
<p>
<l>perra</l>
<r>perro<s n="n"/><s n="f"/><s n="sg"/></r>

</p>
</e>
<e>
<p>
<l>perros</l>
<r>perro<s n="n"/><s n="m"/><s n="pl"/></r>

</p>
</e>
<e>
<p>
<l>perras</l>
<r>perro<s n="n"/><s n="f"/><s n="pl"/></r>

</p>
</e>

Figure 3.10: Entry equivalent to the one in Figure 3.9, that shows the result of
inserting the reference to paradigm <par> with the paradigm defined in Figure
3.7.

34 CHAPTER 3. MODULES SPECIFICATION

<e>
<re>[0-9]+([.,][0-9]+)?(%)?</re>
<p><l/><r><s n="num"/></r></p>

</e>

Figure 3.11: Us of the element <re> in an entry for the detection of Arabic num-
bers.

Element for regular expression <re>

In natural languages too there are patterns that can be recognized as reg-
ular expressions: for example, punctuation marks, numbers (Latin or Ro-
man), e-mail or web page addresses, or any kind of code identifiable through
these mechanisms.

For this cases we use the string contained in the tag <re>. The com-
piler reads the regular expression definition and transforms it in a trans-
ducer that is inserted in the rest of the dictionary and that translates all the
strings that match the expression into identical strings.

The syntax of the present implementation of these regular expressions
processes a subgroup of Unix regular expressions, which includes the op-
erators *, ?, | and +, as well as groupings through parentheses and op-
tional character ranks, for example [a-zA-zñú] or its negated versions,
like [ˆa-z].

By analogy, they can be seen as <i> elements, with the difference that
they can identify strings which may be infinite (like numbers).

Figure 3.11 shows the way to tag quantities expressed as Arabic num-
bers in the dictionary.

Element for blank block

It is used to express the presence of blanks between the words of a mul-
tiword (see page 43 for an explanation on multiwords). It can be inserted
in the <i>, <l> and <r> elements. In Figure 3.12 you can see the entry
for the Spanish multiword expression hoy en dı́a (”nowadays”): the blanks
between words are expressed as elements inside the left and right
strings.

Blanks can consist of normal space characters or of document format
information blocks encapsulated by the de-formatter (superblanks, see Sec-
tion 3.6.1).

3.1. LEXICAL PROCESSING MODULES 35

<e lm="hoy en dı́a">
<p>
<l>hoyendı́a</l>
<r>hoyendı́a<s n="adv"/></r>

</p>
</e>

Figure 3.12: Use of the element

<e r="RL" lm="de">
<p>

<l><a/>de</l>
<r>de<s n="pr"/></r>

</p>
</e>

Figure 3.13: Use of the element <a> in a morphological dictionary

Element for post-generator activation <a>

The element <a> for the activation of the post-generator is used to indicate
that a word in target language may undergo orthographic transformations
due to the contact with other words; for example, being apostrophized,
contracted, written without intermediate spaces, etc. These transforma-
tions need be carried out after the generation of the target language surface
forms, as until then words are isolated and it is not possible to know which
words will get in contact . Therefore, these operations must be carried out
by the module next to the generator, which is called post-generator. In or-
der to signal which words are to be processed by the post-generator, this
element is used in the surface form side of these entries in the morpholog-
ical dictionary.

The example in Figure 3.13 shows its use, in a Catalan morphological
dictionary, for the preposition de, which, when appearing before a singular
or plural masculine definite article (el, els), forms a contraction (del, dels).
The presence of the tag <a/> causes the activation of the post-generator,
which checks whether the preposition is followed by one of the words that
cause it to contract and, if it is so, makes the contraction (see page 41 for
more details). The restriction RL indicates that this is an only-generation
entry, since it does not make any sense for the analysis.

36 CHAPTER 3. MODULES SPECIFICATION

Element for group marking <g>

This element is used, inside the <l> and <r> elements, to define groups
that require a special treatment beyond the normal word by word process-
ing. It is used in inflective multiwords to signal the beginning and the end
of the group of invariable lexical forms (one or more) that are adjacent to
the inflected word and that, together with it, build an inseparable unit. In
Section 3.1.2.6 you will find a detailed explanation of the different multi-
word types, and in Figure 3.22 of that section you can see an example of
its use.

Element for joining of lexical forms <j>

This element is used only in the right side of an entry (<r>) to indicate that
the words that form a multiword are treated as individual lexical forms
and, therefore, have a grammatical symbol each. This way, this multiword
will be processed as a unit by the analyser and by the tagger until it reaches
the auxiliary module pretransfer (see section 3.3), which is responsible
for separating the lexical forms it is made of so that they reach the transfer
module as independent forms. If the linguist wants that these forms reach
the generator as joined forms, building again a multiword, it is necessary
to define a structural transfer rule that groups them in a multiword (see
Section 3.5.4). If, on the contrary, these joined forms must be only for the
analysis, the entry must have the restriction LR.

In Section 3.1.2.6 you will find a more detailed explanation of this ele-
ment. An example of its use can be found in Figure 3.20 of the mentioned
section.

3.1.2.4 Modification of bilingual dictionaries for the new lexical selec-
tion module

In 2007, a new module has been added to the Apertium system: the lexical
selection module, which is described in section 3.4.

In order for them to work in a lexical selection system, bilingual dic-
tionaries must be slightly modified so that they allow the specification
of more than one translation in target language. The only change is the
addition of two new attributes to the element <e>. Although these new
attributes can be used in all the dictionaries of a system, they only make
sense in a bilingual dictionary entry.

In Appendix A.1.1 there is the part of the DTD dix.dtd where the
element e used for dictionary entries is defined. The new attributes are:

3.1. LEXICAL PROCESSING MODULES 37

slr (sense from left to right) is used to specify the translation mark when
there is more than one translation from left to right for the lemma
specified in the left side of an entry. The attribute can receive any
value; however, the recommended action is to assign as value the
lemma contained in the right part <r> (the translation of the lemma).

srl (sense from right to left) is used to specify the translation mark when
there is more than one translation from right to left for the lemma
specified in the right side of an entry. As before, the attribute can re-
ceive any value, but the recommended action is to assign as value the
lemma contained in the left part <l> (the translation of the lemma).

Furthermore, in both cases the value of the attribute can end in a white
space and the letter “D” to indicate that this is the default translation, that
is, the translation that will be chosen when there is not enough information
to make a decision. It is compulsory that, for entries that have more than
one equivalent in target language, one of the equivalents, and only one, is
marked with the letter “D” for default.

The following example shows how the new attributes are used. We
take as example a bilingual English-Catalan dictionary, with the following
entries having more than one translation in the target language:

• look: can be translated into Catalan as mirar (default) or as semblar
(according to the English senses view/seem),

• floor: can be translated into Catalan as pis (default) or as terra (ac-
cording to the English senses level of building/ground),

• pis: can be translated into English as flat (default) or as floor.

This information is represented by means of the two attributes de-
scribed:

<e srl="flat D">
<p>

<l>flat<s n="n"/></l>
<r>pis<s n="n"/><s n="m"/></r>

</p>
</e>

<e slr="pis D" srl="floor">
<p>

<l>floor<s n="n"/></l>

38 CHAPTER 3. MODULES SPECIFICATION

<r>pis<s n="n"/><s n="m"/></r>
</p>

</e>

<e slr="terra">
<p>

<l>floor<s n="n"/></l>
<r>terra<s n="n"/><s n="m"/></r>

</p>
</e>

<e slr="mirar D">
<p>

<l>look<s n="vblex"/></l>
<r>mirar<s n="vblex"/></r>

</p>
</e>

<e slr="semblar">
<p>

<l>look<s n="vblex"/></l>
<r>semblar<s n="vblex"/></r>

</p>
</e>

3.1.2.5 Particularities of the different dictionary types

Dictionary entries have different characteristics depending on the dictio-
nary type. Although some of these characteristics have been presented in
the previous sections, we are going to describe them here more exhaus-
tively.

Morphological dictionaries

In these dictionaries, used to generate the system’s morphological analy-
sers and generators, it is necessary to mark with <a/> those surface forms
which, once generated, may need certain orthographic transformations
due to the contact with other words; these operations are carried out by
the post-generator. As these marks are only generated, the entries con-
taining them must be only for the generation, which means that need to
have the restriction r="RL" (from right to left). Figure 3.13 shows an entry

3.1. LEXICAL PROCESSING MODULES 39

<e>
<p>
<l>pan<s n="n"/></l>
<r>pa<s n="n"/></r>

</p>
</e>

Figure 3.14: Bilingual dictionary entry for the translation pan (es)–pa (ca)

containing this element.

Bilingual dictionaries

As explained before, we have not used paradigms in the bilingual dictio-
naries of our system; these dictionaries are built with generic entries in
which, almost always, only part of speech is specified, and which do not
have inflection information. For example, in the es-ca dictionary, the en-
try for the Spanish words pan, panes (”bread”), translated into Catalan as
pa, pans, would be as shown in Figure 3.14.

As you can see in the figure, only the first grammatical symbol <s
n="..."/> of each word is specified, since the unspecified symbols that
come after the specified ones in the bilingual dictionary are copied from
the source lexical form to the target lexical form. This entry, therefore,
works both for pan (singular) and for panes (plural): the morphological
analyser delivers the lemma (pan) followed by the grammatical symbols
that apply to the analysed surface form (n m sg or n m pl as applicable),
and the symbols that are not specified in the bilingual entry (m sg or m pl)
are copied to the target language. This is valid for both translation direc-
tions. The idea is to specify the information indispensable to differentiate
the entries, and the rest is deduced (copied). It is important to bear this in
mind, because, when there are differences between the grammatical sym-
bols of a lexical form from SL to TL, these differences must be specified
in the bilingual dictionary. For example, when between source word and
translated word there is a gender or number change, one has to specify the
grammatical symbols in order (the order in which these symbols appear
in the morphological dictionaries)3 until the symbol that changes between
SL and TL is reached.

For example, to translate the Spanish word cama, feminine noun, into

3To know which grammatical symbols have been used in the dictionaries and in which
order, see Appendix B.

40 CHAPTER 3. MODULES SPECIFICATION

<e>
<p>
<l>cama<s n="n"/><s n="f"/></l>
<r>llit<s n="n"/><s n="m"/></r>

</p>
</e>

Figure 3.15: Bilingual dictionary entry for the translation cama (es)–llit (ca)

the Catalan word llit, masculine noun, the entry in the bilingual dictionary
must be as shown in Figure 3.15. The gender must be specified (f, m) be-
cause, if not, the symbols for gender and number would be copied from
the SL lexical form into de TL lexical form. Therefore, when translating
from es to ca, we would obtain the lexical form llit with the symbols n f
sg or n f pl. In both cases, the generator would receive as input a word
that is impossible to generate, since the Catalan morphological dictionary
does not contain any entry with lemma llit and feminine gender.

In this example, the number symbols are not specified; therefore, it
works for the correspondence cama–llit (singular) as well as for camas–llits
(plural). However, when there is a number change, the only way is to spec-
ify also the gender if the order used in all the dictionary for grammatical
symbols is gender, number.

By means of a direction restriction rwe can indicate which translations
are to be done only in one direction and not in the other one (see the de-
scription of the restrictions LR and RL in page 26). This is necessary when
the correspondence between two lexical forms is not symmetrical; in such
case, in the bilingual dictionary two or more entries have to be created and
a direction restriction must be applied, like in the example shown in Fig-
ure 3.16. In this example, when translating from Spanish to Catalan (LR),
we must generate only plural forms, since the word postres (”dessert”)
in Catalan does not have singular form. But, on the other hand, we will
translate into Spanish only in plural form (although in Spanish the word
has singular and plural forms), since it is not possible to determine, from
the Catalan word, whether the number should be singular or plural.

There is another problem due to grammatical divergences between
two languages that is resolved with the help of two special symbols, GD
(for gender to be determined) and ND (for number to be determined), symbols
which have to be defined in the symbol section of the bilingual dictio-
nary. This problem arises when the grammatical information of a SL lexi-
cal form is not enough to determine the gender (masculine or feminine) or

3.1. LEXICAL PROCESSING MODULES 41

<e r="LR">
<p>
<l>postre<s n="n"/><s n="m"/><s n="sg"/></l>
<r>postres<s n="n"/><s n="m"/><s n="pl"/></r>

</p>
</e>

<e>
<p>
<l>postre<s n="n"/><s n="m"/><s n="pl"/></l>
<r>postres<s n="n"/><s n="m"/><s n="pl"/></r>

</p>
</e>

Figure 3.16: Entries in the Spanish-Catalan bilingual dictionary for the correspon-
dence postre–postres (”dessert”)

the number (singular or plural) of the TL lexical form. Let’s put an exam-
ple: the Spanish adjective común (”common”) is masculine and feminine
at the same time (and, therefore, masculine–feminine, mf), but in Catalan
the adjective has different forms for the masculine, comú/comuns, and the
feminine, comuna/comunes. In the bilingual dictionary, the entry should be
as shown in Figure 3.17: in the LR direction (from Spanish to Catalan), the
gender information is not m, f nor mf but GD; this gender to be determined
will be determined next by the structural transfer module, by means of the
application of the suitable transfer rules (usually, rules for the agreement
between the lexical forms in a pattern; see Section 3.5 to obtain a detailed
description of transfer rules). In an analogous way, a similar mechanism
exists for singular–plural using the symbol ND (for example, in Spanish
análisis (”analysis”) is singular and plural, whereas in Catalan the singular
form is anàlisi and the plural form anàlisis).

Post-generation dictionaries

In the morphological dictionary, the lexical forms which, once generated,
may undergo contraction, apostrophation or other transformations, de-
pending of which words are in contact with them in the output text, must
have the post-generator activation mark (<a/>, see page 35) in the gen-
eration entry (RL direction). It is essential that the surface forms marked
with the post-generator activation mark are identical in the morphological
and the post-generation dictionaries of the same translator. In the post-

42 CHAPTER 3. MODULES SPECIFICATION

<e r="LR">
<p>
<l>común<s n="adj"/><s n="mf"/></l>
<r>comú<s n="adj"/><s n="GD"/></r>

</p>
</e>

<e r="RL">
<p>
<l>común<s n="adj"/><s n="mf"/></l>
<r>comú<s n="adj"/><s n="m"/></r>

</p>
</e>

<e r="RL">
<p>
<l>común<s n="adj"/><s n="mf"/></l>
<r>comú<s n="adj"/><s n="f"/></r>

</p>
</e>

Figure 3.17: Entries in the Spanish–Catalan bilingual dictionary for the correspon-
dence común–comú (”common”), the first one for the translation from Spanish to
Catalan and the two others for the translation from Catalan to Spanish

3.1. LEXICAL PROCESSING MODULES 43

generation dictionary, all entries begin with this activation mark.
In Figure 3.18 there is an extract of the Spanish post-generator; the

example shows how the contraction for de and el is done, to form the
word del. The paradigm puntuación not defined in the example con-
tains the non-alphabetic characters that can appear in a text. We can see
in the example that the entry for the preposition de has the mark <a/>.
The paradigm assigned to this entry, ”el”, is the one defined just above.
According to this entry, when the system receives as input the left string
of the entry (the part between <l>) concatenated to the left string of the
paradigm (that is, when the input is "<a/>deel" or "<a/>de
el[puntuación]"), the module delivers as output string (the part
between <r> elements) the string "del" followed by the blanks repre-
sented with or by the symbols represented with [puntuación].
Note that, in the module output, all the marks <a/> have been removed.

3.1.2.6 Multiword lexical units

The designed dictionary format allows the creation of multiword lexical
units —in short, multiwords— of different kinds, depending on the prob-
lem to be approached.

In this project we have considered three basic types of multiwords:

1. The most simple case are multiwords without inflection, which consist
of only one lexical form: the lemma is made of two or more invari-
able orthographic words but it is tagged as a unit. Figure 3.19 shows
an example of invariable multiword (the Spanish expression hoy en
dı́a, ”nowadays”): It is made of three words separated by a blank
() and, although it actually consists of an adverb, a preposition
and a noun, it is tagged as an adverb as a whole, since it acts as one.

2. A more complicated issue is the case of compound multiwords, made
of more than one lexical form, each one with its grammatical sym-
bols. The words they are made of are considered not to build a se-
mantic unit like in the previous case, but to appear together build-
ing a unit due to contact reasons (phonetic or orthographic reasons).
In this category we include contractions and enclitic pronouns accom-
panying verbs. To mark this phenomenon we use the tag <j> de-
scribed in page 36. You can see an example in Figure 3.20, in which
the analysis of del delivers a lexical multiform made of two lexi-
cal forms: de, preposition, and el, singular masculine definite deter-
miner, linked with the <j/> element. The analyser and the part-of-
speech tagger handle this multiwords as a unit; however, before en-

44 CHAPTER 3. MODULES SPECIFICATION

<dictionary>
<pardefs>
...
<pardef n="el">
<e>
<p>
<l>el</l>
<r>l</r>

</p>
</e>
<e>
<p>
<l>el</l>
<r>l</r>

</p>
<par n="puntuación"/>

</e>
</pardef>
...

</pardefs>
<section id="main" type="standard">
...
<e>
<p>
<l><a/>de</l>
<r>de</r>

</p>
<par n="el"/>

</e>
...

</section/>
</ditionary>

Figure 3.18: Post-generation dictionary data to perform the contraction for Span-
ish de + el = del .

3.1. LEXICAL PROCESSING MODULES 45

<e lm="hoy en dı́a">
<p>
<l>hoyendı́a</l>
<r>hoyendı́a<s n="adv"/></r>

</p>
</e>

Figure 3.19: Example of multiword without inflection in the morphological
dictionary

<e lm="del" r="LR">
<p>
<l>del</l>
<r>de<s n="pr"/><j/>
el<s n="det"/><s n="def"/>
<s n="m"/><s n="sg"/></r>

</p>
</e>

Figure 3.20: Entry in the morphological dictionary for the analysis of a con-
traction (the Spanish contraction del)

tering the transfer module, they are processed by an auxiliary mod-
ule called pretransfer (see section 3.3) which is responsible for
separating the lexical forms they are made of. This way, they reach
the transfer module as independent forms; the linguist has to decide
whether they have to be joined again (which must be done in the
structural transfer module) or they have to remain as independent
forms through the next modules.

In our system, the elements forming a contraction continue as inde-
pendent forms, and the post-generator is responsible for making the
contractions in the target language if it is necessary. On the other
hand, enclitic pronouns are joined again to the verb by means of a
structural transfer rule (see Section 3.5), so the verb plus its enclitic
pronouns get into the generation module as a single lexical multi-
form, its components joined with a <j/>. Therefore, entries con-
taining enclitic pronouns must not have any direction restriction, as
can be seen in the example in Figure 3.21, which shows a part of
the paradigm for the Spanish verb ”dar” (”to give”), specifically the
entry for the infinitive form joined to an enclitic pronoun.

46 CHAPTER 3. MODULES SPECIFICATION

<e>
<p>
<l>ar</l>
<r>ar<s n="vblex"/><s n="inf"/><j/></r>

</p>
<par n="S__cantar"/>

</e>

Figure 3.21: A fragment of the inflection paradigm for the Spanish verb
dar (”to give”), which shows the entry for the infinitive form followed
by an enclitic pronoun. Enclitic pronouns are contained in the paradigm
S cantar. Note that, unlike in Figure 3.20, this entry is both for analysis
and generation.

3. The most complicated case in our system is the case of multiwords
with inner inflection inside the lemma (or ”split lemma” forms), like
the example shown in Figure 3.22. The lemma of this kind of multi-
words has one part with inflection (the lemma head) followed by one
invariable part (the lemma tail). The invariable part has to be put
between <g> elements, so that it can be moved to the position im-
mediately after the lemma head to obtain the whole lemma of the
multiword. For example, the lemma of the Spanish multiwords echó
de menos (”he/she missed”), echándole de menos (”missing him/her”),
etc. has to be echar de menos (”to miss”), since this form will be the
one searched in the bilingual dictionary to find its translation. This
means that the invariable lemma tail (de menos) has to be moved after
the uninflected lemma head (echar). This moving backwards will be
done by the auxiliary module pretransfer (see section 3.3) which
runs before the structural transfer module.

To understand the example in Figure 3.22, you have to be aware that
the paradigm defining the verb echar includes, besides the verb in-
flection, the enclitic pronouns that can appear at the end of the in-
flected forms of the verb; in the output lexical multiform, this enclitic
pronouns are joined using the empty element <j/>.

When the translation is also a split lemma (for example, the transla-
tion of ”to miss” in Catalan is trobar a faltar, with forms like trobem a
faltar, trobar-lo a faltar, etc.), it is necessary to place again the lemma
tail in its original place, after the inflected form plus the enclitic pro-
nouns (if any), and indicate the correspondence of these invariable
parts of the lemma (de menos, a faltar) at both sides of the transla-

3.1. LEXICAL PROCESSING MODULES 47

<e lm="echar de menos">
<i>ech</i>
<par n="aspir/ar__vblex"/> <!-it includes enclitic pronouns -->
<p>
<l>demenos</l>
<r><g>demenos</g></r>

</p>
</e>

Figure 3.22: A morphological dictionary entry containing a <g> group.

<e>
<p>
<l>echar<g>demenos</g><s n="vblex"/></l>
<r>trobar<g>afaltar</g><s n="vblex"/></r>

</p>
</e>

Figure 3.23: A bilingual dictionary entry containing two corresponding <g>
groups.

tion. So, in the example of Figure 3.22, the <g> element is used to
mark the group ‘demenos’ in the morphological dictio-
nary, whereas in the bilingual dictionary (see Figure 3.23), the <g>
element is used to establish the correspondence between the groups
“demenos” and “afaltar”.

If the translation is not a split lemma, you do not need to insert any
<g> element in the target language string.

3.1.2.7 Metaparadigms

When developing the dictionaries for the Occitan translator, we were faced
with a new need: we wanted to be able to specify paradigms for verbs
that had a same inflection pattern but whose root changed in the different
inflected forms. With the existing paradigm system, a new paradigm had
to be created for each of these verbs, since it was only possible to specify
an inflection regularity pattern for a group of verbs with invariable root.
With metaparadigms, it is possible to specify the inflection regularity as
well as verb root variations.

48 CHAPTER 3. MODULES SPECIFICATION

At the same time, metaparadigms allow the specification, in a single
paradigm, of variations in the grammatical symbols of a lemma. That is,
several lemmas can refer to a same metaparadigm even if they have dif-
ferent grammatical symbols. Whereas for Occitan, metaparadigms have
allowed having a same paradigm for entries with root variations, for En-
glish, these have allowed having a same paradigm for entries with varia-
tions in their grammatical symbols.

Related with this, we created the concept of metadictionary: it is a dic-
tionary which contains metaparadigms as well as the normal paradigms
used so far. The name of a metadictionary is apertium-PAIR.L1.metadix
(for example, for the English monolingual dictionary in the Apertium-en-
ca system, apertium-en-ca.en.metadix). When linguistic data are
compiled these dictionaries are pre-processed, so that they have the ap-
propriate format for the dictionary compiler.

Specification of metaparadigms

Metaparadigms are defined in the <pardefs> section of the monolin-
gual dictionary, the same section where also the rest of the dictionary
paradigms are defined. A metaparadigm, just like a paradigm, has a name
specified in the attribute n. This name will have the same characteristics
as in the other paradigms, with the difference that the variable part of the
lemma root will be in brackets and in capital letters, as you can see in this
example:

<pardef n="m/é[T]er vblex">

This is the definition of a verb paradigm, where the inflection endings
have a variable part in the root. The inflection paradigms specified inside
this metaparadigm have to present inflection only in the part at the right
of the brackets, for example like the one specified in the paradigm:

<par n="mét/er vblex"/>

In conclusion, a complete example of metaparadigm definition would
be:

<pardef n="m/é[T]er__vblex">
<e>

<p>
<l>e</l>
<r>é</r>

3.1. LEXICAL PROCESSING MODULES 49

</p>
<i><prm/></i>
<par n="sent/eria__vblex"/>

</e>
<e>

<i>é<prm/></i>
<par n="mét/er__vblex"/>

</e>
</pardef>

The tag <prm/> is the marker that is used to place the variable text part
(the root variation) in the paradigm definition.

Once a metaparadigm is defined, we may want that a verb uses it.
To do so, in the verb entry (inside a <e> element) we must indicate the
suitable metaparadigm and, through the attribute prm, define with which
letters we want to replace the variable part specified in brackets. For ex-
ample:

<e lm="acuélher">
<i>acu</i>
<par n="m/é[T]er__vblex" prm="lh"/>

</e>

This entry defines the Occitan verb acuélher (”to receive”) and speci-
fies that its inflection paradigm is the one defined by the metaparadigm
m/é[T]er vblex, but replacing T with lh; that is, the letters following
acu will be élher instead of éter.

As mentioned before, metaparadigms can also be used for entries which
have some variation in their grammatical symbols. The way to specify
them is basically the same: the variable part must be specified in the en-
try with the attribute sa, whereas in the paradigm the tag <sa> has to be
placed where the optional grammatical symbol should appear.

For example, we have the following metaparadigm:

<pardef n="house__n">
<e>

<p>
<l/>
<r><s n="n"/><sa/><s n="sg"/></r>

50 CHAPTER 3. MODULES SPECIFICATION

</p>
</e>
<e>

<p>
<l>s</l>
<r><s n="n"/><sa/><s n="pl"/></r>

</p>
</e>

</pardef>

and the following entry:

<e lm="time">
<i>time</i>
<par n="house__n" sa="unc"/>

</e>

where unc means that the noun is uncountable.
In the metaparadigm, the tag <sa> shows the place where the gram-

matical symbol is to be placed if an entry contains the attribute sa with a
value, as happens in the entry for time.

A dictionary which contains entries like the ones described here is
called metadictionary and must be pre-processed in order to generate a
dictionary that follows the DTD for Apertium 2, since the engine does not
allow the direct use of metaparadigms. The next section describes how is
this pre-processing like.

Pre-processing of the metadictionary

A metadictionary is an XML file to which two XSLT style sheets are ap-
plied, in order to pre-process the metaparadigms and obtain a dictionary
with all the paradigms derived from the metaparadigms. The first style
sheet, buscaPar.xsl, produces the list of verbs that use metaparadigms
and deletes the possible repetitions of metaparadigms to be expanded.
This style sheet generates, in combination with the sheet principal.xsl,
a second style sheet called gen.xsl, which processes the metadictionary
with the list of metaparadigms to be expanded and generates a dictionary
in Apertium 2 format. Basically, what this generated style sheet does is:

1. In verb entries, if a verb uses a metaparadigm, this metaparadigm is
replaced by the corresponding expanded and deparametrized paradigm.
Thus, the previous example entry:

3.1. LEXICAL PROCESSING MODULES 51

<e lm="acuélher">
<i>acu</i>
<par n="m/é[T]er__vblex" prm="lh"/>

</e>

would be deparametrized and expanded into:

<e lm="acuélher">
<i>acu</i>
<par n="m/élher__vblex"/>

</e>

2. On the other hand, since from the first pass the system knows which
paradigms have to be created from metaparadigms, these are cre-
ated. In the previous example, from the metaparadigm:

<pardef n="m/é[T]er__vblex">
<e>

<p>
<l>e</l>
<r>é</r>

</p>
<i><prm/></i>
<par n="sent/eria__vblex"/>

</e>
<e>

<i>é<prm/></i>
<par n="mét/er__vblex"/>

</e>
</pardef>

the system would generate the paradigm "m/élher vblex" :

<pardef n="m/élher__vblex">
<e>

<p>
<l>e</l>
<r>é</r>

</p>
<i>lh/></i>

52 CHAPTER 3. MODULES SPECIFICATION

<par n="sent/eria__vblex"/>
</e>
<e>

<i>élh</i>
<par n="mét/er__vblex"/>

</e>
</pardef>

After the metadictionary has been processed according to these steps,
a .dix dictionary is generated which follows the DTD for Apertium 2 and
which can already be compiled.

In the case of our second example, where the variable part was the se-
quence of grammatical symbols in the paradigm, the style sheets would be
applied and, from the value unc specified in the attribute sa, the following
paradigm would be generated:

<pardef n="house__n__unc">
<e>

<p>
<l/>
<r><s n="n"/><s n="unc"/><s n="sg"/></r>

</p>
</e>
<e>

<p>
<l>s</l>
<r><s n="n"/><s n="unc"/><s n="pl"/></r>

</p>
</e>
</pardef>

for nouns the morphological analysis of which should be (in data stream
format):

time<n><unc><sg>

In this case, metaparadigms allows the use of the same paradigm for
entries with the same inflection but with a slightly different morphological
analysis.

It is important to note that, when a dictionary uses metaparadigms
and, accordingly, its name has the extension .metadix, this will be the

3.1. LEXICAL PROCESSING MODULES 53

<?xml version="1.0"?>
<analysis-chars>
<char value="’">
<equiv-char value="’"/>
<equiv-char value="ʼ"/>

</char>
<char value="·">
<equiv-char value="."/>

</char>
</analysis-chars>

Figure 3.24: Analysis character specification file

file where dictionary changes have to be made (adding, changing or delet-
ing entries or paradigms), since the file .dix is automatically generated
from this one every time linguistic data are compiled and, therefore, any
changes made in the latter will be overwritten during compilation.

3.1.2.8 Analysis characters

Version 3 of the Apertium platform includes Unicode support; however,
this lead to a new problem: alternate characters. Unicode supports sev-
eral character sets, which include several characters that look identical or
almost identical, but which have a different numeric value.

As a solution, equivalent characters can be specified in a file that com-
plements the morphological dictionary. As the morphological dictionary
is compiled, whenever a character mentioned in the analysis character
specification is encountered, its equivalents are included as though they
had been specified using entries specified with the LR restriction within
the dictionary.

A sample analysis characters specification file can be seen in Figure
3.24. It’s worth noting that the analysis characters file can only be used
when there is a 1:1 mapping between individual characters; in the case of
multiple characters, it would be better to use the example given earlier, in
Figure 3.8

54 CHAPTER 3. MODULES SPECIFICATION

3.1.3 Automatic generation of the lexical processing mod-
ules

The four lexical processing modules (morphological analyser, lexical trans-
fer, morphological generator and post-generator) are compiled from dic-
tionaries by means of a single compiler based on letter transducers [14].
This compiler is much faster than the ones used in the systems interNOS-
TRUM [2, 5, 4] and Traductor Universia [7, 17], thanks to the use of new
compiler building strategies and the minimization of partial transducers
during the building process [11].

The division of dictionary entries into lemma and paradigm enables
the effective construction of minimal letter transducers. The compiler makes
the most of the factorization allowed by paradigms in order to speed up
the construction. Taking into account that, in most European languages,
word variations occur at the end or the beginning of words, we took ad-
vantage of this fact to improve the construction speed of the minimal
transducer.

Paradigms are also minimized before being inserted in the big trans-
ducer in order to reduce the size of the big transducer before its minimiza-
tion. Since, before minimizing, the paradigms of the dictionaries for the
languages we have dealt with usually have just a few hundreds of states,
the minimization of these paradigms is a very fast process.

If we assume that an entry can have at any point a reference to a paradigm,
we could decide to copy at this point the transducer calculated in the
paradigm definition. The method used in Apertium is based on the idea
that it is not always necessary to copy, because in certain cases it is possi-
ble to reuse a paradigm that was already copied. In particular, two or more
entries that share a paradigm as a suffix can reuse the same copy of this
paradigm; the same can be said when it is as a prefix. However, generally
it is not possible to reuse paradigms if they are located in intermediate po-
sitions of different entries, since new suffixes (or prefixes) can be added to
existing entries, which causes the information inserted in the transducer
not to be consistent with the dictionary, and therefore the generated trans-
ducer would be incorrect (it would add string pairs that are not present in
the formal language defined by dictionaries).

Minimal letter transducers are built as explained next. From a string
transduction it is possible to build a sequence of letter transductions S(s : t)
with length N = max(|s|, |t|) which is defined as follows for each element
1 ≤ i ≤ N :

3.1. LEXICAL PROCESSING MODULES 55

-es n m

z/-ces n m

p : p

v : v

a : a

e : e

e : e

n : n

θ : θ

θ : θ

θ : θ

Figure 3.25: Building of the dictionary as prefix acceptor and link to paradigms
through transitions (θ : θ).

θ : n

e : n

θ : m

θ : sg

s : m θ : pl

Figure 3.26: Minimized paradigm ”-es n m” used in Figure 3.25.

Si(s : t) =

(si : θ) if i ≤ |s| ∧ i > |t|
(θ : ti) if i ≤ |t| ∧ i > |s|
(si : ti) in other cases

(3.1)

It should be emphasized that the construction design forbids the exis-
tence of a (s : t) that is equal to (ε : ε), which is crucial for the consistence
of the building method.

The building method uses two procedures: the assembly procedure in-
ferred from equation 3.1, and the minimization procedure, which is exe-
cuted by a conventional minimization algorithm [16] for deterministic fi-
nite state automata, which consists of inverting, determining, inverting
again and determining again, taking as the alphabet of the automaton
to be minimized the Cartesian product of L and as empty transition the
(θ : θ).

Figure 3.25 shows a simplified example of the assembly process. Trans-
ductions, composed as in the equation 3.1, are inserted one by one in a
transducer in the form of a prefix acceptor or trie, that is, in a way that there
is only one node for each common prefix of the group of transductions

56 CHAPTER 3. MODULES SPECIFICATION

z : n

c : n

θ : m

θ : sg

e : m s : pl

Figure 3.27: Minimized paradigm ”z/-ces n m” used in Figure 3.25.

that form the dictionary. With the suffixes of the transductions (that are
not shared) new states are created. In the point where there is a reference
to a paradigm, a replica of this paradigm is created and a link is created to
the dictionary entry which is being inserted in the transducer by means of
a null transduction (θ : θ).

Each paradigm, as it can be seen as a little dictionary, has been built
according to this same procedure and been minimized to reduce the size
of the content when building the big dictionary. In Figures 3.26 and 3.27
you can see the state of the paradigms used in Figure 3.25 after its mini-
mization.

3.2 Part-of-speech tagger

3.2.1 Module description

The part-of-speech tagger is based on first-order hidden Markov mod-
els [13], that is, on statistical data. The states of the Markov model repre-
sent parts of speech, and the observable parameters are ambiguity classes [3],
formed by groups of parts of speech.

In spite of working with statistical information, the training and be-
haviour of the tagger improve with the application of restrictions that for-
bid certain sequences of parts of speech (in the first-order models, these
sequences can only include two parts of speech). For example, in Span-
ish or Catalan a preposition can never be followed by a verb in personal
form; this restriction is of great help when the word after a preposition
is ambiguous and one of its possible analyses is a verb in personal form
(e.g., de trabajo, en libertad, etc.). Restrictions are explicitly declared in the
tagger definition file, sometimes in the form of prohibitions and sometimes

3.2. PART-OF-SPEECH TAGGER 57

of obligations.
The morphological tags which the tagger works with are not the same

as the ones used in the morphological analyser. Usually, the information
delivered by the analyser is too detailed for the purposes of the part-
of-speech disambiguation (for example, for most purposes, it suffices to
group in the same category all common nouns, regardless of their gender
and number). The use of finer-grained tags does not improve the results,
whereas it increases the number of parameters to be estimated and inten-
sifies the problem of lack of linguistic resources such as manually disam-
biguated texts. For this reason, in the tagger file one has to specify how
to group the fine-grained tags delivered by the morphological analyser into
more general coarse tags —which we will call categories— that will be used
in the part-of-speech disambiguation. Apart from coarse categories, one
can also define lexicalized tags. Basically there are two types of lexical-
izations described in bibliography: one type adds new observables and
the other one, in addition, adds new states to the Markov model [12]; the
tagger in Apertium uses the latter lexicalization type.

It is important to note that, in spite of working with coarse categories,
the tagger outputs fine-grained tags like the ones from the morpholog-
ical analyser. Sometimes it may occur that the morphological analyser
delivers, for a certain word, two or more fine-grained tags that can be
grouped under the same tagger category: e.g. in Spanish cante can be
the 1st or the 3rd singular person of the subjunctive present of the verb
cantar (”to sing”); both fine-grained tags, <vblex><prs><p1><sg> and
<vblex><prs><p3><sg>, are grouped under the tagger category VLEXSUBJ
(subjunctive verb). In this case, one of both fine tags is discarded; in the tag-
ger definition file it is possible to define which fine-grained tag, among the
ones that compose a coarse tag, will be delivered after disambiguation.

3.2.2 Data for the part-of-speech tagger

3.2.2.1 Introduction

We describe next the format of the files that specify how to group the fine-
grained tags delivered by the morphological analyser into more general
coarse tags. In this files, moreover, one can specify restrictions that help
in the estimation of the statistical model underlying the process of lexical
disambiguation, as well as preference rules to be applied when two fine-
grained tags belong to the same category.

The tagger assumes that, in the input stream, lexical forms will be ap-
propriately delimited, as described in the format specification for the data

58 CHAPTER 3. MODULES SPECIFICATION

stream between modules (Section 2). In brief, the format of the data deliv-
ered by the morphological analyser is the following:

analysedform → lexicalmultiform [lexicalmultiform]∗

lexicalmultiform → lexicalform [lexicalform]∗ lemma-queue?
lexicalform → lemma finetag

lemma-queue → lemma
finetag → morphsymbol [morphsymbol]∗

(3.2)

where:

• analysedform is all the information delivered for each surface form in
the output of the morphological analyser

• lexicalmultiform is a sequence of one or more lexical forms followed,
optionally, by an invariable queue as happens in some multiwords
(like the Spanish expression cántale las cuarenta).

• lexicalforms4 are units made of one lemma and one or more grammat-
ical symbols (which compose the fine-grained tag) with the output
information of the analyser

• lemma-queue is made of one or more lemmas 5 that are the invariable
part of a multiword. The queue of a multiword is made of the lemma
or lemmas with no inflection that follow the lemmas with inflection.
For example, the Spanish multiword cantar las cuarenta (”to lecture”,
”to reproach”) can take the forms cántale las cuarenta, (le) cantaré las
cuarenta, cantándole las cuarenta, etc. In this case, the queue would be
las cuarenta (see page 43 for more information).

• finetag is made of one or more grammatical symbols (sı́mbologram).

For example, the entry for the Spanish ambiguous surface form correos
would have two lexical multiforms; the first lexical multiform would have
one single lexical form, with lemma correo (”post office”) and a fine tag
made of the grammatical symbols common noun, masculine, plural; the sec-
ond lexical multiform would be a sequence of two lexical forms, one with
lemma correr (”to move”) and a fine tag made of the grammatical symbols
lexical verb, imperative, second person, plural, and the other one with lemma
vosotros (”you”) and fine tag made of the grammatical symbols pronoun,
enclitic, second person, masculine-feminine, plural.

4Separated from each other by a delimiter which corresponds to the <j/> element
(see page 36).

5Separated from each other by the element (see page 34).

3.2. PART-OF-SPEECH TAGGER 59

3.2.2.2 Format specification

The format of the file (encoded in XML) is specified by the DTD that can
be found in Appendix A.2.

The meaning of the different tags is the following:

tagger : is the root element; its mandatory attribute name is used to
specify the name of the tagger generated from the file.

tagset : defines the coarse tagset or categories with which the tagger
works. Categories are defined by the fine-grained tags output by the
morphological analyser.

def-label : defines a category or coarse tag (whose name is specified
in the mandatory attribute name) by means of a list of fine tags de-
fined with one or more tags-item elements; an optional attribute
closed indicates whether this is a closed category; if this is the case,
it is assumed that an unknown word can never belong to this cate-
gory.6

The more specific categories must be defined before the more gen-
eral ones. When the definition of a general category implicitly in-
cludes that of a specific category defined before, it is understood that
it refers to all cases except the ones defined by the more specific cate-
gory.

tags-item : is used to define a fine-grained tag by means of a sequence
of grammatical symbols. The sequence of grammatical symbols that
make up the fine tag is specified in the mandatory attribute tags. In
this sequence, symbols are separated by a dot, and the asterisk “*”
is used to express that any sequence of symbols may appear in its
place. It is also possible to define lexicalized categories, specifying
the lemma of the word in the attribute lemma.

def-mult : defines special categories (multicategories) made of more than
one category, in order to deal with entries with more than one lexical
form, like in the example given in the previous section. Each cate-
gory is defined as a set of valid sequences (sequence) of previously
defined categories or of fine-grained tags. It is designed for contrac-
tions, verbs with enclitic pronouns, etc.

6Closed categories are those that do not grow when new words are created: preposi-
tions, determiners, conjunctions, etc.

60 CHAPTER 3. MODULES SPECIFICATION

sequence : defines a sequence of elements, which can be categories (label-item)
or fine-grained tags (tags-item). Using fine-grained tags directly
is useful if one wishes to use a sequence of grammatical symbols
that is not part of any previously defined fine tag or that represents
a greater specialization of a defined fine tag .

label-item : is used to refer to a category or coarse tag previously de-
fined, to be specified in the mandatory attribute label.

forbid : this (optional) section is aimed to define restrictions as sequences
of categories label-sequence that can not occur in the language
involved. In the current version, due to the fact that the tagger is
based on first-order hidden Markov models, sequences can only be
made of two label-items.

label-sequence : defines a sequence of categories (label-item).

enforce-rules : this (optional) section allows defining restrictions in
the form of obligations.

enforce-after : defines a restriction that forces that a certain cate-
gory can only be followed by the categories belonging to the set
of categories defined in label-set. Note that this kind of restric-
tions is equivalent to defining several forbidden (forbid) sequences
(label-sequence) with the category defined in the mandatory at-
tribute label and the rest of categories that do not belong to the set
defined in label-set. For this reason, this kind of restriction must
be used very cautiously.

label-set : defines a set of categories (label-items).

preferences : used to define priorities in terms of which fine-grained
tag must be delivered in the tagger output when two or more fine
tags are assigned to the same category.

prefer : specifies that, in case of conflict between different fine-grained
tags assigned to the same category, the tagger must output the tag
specified in the mandatory attribute tags. If a category contains
more than one of the fine tags included in these prefer elements,
the tag defined in the first place will be the selected one.

Figures 3.28 and 3.29 contain an example with the most significant
parts of a tagger specification file defined by the DTD just described.

3.2. PART-OF-SPEECH TAGGER 61

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE tagger SYSTEM "tagger.dtd">
<tagger name="es-ca">
<tagset>

<def-label name="adv">
<tags-item tags="adv"/>

</def-label>
<def-label name="detnt" closed="true">

<tags-item tags="detnt"/>
</def-label>
<def-label name="detm" closed="true">

<tags-item tags="det.*.m"/>
</def-label>
<def-label name="vlexpfci">

<tags-item tags="vblex.pri"/>
<tags-item tags="vblex.fti"/>
<tags-item tags="vblex.cni"/>

</def-label>
<def-mult name="infserprnenc" closed="true">

<sequence>
<label-item label="vserinf"/>
<label-item label="prnenc"/>

</sequence>
<sequence>

<label-item label="vserinf"/>
<label-item label="prnenc"/>
<label-item label="prnenc"/>

</sequence>
</def-mult>
<def-mult name="prepdet" closed="true">

<sequence>
<label-item label="prep"/>
<tags-item tags="det.def.m.sg"/>

</sequence>
</def-mult>

</tagset>
<!-- ... -->

Figure 3.28: Example of a tagger definition file (continues in Figure 3.29).

62 CHAPTER 3. MODULES SPECIFICATION

<!-- ... -->
<forbid>

<label-sequence>
<label-item label=="prep"/>
<label-item label=="vlexpfci"/>

</label-sequence>
<!-- ... -->

</forbid>
<enforce-rules>

<enforce-after label=="prnpro">
<label-set>

<label-item label=="prnpro"/>
<label-item label=="vlexpfci"/>
<!-- ... -->

</label-set>
</enforce-after>
<!-- ... -->

</enforce-rules>
<preferences>

<prefer tags="vblex.pii.p3.sg"/>
<prefer tags="vbser.pii.p3.sg"/>
<!-- ... -->

</preferences>
</tagger>

Figure 3.29: Example of a tagger definition file (comes from Figure 3.28).

3.2. PART-OF-SPEECH TAGGER 63

3.2.3 Some questions about the training of the part-of-speech
tagger

The training of the part-of-speech tagger can be made both in a super-
vised manner, using manually disambiguated texts, and a unsupervised
manner, using ambiguous texts.

When the training is made with ambiguous texts (unsupervised), the
format of the required text can be automatically obtained from a plain text
corpus in the chosen language using the system’s morphological analyser;
in this case, the format of the text forms will be like the one defined in the
figure 3.3 (its description can be found in page 58). As the chart shows,
each analysed surface form can have more than one analysis (an analysed-
form can give as a result more than one lexicalmultiform).

analysedform → lexicalmultiform [lexicalmultiform]∗

lexicalmultiform → lexicalform [lexicalform]∗ lemma-queue?
lexicalform → lemma finetag

lemma-queue → lemma
finetag → morphsymbol [morphsymbol]∗

(3.3)

For the supervised training we need manually disambiguated text. The
format of the text forms in this case will be like the format delivered by the
morphological analyser (see Section 2) except that, being the text already
disambiguated, a surface form can never produce more than one lexical
form, as shown in Figure 3.4 (a disambiguatedform will consist always of a
single lexicalmultiform).

disambiguatedform → lexicalmultiform
lexicalmultiform → lexicalform [lexicalform]∗ lemma-queue?

lexicalform → lemma finetag
lemma-queue → lemma

finetag → morphsymbol [morphsymbol]∗

(3.4)
Finally, we need also the dictionary of the involved language to train

the tagger. This dictionary is used to determine, in combination with the
tagset specification, the different ambiguity classes with which the tagger
will work.

Figure 3.30 shows the dependency diagram for the training and the use
of the tagger.

64 CHAPTER 3. MODULES SPECIFICATION

lang.tsx

apertium-tagger { --train <n> | --supervised <n> } lang

lang.dic lang.crp

lang.prob

lang.tagged lang.untagged

input/output file

program

data file

dictionary training corpus tagged corpus analized corpus

used only if supervised training

apertium-tagger --tagger langinput text output text (tagged)

HMM definition and probabilities

tagset definition

optional

Figure 3.30: Dependency diagram for the part-of-speech tagger.

3.3. TRANSFER PRE-PROCESSING 65

3.3 Auxiliary module: transfer pre-processing mod-
ule

3.3.1 Justification

The transfer pre-processing module pretransfer is in charge of sepa-
rating compound multiwords (see page 43) and shifting certain parts of
multiwords with inner inflection or split lemma forms. This module pro-
cesses the tagger output and generates an entry suitable for the transfer
module. The processing performed by this module is necessary for differ-
ent reasons:

• So that the transfer module can process these units separately in or-
der to deal with, for example, the movement of clitic pronouns when
changing from enclitic to proclitic and vice versa.

• So that the bilingual dictionary only has to store information about
the lemmas to be translated. If the particles that make up a mul-
tiword are included jointly in the bilingual dictionary, the dictio-
nary would have to store an entry for each of the different combi-
nations. By separating compound multiwords and processing mul-
tiwords with inner inflection, we can avoid having entries including
inflection variations in the bilingual dictionary.

3.3.2 Behaviour and example

The program replaces each <j/> in the dictionary, that is, each + in the
data stream, by a symbol for word end, a blank and a symbol for word
beginning. Moreover, if the form is a multiword with split lemma, the
queue is moved to the position between the first word of the multiword
and its first grammatical symbol.

The task of generating an output which has the original order accepted
by the generator, is left to the rules of the transfer module, which are also
responsible for creating the compound multiwords which may be required
in the target language. In general, the generator works with the same
multiwords as the morphological analyser, and with the elements in the
same order; that is the reason why this task has to be done in the transfer
module.

We show below the result of applying this process to the compound
multiword darlo (”give it” in Spanish):

66 CHAPTER 3. MODULES SPECIFICATION

$ pretransfer
ˆdar<vblex><inf>+lo<prn><enc><p3><m><sg>$ ←− input
ˆdar<vblex><inf>$ ˆlo<prn><enc><p3><m><sg>$ ←− output

As can be seen, it consists only in dividing the lexical forms of a com-
pound multiword into individual lexical forms.

When the input is a multiword with split lemma, the process is as
shown in the following example for the Spanish multiword echarte de menos
(”to miss you”):

$ pretransfer
ˆechar<vblex><inf>+te<prn><enc><p2><m><sg># de menos$
ˆechar# de menos<vblex><inf>$ ˆte<prn><enc><p2><m><sg>$

Here, besides dividing into lexical forms, the module moves the invari-
able lemma queue into the mentioned position. As you can see, semantic
units are maintained after the movement of the invariable queue, since we
can consider echar de menos a verbal unit with own meaning.

3.4 Lexical selection module

3.4.1 Introduction

When the Apertium system is used to translate between less related lan-
guages than the ones dealt with in the first stages of the engine, the ques-
tion of lexical selection becomes significant, because there are more cases,
and more critical, in which a source language word can have more than
one different translation in the target language. For this reason we created
a new module, the lexical selection module, which deals with this prob-
lem.

Before going into its characteristics, we will see how the problems of
multiple equivalence (the fact of existing more than one possible translation
in target language for a source language lexical form) are tackled in Aper-
tium in two ways.

On the one hand, we have the situation where there is no big difference
in meaning between the multiple equivalents in the target language, and
the fact of choosing one or the other can not lead to any translation error.
We could say that between these equivalents there is a synonymy or quasi-
synonymy relation. In such a case, the linguist chooses one of the lemmas
as a translation (generally the most frequent or usual), and adds a direction
restriction to the other lemmas (with the attributes LR or RL) so that they

3.4. LEXICAL SELECTION MODULE 67

are translated in the opposite direction but not in the direction where there
are multiple equivalents.

On the other hand, we have the case where there is a clear difference in
meaning between the multiple equivalents, which can lead to translation
errors if the inappropriate lemma is chosen. These are the cases dealt with
the new lexical selection module. The linguist has to encode entries with
the attributes slr or srl described in the next section, thus identifying the
different translation options; then, the lexical selection module, by means
of statistical methods, chooses the translation which is most suitable in a
given context.

Sometimes it is not easy to decide whether a multiple equivalence sit-
uation should be solved in one way or the other. For example, if there is
difference in the meaning of two or more lemmas in the target language,
but we think that the lexical selection module will not be capable of choos-
ing the right translation by means of the context, we will follow the first
method: choose a fixed translation (the most general, the most suitable in
the maximum number of situations) and add a direction restriction to the
rest of translations. In the other cases, we will encode the entries so that
the decision is left to the lexical selection module.

When we use an Apertium system without lexical selection module,
the only way to add entries with different possible translations is the first
one, that is, choosing an only translation and marking the other equiva-
lences with a direction restriction. In the event that we use bilingual dic-
tionaries with multiple translations, encoded with the attributes slr or
srl, in a system that does not have any lexical selection module, a style
sheet will convert these entries designed for a lexical selection module into
entries with direction restrictions LR or RL, so that one of the multiple
equivalents (the one chosen as default entry by the linguist) becomes the
fixed translation of the source language lemma.

As examples of bilingual equivalencies that should have a direction
restriction, we can give the translation pairs ca-es encara – aún/todavı́a
(”still”) and sobtat – súbito/repentino (”sudden”), the first one of which could
be encoded like this:

<e r="LR">
<p>

<l>aún<s n="adv"/></l>
<r>encara<s n="adv"/></r>

</p>
</e>

68 CHAPTER 3. MODULES SPECIFICATION

source
lan-
guage
text
↓

de-
for-
matter

→ morph.
anal.

→ POS
tagger →

lex.
se-
lect.

→ struct.
transf.

→ morph.
gen. →

post-
generator→

re-for-
matter

l ↓

lex.
transf.

target
lan-
guage
text

Figure 3.31: The nine modules that build the assembly line in the version 2 of the
machine translation system Apertium.

<e>
<p>
<l>todavı́a<s n="adv"/></l>
<r>encara<s n="adv"/></r>

</p>
</e>

As examples of the second case (multiple equivalents with big differ-
ence in meaning) we have the pairs es-ca hoja – full/fulla (”sheet/leaf”)
and muñeca – nina/canell (”doll/wrist”), as well as the en-ca examples
shown in page 37, where it is described how to specify these multiple
equivalents in the bilingual dictionary.

Figure 3.31 shows the new assembly line of the version 2 of Apertium.7

The module in charge of the lexical selection (lexical selector) runs after the
part-of-speech tagger and before the structural transfer module; therefore,
this new module works only with source language information.

Section 3.4.2 next describes the pre-processing that must be done on a
bilingual dictionary containing more than one translation per entry (whether
the system uses a lexical selector or not), and Section 3.4.3 describes how
the lexical selector works and how it has to be trained.

7This figure substitutes the figure 1.1 in page 6 which represents the version 1 of Aper-
tium.

3.4. LEXICAL SELECTION MODULE 69

3.4.2 Pre-processing of the bilingual dictionaries

Bilingual dictionaries have been modified to allow the specification of
more than one translation per entry (refer to Section 3.1.2.4 to learn how to
write such dictionary entries); this fact makes it necessary to pre-process
these dictionaries, since the Apertium engine works with compiled dictio-
naries in which there is only one possible translation for each word.

The pre-processing of dictionaries is done automatically during compi-
lation, therefore the final user does not need to perform any specific action.

3.4.2.1 Pre-processing without lexical selection module

When bilingual dictionaries with multiple equivalents are used in a sys-
tem where there is no lexical selection module, the pre-processing is done
by the application of the style sheet translate-to-default-equiva-
lent.xsl. This style sheet turns dictionaries with multiple translations
per entry into dictionaries with only one translation per entry; to do this,
it chooses as translation the entry marked as default, and adds a direction
restriction (LR or RL as applicable) to the other entries, so that they are
only translated in the translation direction where there is no equivalent
multiplicity. The style sheet is called from the Makefile.

To put an example, the result of applying the style sheet on the first
three entries shown in page 37 is the following:

<e>
<p>

<l>flat<s n="n"/></l>
<r>pis<s n="n"/><s n="m"/></r>

</p>
</e>

<e r="LR">
<p>

<l>floor<s n="n"/></l>
<r>pis<s n="n"/><s n="m"/></r>

</p>
</e>

<e r="RL">
<p>

<l>floor<s n="n"/></l>
<r>terra<s n="n"/><s n="m"/></r>

70 CHAPTER 3. MODULES SPECIFICATION

</p>
</e>

3.4.2.2 Preprocessing with lexical selection module

If the Apertium system works with a lexical selection module, the bilin-
gual dictionary must be pre-processed in order to obtain:

• a monolingual dictionary that, for each source language word (for
example look) delivers all the possible translation marks or equiva-
lents (look mirar D and look semblar); this dictionary will be
used by the lexical selection module; and

• a new bilingual dictionary that, given a word with the lexical selec-
tion already done (for example look semblar) delivers the trans-
lation (semblar); this will be the bilingual dictionary to be used in the
lexical transfer.

This pre-processing is automatically done by means of the following
software during dictionary compilation:

• apertium-gen-lextormono, that receives three parameters:

– the translation direction for which you want to generate the
monolingual dictionary used in the lexical selection; lr for the
translation left to right, and rl for the translation right to left;

– the monolingual dictionary to be pre-processed; and

– the file where the output monolingual dictionary has to be writ-
ten.

• apertium-gen-lextorbil, that receives three parameters:

– the translation direction (lr or rl) for which you want to gen-
erate the bilingual dictionary to be used by the lexical transfer
module;

– the bilingual dictionary to be pre-processed; and

– the file where the output bilingual dictionary has to be written.

3.4. LEXICAL SELECTION MODULE 71

3.4.3 Execution of the lexical selection module

The module responsible for the lexical selection runs after the part-of-
speech tagger and before the structural transfer (see Figure 3.31 in page 68);
therefore, it uses only information from the source language. However,
during the training of the module, target language information is also
used.

3.4.3.1 Training

To train the lexical selection module, a corpus in the source language and
another one in the target language are required; they do not need to be
related. Both corpora must be pre-processed before the training. This
pre-processing, consisting in analysing the corpora and performing the
POS disambiguation, can be done with apertium-preprocess-cor-
pus-lextor.

The training of the module that performs the lexical selection consists
of the following tasks:8

1. Obtain the list of words that will be ignored when performing lex-
ical selection (stopwords). This list can be done manually or using
apertium-gen-stopwords-lextor;

2. Obtain the list of (source language) words that have more than one
translation in the target language, using apertium-gen-wlist-lextor;

3. Translate to the target language all the words obtained in the previ-
ous step, using apertium-gen-wlist-lextor-translation;

4. Running apertium-lextor --trainwrd and using the target lan-
guage pre-processed corpus, train a word co-occurrence model for
the words obtained in the previous step;

5. Running apertium-lextor --trainlch and using the source
language pre-processed corpus, the dictionaries generated by the
programs mentioned in Section 3.4.2 and the word co-occurrence
models calculated in the previous step, train a co-occurrence model
for each of the translation marks of those words that can have more
than one translation in the target language.

8The training of the models used for the lexical selection has been automated in all the
packages using it. Furthermore, all the software mentioned has its UNIX manual page

72 CHAPTER 3. MODULES SPECIFICATION

3.4.3.2 Use

The word co-occurrence models calculated for each translation mark as
described in the previous section provide the information required to per-
form lexical selection with information from the context.

Lexical selection is done by apertium-lextor --lextor; the for-
mats used to communicate with the rest of the modules of the translation
engine are:

Input: text in the same format as the input for the structural transfer mod-
ule, that is, text analysed and disambiguated, with invariable queues
of multiwords moved before morphological tags.

Output: text in the same format, but with the translation mark to be used
when executing lexical transfer.

The following example illustrates the input/output formats used by
the lexical selector (we have assumed in the example that only the English
verb get has more than one translation equivalent in the dictionaries):

• Source language text (English): To get to the city centre

• Lexical selector input: ˆTo<pr>$ ˆget<vblex><inf>$ ˆto<pr>$
ˆthe<det><def><sp>$ ˆcity<n><sg>$ ˆcentre<n><sg>$

• Translation marks in the en-ca bilingual dictionary for the verb get:
rebre, agafar, arribar, aconseguir D

• Lexical selector output: ˆTo<pr>$ ˆget__arribar<vblex><inf>$
ˆto<pr>$ ˆthe<det><def><sp>$ ˆcity<n><sg>$ ˆcentre<n><sg>$

3.5. STRUCTURAL TRANSFER MODULE 73

3.5 Structural transfer module

3.5.1 Introduction

In 2007, Apertium incorporated a more advanced structural transfer sys-
tem than the one used until then; it became necessary when we started
developing machine translators for less related language pairs in compar-
ison with the ones dealt with before, such as the English–Catalan translator.

This enhanced transfer system is made of three modules, the first one
of which can be used in isolation in order to run a shallow-transfer sys-
tem (which is the transfer system used so far for related language pairs
such as Spanish–Catalan or Spanish–Galician). When the system is used for
less related language pairs and, therefore, an advanced transfer becomes
necessary, the three transfer modules will be executed.

The two transfer systems differ in the number of passes over the input
text. The shallow-transfer system makes structural transformations with a
single pass of the rules, which detect sequences or patterns of lexical forms
and perform on them the required verifications and changes. On the other
hand, the advanced transfer system works with a new architecture that
allows to detect patterns of patterns of lexical forms with three passes, done
by its three modules.

We describe next the characteristics of the structural transfer system.
Section 3.5.2 describes the shallow-transfer system and Section 3.5.3, the
advanced transfer system. The description of the shallow-transfer sys-
tem is also applicable to the first module of the advanced transfer system,
with the differences mentioned in that section. Section 3.5.4 describes the
format used to create rules in both systems. In Section 3.5.5 there is a de-
tailed description of how the three modules of the advanced transfer sys-
tem work, and finally, Section 3.5.6 describes the pre-processing required
by the modules.

3.5.2 Shallow-transfer

In this system, only the first of the three modules that compose the ad-
vanced transfer system is used. This module is called chunker.

The design of the language and the compiler used to generate the struc-
tural transfer module is largely based upon the MorphTrans language
described in [5] and used by the MT systems interNOSTRUM [2, 5, 4]
(Spanish–Catalan) and Traductor Universia [7, 17] (Spanish–Portuguese),
developed by the Transducens group at the Universitat d’Alacant.

74 CHAPTER 3. MODULES SPECIFICATION

The transfer process is organized around patterns representing fixed-
length sequences of source language lexical forms (SLLFs) (see page 7 for
a description of lexical form (LF)); a sequence follows a certain pattern if
it contains the sequence of lexical forms of the pattern. Patterns do not
need to be constituents or phrases in the syntactic sense: they are mere
concatenations of lexical forms that may need a conjoint processing addi-
tional to the simple word-for-word translation, due to the grammatical di-
vergences between SL and TL (gender and number changes, reorderings,
prepositional changes, etc). The catalogue of patterns defined for a certain
language is selected with a view to covering the most common structural
transformations. When source language and target language are syntacti-
cally similar, as is the case between Spanish, Catalan and Galician, simple
rules based on sequences of lexical categories achieve a reasonable trans-
lation quality.

The transfer module detects, in the SL, sequences of lexical forms that
match one of the patterns previously defined in the pattern catalogue, and
processes them applying the corresponding structural transfer rule, doing
at the same time the lexical transfer by reading the bilingual dictionary.

The pattern detection phase occurs as follows: if the transfer module
starts to process the i-th SLLF of the text, li, it tries to match the sequence
of SLLFs li, li+1, . . . with all of the patterns in its pattern catalogue: the
longest matching pattern is chosen, the matching sequence is processed
(see below), and processing continues at SLLF li+k, where k is the length
of the pattern just processed. If no pattern matches the sequence starting at
SLLF li, it is translated as an isolated word an processing restarts at SLLF
li+1 (when no patterns are applicable, the system resorts to word-for-word
translation). Note that each SLLF is processed only once: patterns do not
overlap; hence, processing occurs left to right and in distinct ”chunks”.

In the pattern processing phase, the system takes the detected sequence
of SLLFs and builds (using a program to consult the bilingual dictionary)
a sequence of TL lexical forms (TLLFs) obtained after the application of
the operations described in the rule associated to the detected pattern (re-
ordering, addition, replacement or deleting of words, inflection changes,
etc.). The information that does not change is automatically copied from
SL to TL. The resulting data, that is, the lemmas with their associated mor-
phological tags, are sent to the generator, which creates the inflected forms.

For instance, the Spanish sequence una señal inequı́voca (”an unmistak-
able signal”), that would go from the tagger to the transfer module in the
following format 9:

9The example has been presented in a way that it does not contain superblanks with

3.5. STRUCTURAL TRANSFER MODULE 75

ˆuno<det><ind><f><sg>$
ˆseñal<n><f><sg>$
ˆinequı́voco<adj><f><sg>$

would be detected as a pattern by a rule for determiner–noun–adjective.
The transfer module would consult the bilingual dictionary to get the
Catalan equivalents and, as it would detect a gender change in the word
señal (its Catalan translation senyal is masculine), it would propagate this
change to the determiner and the adjective to deliver the output sequence:

ˆun<det><ind><m><sg>$
ˆsenyal<n><m><sg>$
ˆinequı́voc<adj><m><sg>$

which the generation module would turn into the Catalan inflected se-
quence: un senyal inequı́voc.

The task of most rules is to ensure gender and number agreement in
simple noun phrases (determiner–noun, determiner–noun–adjective, determiner–
adjective–noun, determiner–adjective, etc.), provided that there is agree-
ment between the SLLFs of the detected pattern. These rules are required
either because the noun changes its gender or number between SL and TL
(as in the previous example) or because gender or number in the TL have
to be determined due to the fact that it was ambiguous in SL for some of
the words (for example, the Catalan determiner cap can be translated into
Spanish as ningún (masc.) or ninguna (fem.) depending on the accompa-
nying noun: cap cotxe (ca)→ ningún coche (es) and cap casa (ca)→ ninguna
casa (es)). Furthermore, there other rules defined to solve frequent transfer
problems between Spanish, Catalan and Galician, such as, among others:

• rules to change prepositions in certain constructions: in Barcelona
(es)→ a Barcelona (ca); consiste en hacer (es)→ consisteix a fer (ca);

format information, so that the linguistic side of the transformation is clearer. See Chapter
2.

76 CHAPTER 3. MODULES SPECIFICATION

• rules to add/remove the preposition a in certain Galician modal con-
structions with the verbs ir and vir: vai comprar (gl)→ va a comprar
(es);

• rules for articles before proper nouns: ve la Marta (ca)→ viene Marta
(es);

• lexical rules, for instance, to decide the correct translation of the ad-
verb molt (ca) into Spanish (muy, mucho) or of the adjective primeiro
(gl) or primer (ca) into Spanish (primer, primero);

• rules to displace atonic or clitic pronouns, whose position in Galician
is different to that in Spanish (proclitic in Galician and enclitic in
Spanish or vice versa): envioume (gl)→ me envió (es); para nos dicir
(gl)→ para decirnos (es).

Multiwords (its different types are described in page 43) are processed
in a special way in this module:

• Multiwords without inflection, made of only one lexical form, do not
need any special processing, since they are treated like other LFs.

• In the case of compound multiwords, that is, multiwords formed by
more than one lexical form, each one with its own grammatical sym-
bols and joined to each other with the element <j> in the dictionary
entry (which corresponds to the symbol ’+’ in the data stream), the
auxiliary module pretransfer (see 3.3), located before this mod-
ule, separates the different lexical forms so that they reach the trans-
fer module as independent LFs. If we want to join them again so
that they reach the generator as multiwords (as is the case of enclitic
pronouns in our system), it has to be done by means of a transfer
rule, using the <mlu> element (described later, in section 3.5.4.42).
In page 145 you can find an example of a rule for joining enclitic
pronouns to the verb.

• As for multiwords with inner inflection, the pretransfer module
moves the lemma queue (the invariable part) to place it after the
lemma head (the inflective form), thus making possible to find the
multiword in the bilingual dictionary. This kind of multiwords must
be processed by a structural transfer rule which replaces the lemma
queue in its proper position. This is done by using, in the output
of the rule, the attributes lemh “lemma head” and lemq “lemma
queue”) of the <clip> element. See page 101 for a more detailed

3.5. STRUCTURAL TRANSFER MODULE 77

description of the use of this element, and page 145 to see two rules
where these attributes are used.

3.5.3 Advanced transfer

The shallow-transfer architecture described in the previous section is based,
as we have seen, in the automatic handling of word co-occurrence pat-
terns by means of rules defined by the user. This model considers two
levels from the point of view of the nature of data: a basic level we call lex-
ical level, which handles words and the tasks of consulting and changing
its characteristics (lemma and tags), besides translating individual lem-
mas by asking the bilingual dictionary; and another level we call word
pattern level, which is in charge of doing, when applicable, reorderings of
the words that build these patterns, as well as changes in the properties of
words that depend on the specific pattern that has been detected. All this
process of detection and manipulation of words and patterns is carried out
in a single pass.

In contrast, the new advanced transfer architecture is defined as a trans-
fer system in three levels and three passes. The first two levels, lexical
and pattern level, are the same ones of the shallow-transfer system. The
new added level is a level of patterns of patterns of words. The aim of
this new processing level is to allow the handling and interaction of pat-
terns of words in a similar way as words are handled in the patterns of
the shallow system. With this new structure we intend to achieve a more
appropriate handling of all transformations that may be required when
translating from one language to another. We want to emphasize that the
definition of word patterns in the shallow-transfer system does not need
to be the same as the definition of word patterns in the advanced system:
we pretend that, in the latter, patterns have a spirit of phrases that does not
exist in the previous system. Therefore we will use the term chunk to refer
to word sequences in the advanced transfer system.

The advanced transfer system is organized in three passes. According
to the Apertium processing mode, these three passes are carried out by
three different modules (programs):

• chunker: identifies chunks, translates word for word, and carries
out required reorderings and morphosyntactic data propagation in-
side the chunk (for example, to maintain agreement). Besides, it
creates the chunks that will be processed by the next module. The
chunker has the option of running as a single module in a shallow-
transfer system. This is controlled by an attribute in the <transfer>

78 CHAPTER 3. MODULES SPECIFICATION

element.

• interchunk: this module receives the chunks generated by the
chunker and is able to reorder them, modify the “syntactic infor-
mation” associated to each chunk and, finally, output the chunks in
the new order and with the new properties, creating new chunks if
needed.

• postchunk: it receives the chunks modified by the interchunk and
carries out final tasks concerning modification of the words con-
tained in each chunk and printing of the text contained in chunks
in the format accepted by the generator.

In the following lines we specify the format of the chunks that circu-
late between the modules of the transfer system (Section 3.5.3.1) and the
letter case handling in chunks (Section 3.5.3.2), which is different from case
handling of individual lexical forms in a shallow-transfer system.

The following section, 3.5.4, describes the format of transfer rules, which
is the same for the three modules and the two transfer modes, with little
differences. Finally, after this description, in 3.5.5 you will find a more de-
tailed explanation of the three modules that make up an advanced transfer
system.

3.5.3.1 Chunk format

Communication between chunker and interchunk, as well as between
interchunk and postchunk, is performed through sequences of chunks.
We define C as a sequence of chunks, that has the form:

C = b0c1b1c2b2 . . . bk−1ckbk

where each bi is a superblank, and each c is a chunk. A chunk c is defined
as a string ˆF{W}$ that contains the following information:

• F is the lexical pseudoform; it is a string that has the form fE, where
f is the pseudolemma of the chunk, and E = e1e2 . . . is a sequence of
grammatical symbols called chunk symbols. Changing these symbols
will cause the changing of the morphological information of words
in the chunk, if this information is linked to these parameters.

• W = b0w1b1w2b2 . . . wkbk is the sequence of words wi sent by the
chunker with the intermediate superblanks bi. These words have the
same format in both transfer systems, that is, an individual word

3.5. STRUCTURAL TRANSFER MODULE 79

wi =ˆliEi$ contains lemma li and grammatical symbols Ei, some
of which can be references or links to the symbols of the chunk and are
identified with natural numbers <1>, <2>, <3>, etc. These references
to symbols correspond, in the specified order, to the symbols of E.

The following is a use example of the described format, with the text el
gat (”the cat”):

ˆdet_nom<SN><m><pl>{ˆel<det><def><2><3>$[
]ˆgat<n><2><3>$}$[]

The characters { and }, if present in the original text, must be escaped
with a backslash \.

3.5.3.2 Letter case handling

For each chunk, the case of words is determined by the case of the pseu-
dolemma of the chunk, taking into account the following rules:

• When all the letters of the pseudolemma are in lower case: the case
state of words is not modified.

• When the first letter of the pseudolemma is in upper case and the
rest are in lower case: in the module postchunk, when words are
printed, the letter that is the first of the chunk after all the possible
word reorderings will be put in upper case .

• When all the letters of the pseudolemma are in upper case: all the
words will remain upper case.

It is required that the words in the chunk are not capitalized unless they
are proper nouns, so as to avoid the postchunk module having to look for
the word that has to lose capitalization, if this is the case. This task belongs
to the chunker module and is done with a macro or similar mechanism.

3.5.4 Format specification for structural transfer rules

This section describes the format in which structural transfer rules are
written. In the Appendix, in sections A.3, A.4 and A.5, there is the for-
mal definition (DTD).

Structural transfer rules files have two well-differentiated parts: one
for the declaration of the elements to be used in rules, and another one for

80 CHAPTER 3. MODULES SPECIFICATION

the rules themselves.

In the declaration part we find:

• A series of declarations of lexical categories, which specify those lex-
ical forms that will be treated as a particular category and will be
detected by patterns. The linguist may include any data about the
lexical form to define a category; categories can be very generic (i.e.
all the nouns) or very specific (i.e. only those determiners that are
demonstrative feminine plural).

• A series of declarations of the attributes we want to detect in lexical
forms (like gender, number, person or tense), to perform with them the
required transformation operations and send the resulting data in
the output of the rules. The declaration of an attribute contains the
name of the attribute and the possible values it can take in a lexical
form (in general they correspond to the morphological attributes that
characterize the form): for example, the attribute number can take
the values singular, plural, singular-plural (for invariable lexical forms,
like crisis in Spanish) and number to be determined (for TL lexical forms
with different forms for singular–plural, but whose number can not be
determined in the translation due to the fact that the SL lexical form
is invariable in number, see explanation in page 40). If inside the
rule, outside of the pattern, one wishes to refer to any of the lexical
categories defined in the previous point (to perform tests or actions
on them), it will be also necessary to define attributes for them.

• A series of declarations of global variables, which are used to transfer
values of active attributes inside a rule, or from one rule to the ones
applied subsequently.

• A section for the definition of string lists, generally lists of lemmas,
which will be used to make searches on them for a certain value to
perform a specific transformation.

• A series of declarations of macro-instructions; macro-instructions con-
tain sequences of frequently used instructions, and can be included
in different rules (for example, a macro-instruction to ensure gender
and number agreement between two lexical forms of a pattern).

In the structural transfer rules we find:

3.5. STRUCTURAL TRANSFER MODULE 81

• The definition of the pattern that will be detected, specified as a se-
quence of lexical categories as they have been defined in the declara-
tion part. It must be noted that, if a sequence of lexical forms matches
two different rules, firstly, the longest is chosen, and secondly, for
rules of the same length, the one defined before is chosen.

• The process part of the rules, where actions to be performed on SLLF
are specified, and the TL pattern is built.

In the following pages we describe in detail the characteristics of all the
elements used in rules.

3.5.4.1 Element <transfer>

(Only in the chunker module)
This is the root element of the chunker module and contains all the

rest of the elements of the structural transfer rules file of this module.
Its attribute default can take two values:

• lu: it means that it will run in shallow mode, that is, as only transfer
module in a shallow-transfer system and, therefore, no special action
will be done on words not detected by any pattern

• chunk: it means that it will run in advanced mode and, therefore,
when a word is not recognized by any rule, a chunk will be created
to encapsulate it, so that it can be processed by the next transfer mod-
ules of an advanced transfer system.

The default value is lu.

3.5.4.2 Element <interchunk>

(Only in interchunk)
This is the root element of the interchunk module and contains all

the rest of the elements of the structural transfer rules file of this module.

3.5.4.3 Element <postchunk>

(Only in postchunk)
This is the root element of the postchunk module and contains all the

rest of the elements of the structural transfer rules file of this module.

82 CHAPTER 3. MODULES SPECIFICATION

3.5.4.4 Element for category definition section
<section-def-cats>

This section contains the definition of the lexical categories that will be
used to create the patterns used in rules. Each definition is made with a
<def-cat>.

3.5.4.5 Element for category definition <def-cat>

Each category definition has a mandatory name n (e.g. det, adv, prep,
etc.) and a list of categories (<cat-item>) that define it. The name of the
category can not contain accents.

3.5.4.6 Element for category <cat-item>

This element has two well-differentiated uses depending on the module it
is used in.

Use in chunker (shallow transfer and advanced transfer)

This element defines the lexical categories that will be used in patterns,
that is, that the linguist wishes to detect in the source text. These categories
are defined by a subsequence of the fine tags (see definition in page 57) that
deliver both the morphological analyser and the tagger10.

Each <cat-item> element has a mandatory attribute tags whose
value is a sequence of grammatical symbols separated by a dot; this se-
quence is a subsequence of the fine tag, that is, of the sequence of gram-
matical symbols that defines every possible lexical form delivered by the
tagger. According to this, a category represents a certain set of lexical
forms. We must define as many different categories as kinds of lexical
forms we want to detect in patterns. Thus, if we want to detect all the
nouns to perform certain actions on them, we will create a category de-
fined with the grammatical symbol n. On the other hand, if we want to

10Please note that throughout the different linguistic modules, different lexical catego-
rizations are used: in morphological dictionaries, lemmas are accompanied by a fine tag
(for instance, <n><m><pl> for plural masculine nouns); the POS tagger groups these fine
tags in more general tags (for instance, the category NOUN for all the nouns), although its
output is again the whole fine tag of each LF; finally, in the transfer module, the fine tags
of LFs are grouped again in more general categories (although it is also possible to define
particularized categories) depending on the type of lexical forms that one wants to detect
in patterns.

3.5. STRUCTURAL TRANSFER MODULE 83

<def-cat n="nom"/>
<cat-item tags="n.*"/>

</def-cat>

<def-cat n="que"/>
<cat-item lemma="que" tags="cnjsub"/>
<cat-item lemma="que" tags="rel.an.mf.sp"/>

</def-cat>

Figure 3.32: Use of the <cat-item> element to define two categories, one for
nouns without lemma specification (nom), which includes all lexical forms whose
first grammatical symbol is n, and another one with associated lemma (que),
which has two subsequences of fine tags, to include the que conjunction and the
que relative pronoun.

detect all the plural feminine nouns, we will have to define a category us-
ing the symbols n f and pl.

When, for the set of lemmas we want to include in a category, a gram-
matical symbol used to define the category is followed by other gram-
matical symbols, the character "*" is used. For example, tags="n.*"
covers all the lexical forms that contain this symbol, such as the Span-
ish nouns casa<n><f><pl> or coche<n><m><sg>. On the other hand,
when after the used symbol there can not be any other symbol, the aster-
isk is not included: for example, tags="adv"will cover all adverbs, since
in our system they are characterized with only one grammatical symbol.
The asterisk can also be used to signal the existence of preceding symbols:
tags="*.f.*" includes all feminine lexical forms, whichever category
they are. Furthermore, an optional attribute, lemma, can be used to define
lexical forms on the basis of its lemma (see Figure 3.32).

Use in interchunk

It is used like in the chunker module, but here, instead of being defined
with the grammatical symbols of lexical forms, it is defined with the sym-
bols of the chunks delivered by the chunker. For example, in the case that
we want to define a category to detect all the determined noun phrases, we
will define it with the symbols NP and DET if this is how we tagged these
chunks by means of the <tag> instructions contained in the <chunk> el-
ement (see 3.5.5.1). You can also use the optional attribute lemma to refer
to the pseudolemma of the chunk. So, its formal characteristics are the same
in the modules chunker and interchunk, with the difference that in the

84 CHAPTER 3. MODULES SPECIFICATION

<def-cat n="det-nom"/>
<cat-item name="det-nom"/>

</def-cat>

Figure 3.33: Use of the <cat-item> element in the postchunk to detect chunks
of determiner-noun.

former they are used to detect lexical forms, and in the latter, to detect
chunks.

Use in postchunk

In this module, this element only has the mandatory attribute name, which
refers to the name of the chunk,

without tags, since in the postchunk module only the pseudolemma
(name of the chunk) is used for detection. Case is ignored in detection,
because the pseudolemma is used to convey information about the case of
the chunk. (See Figure 3.33).

3.5.4.7 Element for category attribute definition section
<section-def-attrs>

This section is to describe the attributes that will be extracted from the
categories detected by the pattern and that will be used in the action part
of the rules. Each attribute is defined by a <def-attr> tag.

3.5.4.8 Element for category attribute definition
<def-attr>

Each <def-attr> defines an attribute regarding morphological infor-
mation (both inflection information –gender, number, person, etc.–, and
categorial –verb, adjective, etc–) by specifying a list of category attribute
(<attr-item>) elements, and has a mandatory unique name n. There-
fore, an attribute is defined on the basis of the grammatical symbols that
can be found in a given lexical form. Each attribute extracts, from the lex-
ical forms of the pattern, the symbols that these contain among the set of
possible values defined.

3.5. STRUCTURAL TRANSFER MODULE 85

<def-attr n="nbr"/>
<attr-item tags="sg"/>
<attr-item tags="pl"/>
<attr-item tags="sp"/>
<attr-item tags="ND"/>

</def-attr>

<def-attr n="a_nom"/>
<attr-item tags="n"/>
<attr-item tags="n.acr"/>

</def-attr>

Figure 3.34: Definition of the category attribute nbr for number, which can take
the values singular, plural, singular-plural or number to be determined, and the cat-
egory attribute a nom for noun, which can take the values of the symbols n or n
acr.

3.5.4.9 Element for category attribute <attr-item>

Each category attribute element represents one of the possible values the
attribute can take. For example, the attribute for number nbr can take
the values singular sg, plural pl, singular–plural sp and number to be
determined ND. These values are a subsequence of the morphological tags
that characterize each lexical form, and are specified in the tags attribute
of the element, separated by a dot if there is more than one. In Figure 3.34
you can find an example for the attributes for number and noun.

Compare the definition of the attribute for number in this figure (with
all possible values and without asterisks) with the definition of the cate-
gory for noun in Figure 3.32.

3.5.4.10 Element for variable definition section
<section-def-vars>

In this section, <def-var> tags are used to define global string variables,
that will be used to transfer information inside the rule and from one rule
to another one (for example, to transmit information on gender or number
between two patterns)

86 CHAPTER 3. MODULES SPECIFICATION

3.5.4.11 Element for variable definition <def-var>

The definition of a global string variable has a mandatory unique name n
that will be used to refer to it inside a rule. Variables contain strings that
describe state information, such as the existence of agreement between
two elements, the detection of a question mark in SL that should be deleted
in TL, etc.

3.5.4.12 Element for string lists definition section
<section-def-lists>

In this section, lists are defined (with <def-list> tags) that will be used
to do string searches. These lists can be used to group word lemmas that
have a common feature (i.e. verbs expressing movement, adjectives ex-
pressing emotions, etc.). This section is optional.

3.5.4.13 Element for string lists definition <def-list>

This element is used to name the string list, with the attribute n, and to
encapsulate the list defined by one or more <list-item> elements. An
example of its use can be found in Figure 3.35.

3.5.4.14 Element for string list item <list-item>

It defines, with the value of the attribute v, the specific string that is in-
cluded in the definition of the list. An example of its use can be found in
Figure 3.35.

3.5.4.15 Element for macro-instruction definition section
<section-def-macros>

This section is for the definition of macro-instructions that contain pieces
of code used frequently in the action part of the rules.

3.5.4.16 Element for macro-instruction definition <def-macro>

Each macro-instruction definition has a mandatory name (the value of the
attribute n), the number of arguments it receives (attribute npar) and a
body with instructions.

3.5. STRUCTURAL TRANSFER MODULE 87

<def-list n="verbos_est">
<list-item v="actuar"/>
<list-item v="buscar"/>
<list-item v="estudiar"/>
<list-item v="existir"/>
<list-item v="ingressar"/>
<list-item v="introduir"/>
<list-item v="penetrar"/>
<list-item v="publicar"/>
<list-item v="treballar"/>
<list-item v="viure"/>

</def-list>

Figure 3.35: Definition of a list of Catalan lemmas. These lemmas are used in the
rule in Figure 3.40.

3.5.4.17 Element for rules section <section-rules>

This section contains the structural transfer rules, each one in a <rule>
element.

3.5.4.18 Element for rule <rule>

Each rule has a pattern (<pattern>) and the associated action (<action>)
performed when the pattern is matched.

The rule can have an optional attribute comment with a comment on,
usually, the function of the rule.

3.5.4.19 Element for pattern <pattern>

A pattern is specified using pattern items (<pattern-
item>), each one of which corresponds to a lexical form in the matched
pattern, in order of appearance.

3.5.4.20 Element for pattern constituent <pattern-item>

Each pattern item specifies, in the attribute with mandatory name n, which
kind of lexical form is to be matched. To do that, one has to use the cate-
gories defined in <section-def-cats> (see in Figure 3.42 the definition
of a pattern for determiner–noun).

88 CHAPTER 3. MODULES SPECIFICATION

3.5.4.21 Element for action <action>

This element contains the “instructions” that have to be executed to pro-
cess as desired each matched pattern.

The processing part for matched patterns is a block of zero or more in-
structions of the kind: <choose> (conditional processing), <let> (value
assignment), <out> (print TL lexical forms), <modify-case> (modify
case state of a lexical form), <call-macro> (call a macro-instruction) and
<append> (concatenate strings).

Through the processing step, depending on whether a series of con-
ditional options are met or not, different operations are carried out, such
as creating agreement between pattern components, necessary when these
undergo gender or number changes in the lexical transfer process. To do
this, in spite of working with TLLF, also the SL information is taken into ac-
count, since, for example, if pattern components do not agree in SL, maybe
they do not have to agree in TL either. As a consequence of the application
of the different operations in a pattern, values are assigned to pattern at-
tributes and, if applicable, to global or state variables, and the information
on the resulting TL pattern is sent to the next module (the morphological
generator in a shallow-transfer system, or the next transfer module in an
advanced transfer system).

3.5.4.22 Element for macro-instruction call <call-macro>

In a rule it is possible to call any of the macro-instructions defined in
<section-def-macros>. To do this, one has to specify the name of
the macro-instruction in the n attribute, and one or more arguments in the
parameter element <with-param> (see next).

3.5.4.23 Element for parameters <with-param>

This element is used inside a macro-instruction call <call-macro>. The
pos attribute of an argument is used to refer to a lexical form of the rule
from where the macro-instruction is called. For example, if a macro-instruction
with 2 parameters has been defined, to make agreement operations be-
tween noun–adjective, it can be used with arguments 1 and 2 in a rule for
noun–adjective, with arguments 2 and 3 in a rule for determiner–noun–
adjective, with arguments 1 and 3 in a rule for noun–adverb–adjective and
with arguments 2 and 1 in a rule for adjective–noun. You can see an exam-
ple of macro-instruction call in Figure 3.36.

3.5. STRUCTURAL TRANSFER MODULE 89

<call-macro n="f_concord2">
<with-param pos="3"/>
<with-param pos="1"/>

</call-macro>

Figure 3.36: Call of the macro-instruction f-concord2 designed to create agree-
ment between two elements in a pattern such as determiner–adverb–noun. Prop-
agation of gender and number is done from one of the components, in this case,
from the noun which is the third element of the pattern (3). Therefore, the posi-
tion of the noun is the first parameter given, and the other parameters come next.
Since the adverb (in position 2) does not need agreement information, only the
position of the determiner is specified (1).

3.5.4.24 Element for selection <choose>

The selection instruction consists of one or more conditional options (<when>)
and an alternative option <otherwise>, which is optional.

3.5.4.25 Element for condition <when>

This element describes a conditional option (see Section 3.5.4.24). It con-
tains the condition to be tested <test> and one block of zero or more in-
structions of the kind <choose>, <let>, <out>, <modify-case>, <call-macro>
or <append>, which will be executed if the above condition is met.

3.5.4.26 Element for alternative option <otherwise>

The element <otherwise> contains one block of one or more instructions
(of the kind <choose>, <let>, <out>, <modify-case>, <call-macro>
and <append>) that must be executed if none of the conditions described
in the <when> elements of a <choose> is met.

3.5.4.27 Element for evaluation <test>

The test element <test> in a condition element <when> can contain a
conjunction (<and>), a disjunction (<or>) or a negation (<not>) of condi-
tions to be tested, as well as a simple condition of string equality (<equal>),
string beginning (<begins-with>), string end (<ends-with>), substring
(<contains-substring>) or inclusion in a set (<in>).

90 CHAPTER 3. MODULES SPECIFICATION

3.5.4.28 Elements for conditional or boolean operators: <equal>, <and>,
<or>, <not>, <in>

• The conjunction element <and> represents a condition, consisting of
two or more conditions, that is met when all included conditions are
true. An example of its use can be found in Figure 3.42.

• The disjunction element <or> represents a condition, consisting of
two or more conditions, that is met when at least one of the included
conditions is true. Figure 3.39 displays an example of this condition
type used when testing gender agreement in a SL pattern.

• The negation element <not> represents a condition that is met when
the included condition is not met, and vice versa. An example of
negation of an equality can be found in Figure 3.39.

• The conditional equality operator <equal> is an instruction that
evaluates if two arguments (two strings) are identical or not. See
examples of its use in Figures 3.37 and 3.38. In addition, this opera-
tor can have the attribute caseless, which, when its value is yes,
causes the comparison of strings to be made ignoring case.

• The ”search in lists” operator <in> is used to search for any value
(specified as the first parameter of the condition) in a list referred to
by the n attribute of the <list> element; this list must be defined in
the appropriate section (<section-def-lists). The search result
is true if the value is found in the list. This comparison can also
use the attribute caseless: if its value is yes, the search is done
ignoring case. Figure 3.40 shows an example of its use.

3.5.4.29 Element <clip>

The <clip> element represents a substring of a SL or TL lexical form,
defined by the value of its different attributes (see an example in Figure
3.37):

• pos is an index (1, 2, 3, etc.) used to select a lexical form inside a
rule: it refers to the place the lexical form occupies in the pattern. In
the postchunk module there is also the index “0”, which refers to the
pseudolemma of the chunk , which is treated as a word by itself in
order to be able to consult its information and make decisions from
this.

3.5. STRUCTURAL TRANSFER MODULE 91

<test>
<not>
<equal>
<clip pos="2" side="tl" part="gen"/>
<clip pos="2" side="sl" part="gen"/>

</equal>
</not>

</test>

Figure 3.37: Extract from a rule where it is tested whether the TL (tl) gender
(gen) of the second lexical unit identified in a pattern is different from the gender
of the same lexical unit in the SL (sl).

• side (only in the chunkermodule) specifies if the selected clip is from
the source language (sl) or from the target language (tl).

• part indicates which part of the lexical form is processed; generally
its value is one of the attributes defined in <section-def-
attrs> (gen, nbr, etc.), although it can also take four predefined
values: lem (refers to the lemma of the lexical form), lemh (the first
part of a split lemma), lemq (the queue of a split lemma), and whole
(the whole lexical form, including lemma and all grammatical sym-
bols, which may have been modified in the preceding part of the
rule).

• link-to (only in the chunker module in advanced mode) replaces the
value that would result from consulting the rest of the attributes of
the clip, by the value specified in this attribute, which must be a
natural number (> 0). This number indicates to which <tag> of
the <chunk> is linked the clip content, the number being the order
this tag occupies inside the element <tags>. The other attributes
of the clip remain only for informational purposes, since they are
overwritten by the value of the linked tag. An example of its use can
be found in Figure 3.46.

3.5.4.30 Element for literal string <lit>

This element is used to specify the value of a literal string by means of
the attribute v. For example, <lit v="andar"/> represents the string
andar.

92 CHAPTER 3. MODULES SPECIFICATION

<equal>
<clip pos="2" side="tl" part="nbr"/>
<lit-tag v="ND"/>

</equal>

Figure 3.38: Use of the element <lit-tag>: it is tested whether the number
(nbr) symbol of the second lexical unit in the TL (tl) is ND (number to be deter-
mined)

3.5.4.31 Element for tag value <lit-tag>

It is similar to the <lit> element, with the difference that it does not spec-
ify the value of a literal string but the value of a grammatical symbol or
tag, by means of the attribute v. An example of its use can be found in
Figure 3.38.

3.5.4.32 Element for variable <var>

Each <var> is a variable identifier: the mandatory attribute n specifies its
name as has been defined in <section-def-vars>. When it appears in
an <out>, a <test>, or the right part of a <let>, it represents the value of
the variable; when it appears on the left side of a <let>, in an <append>
or in a <modify-case>, it represents the reference of the variable and its
value can be changed.

3.5.4.33 Element for reference to string list <list>

This element is only used as the second parameter of a <in> search. The
n attribute refers to the specific list defined in the string lists definition
section <section-def-lists>. An example of its use can be found in
Figure 3.40.

3.5.4.34 Element for case application <get-case-from>

The <get-case-from> element represents the string obtained after ap-
plying the letter case state of the lemma of a SL lexical unit to a string (clip,
lit or var). To refer to the lexical unit from where the information is taken,
the attribute pos is used, which indicates the position of that unit in the
SL. This element is useful when the lexical units in a pattern are reordered,
or when a lexical unit is added or deleted. You can see an example of its
use in Figure 3.41, which displays a rule to transform the simple perfect

3.5. STRUCTURAL TRANSFER MODULE 93

<test>
<or>
<not>
<equal>
<clip pos="1" side="sl" part="gen"/>
<clip pos="3" side="sl" part="gen"/>

</equal>
</not>
<not>
<equal>
<clip pos="2" side="sl" part="gen"/>
<clip pos="3" side="sl" part="gen"/>

</equal>
</not>

</or>
</test>

Figure 3.39: Extract from a rule where it is tested whether the SL gender of the
first or the second lexical unit matched in a pattern (it could be, for example,
determiner–adjective–noun) is different from the gender of the third lexical unit
also in the SL.

preterite tense in Spanish (dije, ”I said”) into the compound form in Cata-
lan (vaig dir). In this rule, a LF with lemma anar and grammatical symbol
vaux (”auxiliary verb”) is added; it has to take the case information from
the Spanish verb (which has position ”1” in the pattern), so that the system
translates Dije as Vaig dir, dije as vaig dir and DIJE as VAIG DIR.

3.5.4.35 Element for case pattern query <case-of>

It is used to get the case pattern of a string, that is, one of the values ”aa”,
”Aa" or ”AA”. It works like the <clip> element, since it has the same
attributes: pos, the position of the word in the matched pattern; part,
the specific attribute that we refer to (normally the lemma), which has
the predefined attributes described in Section 3.5.4.29, and finally, only in
the chunker module, the attribute side, referring to the translation side,
sl or tl. In Figure 3.41 you can see this element in use, and you can
find a more detailed description of this example in the following Section
(description of <modify-case>).

94 CHAPTER 3. MODULES SPECIFICATION

<rule>
<pattern>
<pattern-item n="verb"/>
<pattern-item n="a"/>

</pattern>
<action>
<choose>
<when>
<test>
<in caseless="yes"/>
<clip pos="1" side="sl" part="lem"/>
<list n="verbos_est"/>

</in>
</test>
<let>
<clip pos="2" side="tl" part="lem"/>
<lit v="en"/>

</let>
</when>
<!-- ... -->

Figure 3.40: Extract of a rule that detects a pattern made of a verb and the prepo-
sition a, and then testes whether the verb (the lemma indicated in lem) of the
source language (sl) is one of the lemmas included in the list of state verbs (de-
fined in Figure 3.35). If that be the case, the lemma of the second word in target
language (tl) is changed to en.

3.5. STRUCTURAL TRANSFER MODULE 95

3.5.4.36 Element for case modification <modify-case>

This instructions is used to modify the case of the first parameter (usually
a lemma) by means of the second parameter (a literal or a variable). The
first parameter can be a <var>, a <clip> or a <case-of>, whereas the
second one can be anything that delivers a value, but in principle it will be
a <var> or a <lit>. The values that this value can take are usually “Aa”,
to express that the “left part” of this case modification must have the first
letter in upper case and the rest in lower case, “aa” to put all in lower case,
and “AA” to put all in upper case.

Figure 3.41 shows a rule where this element is used. It modifies in this
rule the case of the TL lemma in position ”1”, which corresponds to dir,
because, although in the rule output this verb is the second lexical form
(vaig dir), it is actually the translation of the LF which has position 1 in
the SL, and, therefore, it retains the same assigned position in the TL. This
lemma is assigned the value “aa” in the case that the SL lemma has the
state “Aa”. There is nothing to specify for the rest of the cases, since the
case state of the LF in position 1 will be the same in the SL and in the TL
and, therefore, will be automatically transferred (see Section 19 to obtain
more information on letter case handling in dictionaries).

3.5.4.37 Element for assignment <let>

The assignment instruction <let> assigns the value of the right part of
the assignment (a literal string, a clip, a variable, etc.) to the left part (a
clip, a variable, etc.). An example of its use can be found in Figure 3.42.

3.5.4.38 Element for string concatenation <concat>

This element is used to concatenate strings in order to assign them to a
variable. It is used in combination with <let>, and the previous value of
the variable is lost with the assignment of <concat>.

It does not have any attribute. It can contain any instruction that deliv-
ers a string, such as <lit>, <lit-tag> or <clip>.

Figure 3.43 shows an example of its use.

3.5.4.39 Element for string concatenation <append>

The <append> instruction can be used to save the output of an action
before printing it in the corresponding <out>, if required by the designer
of the transfer rules.

96 CHAPTER 3. MODULES SPECIFICATION

<rule>
<pattern>
<pattern-item n="pretind"/>

</pattern>
<action>
<out>
<lu>

<get-case-from pos ="1">
<lit v="anar"/>

</get-case-from>
<lit-tag v="vaux"/>
<clip pos="1" side="sl" part="persona"/>
<clip pos="1" side="sl" part="nbr"/>

</lu>

</out>
<choose>
<when>
<test>
<equal>

<case-of pos="1" side="sl" part="lemh"/>
<lit v="Aa"/>

</equal>
</test>
<modify-case>

<case-of pos="1" side="tl" part="lemh"/>
<lit v="aa"/>

</modify-case>
</when>

</choose>
<out>
<lu>

<clip pos="1" side="tl" part="lemh"/>
<clip pos="1" side="tl" part="a_verb"/>
<lit-tag v="inf"/>
<clip pos="1" side="tl" part="lemq"/>

</lu>
</out>

</action>
</rule>

Figure 3.41: Rule for the translation from Spanish into Catalan, which turns the
verbs in simple perfect preterite tense (dije) into the compound perfect preterite
tense usual in Catalan (vaig dir), and at the same time assigns the appropriate case
state to the two resulting words.

3.5. STRUCTURAL TRANSFER MODULE 97

<rule>
<pattern>
<pattern-item n="det"/>
<pattern-item n="nom"/>

</pattern>
<action>

<choose>
<when>
<test>
<and>
<not>
<equal>
<clip pos="2" side="tl" part="gen"/>
<clip pos="2" side="sl" part="gen"/>

</equal>
</not>
<not>
<equal>
<clip pos="2" side="tl" part="gen"/>
<lit-tag v="mf"/>

</equal>
</not>
<not>
<equal>
<clip pos="2" side="tl" part="gen"/>
<lit-tag v="GD"/>

</equal>
</not>

</and>
</test>
<let>
<clip pos="1" side="tl" part="gen"/>
<clip pos="2" side="tl" part="gen"/>

</let>
</when>

</choose>
<!-- Other gender and number agreement actions -->

Figure 3.42: Extract from a rule for the pattern determiner--noun (continues
in Fig. 3.45): in this part of the rule, the gender of the noun is assigned to the
determiner in the case that the gender of the noun changes from the SL (sl) to
the TL (tl) during the lexical transfer process between both languages.

98 CHAPTER 3. MODULES SPECIFICATION

<let>
<var n="palabra"/>
<concat>

<clip pos="3" side="tl" part="lem"/>
<lit-tag v="adj"/>

</concat>
</let>

Figure 3.43: In this example, the variable palabra is assigned the value of the
concatenation of a clip (the lemma in position 3) and the adj tag.

<append n="temporal">
<clip pos="3" part="gen" side="tl"/>

</append>

Figure 3.44: In this example, the variable temporal is assigned the value of the
gender, in the TL, of the third word matched by the rule.

The mandatory attribute n specifies the name of the variable used. Af-
ter applying the instruction, the previous content of the referred variable
will be the prefix of the new content, that is, the new content inserted in the
<append> will be concatenated to the pre-existing content of the variable
specified in n.

The content of this instruction can be one or more of the following tags:
, <clip>, <lit>, <lit-tag>, <var>, <get-case-from>, <case-of>
or <concat>. There is an example of its use in Figure 3.44.

3.5.4.40 Element for output <out>

The output instruction is used to specify the lexical forms that are sent at
the output of the module after having been applied the required structural
transfer operations. Its use is different according to the module. On the
one hand, its use in the chunker module when it runs as only module
(shallow-transfer) and its use in the postchunk module are similar, since
in both cases, the output must be the input for the generator. The chunker
in Apertium 2 and the interchunk have different use modes: the former
to create the chunks, and the latter to modify the chunks without modify-
ing its internal part.

1. Use in chunker in shallow-transfer mode, and in postchunk

3.5. STRUCTURAL TRANSFER MODULE 99

<!-- ... -->
<out>
<lu>

<clip pos="1" side="tl" part="whole"/>
</lu>
<lu>

<clip pos="2" side="tl" part="whole"/>
</lu>

</out>
</process>
</action>

</rule>

Figure 3.45: Extract from a rule (comes from Fig. 3.42). At the end of the
rule, and after different actions, the resulting data are sent by means of the
attribute whole, which contains the lemma and the grammatical symbols
of each LF (positions 1 and 2 in the pattern).

The instruction sends each lexical form inside a <lu> set, which in
turn can be contained inside a <mlu> element when the output is
a multiword made of two or more LF. Besides, also the blanks or
superblanks () between LF and LF are sent. You can find an ex-
ample of its use in Figures 3.41 and 3.45.

2. Use in chunker in advanced mode

The output of this module is expected to be a sequence of one or
more chunks (sent inside a <chunk> element) separated by blanks
. Lexical forms and multiforms, as well as the blanks between
them, are sent inside chunks. You can see in Figure 3.46 an example
of use.

3. Use in interchunk

In this module, lexical forms (words) are inaccessible, since it is only
possible to operate with chunks and, therefore, inside an <out> el-
ement you can only put <chunk> elements or blanks . The in-
formation on lemma and tags specified here in a <chunk> element
refers exclusively to the lemma (pseudolemma) and the tags of the
chunk.

An example of its use can be found in Figure 3.47.

100 CHAPTER 3. MODULES SPECIFICATION

<out>
<chunk name="pr" case="caseFirstWord">
<tags>
<tag><lit-tag v="PREP"/></tag>

</tags>
<lu>
<clip pos="1" side="tl" part="whole"/>

</lu>
</chunk>
<b pos="1"/>
<chunk name="probj" case="caseOtherWord">
<tags>
<tag><lit-tag v="NP"/></tag>
<tag><lit-tag v="tn"/></tag>
<tag><clip pos="2" side="tl" part="pers"/></tag>
<tag><clip pos="2" side="tl" part="gen"/></tag>
<tag><clip pos="2" side="tl" part="nbr"/></tag>

</tags>
<lu>
<clip pos="2" side="tl" part="lem"/>
<lit-tag v="prn"/>
<lit-tag v="2"/>
<clip pos="2" side="tl" part="pers"/>
<clip pos="2" side="tl" part="gen" link-to="4"/>
<clip pos="2" side="tl" part="nbr" link-to="5"/>

</lu>
</chunk>

</out>

Figure 3.46: Output instruction that sends two chunks separated by a
blank. The printed sequence is a preposition followed by a noun phrase
(”NP”). The tags that are linked from the second chunk to the outside are
pronoun type (”tn”), gender and number of the noun phrase (pronoun).
The <tag> elements are used to specify the tags of the chunk, and the value
of the attributes name and case is used to specify the pseudolemma of the
chunk.

3.5. STRUCTURAL TRANSFER MODULE 101

<out>
<b pos="1"/>
<chunk>
<clip pos="2" part="lem"/>
<clip pos="2" part="tags"/>
<clip pos="2" part="chcontent"/>

</chunk>
</out>

Figure 3.47: The aim of this rule output is to discard the first chunk of the
matched pattern (pronoun drop). The three <clip> elements have been
included here for illustrative purposes, since they could have been replaced
by the part="whole" which would group them in a single <clip> .

3.5.4.41 Element for lexical unit <lu>

This is the element by means of which each TLLF is sent out at the end of a
rule, inside an <out> element. With this element, one can send the whole
lexical form, using the attribute whole of a <clip>, or, if required, spec-
ify its parts separately (lemma plus tags, indicated by means of <clip>
strings, literal strings <lit>, tags <lit-tag>, variables <var>, besides
case information [<get-case-from>, <case-of>]).

Please note that, as has been explained before, in the case of multi-
words with split lemma it is necessary to replace the lemma queue after the
grammatical symbols of the inflected word (or lemma head), because the
pretransfer module has moved the queue to put it before the gram-
matical symbols of the head. This replacement is done here, inside the
<lu> element, using the values lemh and lemq of the attribute part in
a <clip>. The lemh attribute refers to the lemma head, and lemq to the
lemma queue. As can be seen in the example 3.41, the lemq part of a
<clip> is placed after the lemma head and all the grammatical symbols
that follow it. This rule would be suitable, for example, for the Spanish
form eché de menos (”I missed”), which has to be translated into Catalan as
vaig trobar a faltar. The attribute a verb which comes after lemh contains
the grammatical symbol that describes the verb category (vblex, vbser, vb-
haver or vbmod as applicable). Therefore, the last lexical form sent by this
rule, in the case of vaig trobar a faltar, would be, in the data stream:

ˆtrobar<vblex><inf># a faltar$

The number sign # in the data stream corresponds to the <g> element in
dictionaries, used to signal the position of the invariable part in a split

102 CHAPTER 3. MODULES SPECIFICATION

lemma multiword.
It is important to note that the attributes included in <lu> may be

empty. So, a verb matched by the rule in Fig. 3.41 which is not a split
lemma multiword, will be sent with an empty lemq attribute, since the
verb does not have lemma queue. This way it is not necessary to define
different rules for lexical forms with and without queue. You can find an-
other example of this in page 145, where the rule for verb sends in a <lu>
the attributes gen (gender) and nbr (number). This way, it includes par-
ticiples (with gender and number) and the rest of verb forms (which will
have these attributes empty).

In the same page you can see a rule for a verb followed by an enclitic
pronoun. Here, the lemma queue is placed after the enclitic pronoun;
so, for a split lemma multiword joined to an enclitic pronoun, such as
echándote de menos, the output in the data stream would be, when translat-
ing into Catalan:

ˆtrobar<vblex><ger>+et<prn><enc><p2><mf><sg># a faltar$

Of course, this rule works also for verbs which do not belong to this
multiword type; so, the form explicándote (”explaining to you”) would be
output, when translating from Spanish to Catalan:

ˆexplicar<vblex><ger>+et<prn><enc><p2><mf><sg>$

As for the attribute whole of a <clip>, it must be taken into account
that it can be used to send the whole lexical form only in the case that the
sent word can not be a multiword, that is, can not contain a split lemma.
Compare figures 3.41 and 3.45. The whole attribute can be used in the
second example because it contains the lemma lem plus all the morpho-
logical tags of the lexical forms in position 1 and 2 (determiner and noun).
Contrarily, in the first example, the lexical form in <lu> is sent in parts,
with a lemh (lemma head) and a lemq (lemma queue), since it may occur
that the verb matched in the pattern is a multiword with split lemma. In
practice, in our system this means that the whole attribute can be used to
send any kind of lexical form except verbs and nouns, because we defined
multiwords with inner inflection only for verbs and nouns.

3.5.4.42 Element for lexical unit <mlu>

Its name derives from multilexical unit; it is used inside the <out> ele-
ment to output multiwords consisting of more than one lexical form. Each
lexical form in a <mlu> is sent inside a <lu> element. On the output of

3.5. STRUCTURAL TRANSFER MODULE 103

the module, lexical forms contained in this element will be joined to each
other by the symbol ’+’ in the data stream. This means that they will be-
come a multiword made of different lexical forms, which will be treated
as a single unit by the subsequent modules; therefore, the generation dic-
tionary will have to contain an entry for this multiword in order for it to
be generated.

In our system, this element is used to join enclitic pronouns to conju-
gated verbs.

3.5.4.43 Element for chunk encapsulation <chunk>

This is the element in which chunks are sent, in an <out> element, on the
output of the module. It is only used in the chunker module in advanced
mode, and in the interchunk module. It is not used in the postchunk
module because its output does not contain any chunk. Neither it is used
in the chunker module in shallow-transfer mode, because its output does
not contain chunks but individual lexical units and blanks.

1. Use in chunker in advanced mode

In this mode, the <chunk> element must have an attribute name,
which is the lemma of the chunk, or an attribute namefrom which
refers to a variable previously defined, whose value will be used as
the lemma of the chunk. Besides, it can include the attribute case to
specify which variable is the case policy taken from (for example, a
value obtained with the instruction <case-from>).

An example of its use can be found in Figure 3.46.

2. Use in interchunk

In this module, the <chunk> element does not specify any attribute;
it is used just as the <lu> element is used in the shallow-transfer
or in the postchunk to delimit the lexical forms. The elements
it sends are (generally in a <clip> instruction): the lemma of the
chunk (lem), its tags (tags) and the chunk content (chcontent,
contains LF plus blanks), which is an invariable part since it can not
be accessed from the interchunk module. The invariable part of
the chunk is sent at the end. You can also use the whole attribute to
send the whole chunk (lemma, tags and invariable content).

An example of its use can be found in Figure 3.47.

104 CHAPTER 3. MODULES SPECIFICATION

3.5.4.44 Element for tag links section <tags>

Only in chunker in advanced mode.
This element is used to specify a list of tags, or <tag> elements, which

will become the pseudotags of the chunk. It does not have attributes, and
must be included as first item inside the <chunk> element. See Figure
3.46.

3.5.4.45 Element for tag link <tag>

Only in chunker in advanced mode.
The <tag> element must contain a morphological tag, which can be

specified by means of a <clip> instruction or a literal tag <lit-tag>. It
does not have attributes.

The tag or tags specified this way in a chunk will become the grammat-
ical symbols of the chunk; the next module, interchunk, will be able to
use them to test and modify the characteristics of the chunks.

3.5.4.46 Element for blank

The element refers to [super]blanks and is indexed by the attribute
pos. For example, a with pos="2" refers to the [super]blanks (in-
cluding format data encapsulated by the de-formatter) between the 2nd
SLLF and the 3rd SLLF. The explicit management of [super]blanks enables
the correct placement of format when the result of the structural transfer
has more or less elements than the original, or when it has been reordered
in some way.

3.5.5 Specification of the three modules that build an ad-
vanced transfer system

In the following lines we describe the differences between the rule format
in the three modules of an advanced transfer system. When Apertium
works as a shallow-transfer system, the only module to be run is the first
one, called chunker, which communicates directly with the generation
module.

3.5.5.1 Chunker module

This module can be used alone as a shallow-transfer system, or in combi-
nation with the other two transfer modules to build an advanced transfer

3.5. STRUCTURAL TRANSFER MODULE 105

system. An attribute of the <transfer> element controls its run mode.

Input/output

• Input: data in the pretransfer output format, that is, with invari-
able queues of multiwords moved to the position right before the
first grammatical symbol.

• Output:

- in advanced mode (in an advanced transfer system): chunks,
that will be detected and processed by the next module

- in shallow-transfer mode (in a shallow-transfer system): lexical
forms, that will be the input of the generation module.

Data files

This program uses a single configuration file and a precompiled file for
pattern detection calculated from the former. The name of the pattern file
(the configuration file) will have the extension .t1x. Since the chunker
is the program that looks up the bilingual dictionary, this dictionary (com-
piled) also has to be provided to the program.

The DTD of this data file is specified in Appendix A.3, and the elements
used to create the rules in the file are described in Section 3.5.4.

Pattern matching

The rule matching system in this module will be the one described in 3.5.2,
since it is the same in advanced transfer mode and in shallow-transfer
mode. The apertium-pretransfer program is needed to adapt the
tagger output format to the input format required by the transfer module.
There is the possibility that, in later versions of Apertium, the part-of-speech
tagger is modified so that it does the work of apertium-pretransfer.

How it works

The module works similarly in shallow-transfer mode and in advanced
mode, with these differences:

• If we want that the module works as the first module in an ad-
vanced transfer system, we must specify the value chunk in the op-
tional attribute default of the root element <transfer>. The de-

106 CHAPTER 3. MODULES SPECIFICATION

fault value is lu, which implies that the chunker works in shallow-
transfer mode (as a single module).

• Chunk generation in the output: the <chunk> tag is an element one
level higher than <lu> (lexical unit), which generates chunks with
the characteristics described in 3.5.3.1; it has the following attributes:

– name (optional): pseudolemma of the chunk. It contains a string
that is identified as the pseudolemma of the chunk.

– namefrom (optional): pseudolemma of the chunk, obtained from
a variable. It is compulsory to specify whether name or namefrom.

– case (optional): variable that is used to obtain the information
on case from it and apply it to the lemma specified in name or
in namefrom.

• Each chunk begins with a <tags> instruction, which does not allow
any attribute, and which contains one or more individual instruc-
tions <tag>.

• Instructions <tag> do not have attributes. They can include any
instruction that returns a string as a value: <lit>, <var> .

• Instructions <clip> have an optional attribute: link-to, which is
used to specify a tag <value of link-to> that replaces the information
specified by the <clip> in the rest of its attributes. This information
is dispensable but can be useful as information on the origin of the
linguistic decision.

The following is a use example of the <chunk> element :

<out>
<chunk name="adj-noun" case="variableCase">

<tags>
<tag><lit-tag v="NP"/></tag>
<tag><clip pos="2" side="tl" part="gen"/></tag>
<tag><clip pos="2" side="tl" part="nbr"/></tag>

</tags>
<lu>

<clip pos="2" side="tl" part="lemh"/>
<clip pos="2" side="tl" part="a_noun"/>
<clip pos="2" side="tl" part="gen" link-to="2"/>
<clip pos="2" side="tl" part="nbr" link-to="3"/>

3.5. STRUCTURAL TRANSFER MODULE 107

</lu>
<b pos="1"/>
<lu>

<var n="adjectiu"/>
<clip pos="1" side="tl" part="lem"/>
<clip pos="1" side="tl" part="a_adj"/>
<clip pos="2" side="tl" part="gen" link-to="2"/>
<clip pos="2" side="tl" part="nbr" link-to="3"/>

</lu>
</chunk>

</out>

Default action

Isolated superblanks which are not detected by any pattern in this module,
are written in the same order in which they arrive.

The default action for words not matched by any pattern is different
depending on the transfer mode (that is, on the value of the optional at-
tribute default of the root element <transfer>):

• if the value is chunk (i.e. the module works in advanced mode): it
will generate trivial chunks with the words not matched by any rule,
so that in the output there are no words not included in a chunk.
The new chunk will be created with the translation of the word by
the bilingual dictionary. The fixed lemma of these implicitly created
chunks is default.

• if the value is lu (default value; i.e. the module works as single
module in a shallow-transfer system): it will not create chunks for
words not matched by rules, they will just be translated using the
bilingual dictionary.

The following is an automatically generated chunk for a lexical form
not matched by any rule in the chunker module when the default at-
tribute has the value chunk:

ˆdefault{ˆthat<cnjsub>$}$

3.5.5.2 Interchunk module

The interchunk module processes chunks; it may reorder them and
change its morphosyntactic information. This is done by detecting pat-
terns of chunks (sequences of chunks). The instructions that control how it

108 CHAPTER 3. MODULES SPECIFICATION

works are, with little differences, the same used by the chunker module;
they are written, however, in a different file. Chunks are processed here in
a similar way as words are processed in the chunker of Apertium.

Input/output

• Input: chunks from the chunker.

• Output: chunks possibly reordered and with the data on its pseu-
dolemmas (lexical pseudoforms) possibly changed.

Data files

This module uses two data files. A specification file of the interchunk
program, with extension .t2x by analogy with the previous module, and
a file of precalculated patterns to accelerate the analysis of the input. The
binary file of the bilingual dictionary is not included because it is not used.

The syntax of the specification file is very similar to that of the chunker.
Its DTD is specified in Appendix A.4, and the elements used to create the
rules in the file are described in Section 3.5.4.

Pattern matching

Rules detect patterns defined by sequences of lexical pseudoforms. These
lexical pseudoforms have a format based on the format of lexical forms
for words. In practice, a lexical pseudoform is seen equivalently as lexical
forms are seen in the chunker regarding pattern matching. This way, pat-
tern matching will be based on attributes defined for lexical pseudoforms,
not for lexical forms (words) of the original pattern.

How it works

With regard to the set of instructions used in chunker, the changes on the
set of instructions for this module are the following:

• The root element is called <interchunk> and does not have any
attribute.

• The attribute side disappears: This module does not use bilingual
dictionaries; therefore, the attribute used to indicate whether the
consulted side is SL or TL looses sense. This attribute was basically
used in the <out> instructions.

3.5. STRUCTURAL TRANSFER MODULE 109

• The <chunk> tag is used here without attributes, simply inside an
<out> to delimit the output of chunks.

• The predefined attribute lem refers to the pseudolemma of the chunk.
In the same way, the predefined attribute tags refers to the gram-
matical symbols or tags of the chunk. The chunk content becomes
something like a queue which can be printed with the implicit at-
tribute chcontent.

• All the values of part, except chname, access the pseudolemma and
the tags of the chunk (not of individual words).

• Unlike what happens in the chunker module, in the rules of this
module it is not allowed to print anything else than <chunk>s in the
<out> instructions, in no case isolated words.

Default action

Like in the previous module, a default action has been defined, which
writes without modifications the chunks not matched by any pattern of
the specification file. This default action writes exactly what it reads, be it
chunks or blanks.

3.5.5.3 Postchunk module

The postchunk module detects single chunks and, for each of them, per-
forms the specified actions. Detection is based on the lemma of the chunk,
and not in patterns (not in tags); this causes detection in this module to be
done specific for each “name” of chunk.

On the other hand, detection and processing in rules is based on the
fact that references to parameters are solved right after detection, that is,
the tags <1>, <2>, etc. are automatically replaced by the value of the pa-
rameters before the processing begins. Positions (attribute pos) specified
in instructions such as <clip>, refer to the position of the words inside
the chunk.

Also the case policy is automatically applied (see Section 3.5.3.2) from
the pseudolemma of the chunk to the words inside the chunk.

Input/output

• Input: chunks from the interchunk.

• Output: valid input for the morphological generator of Apertium.

110 CHAPTER 3. MODULES SPECIFICATION

Data files

This program has its own specification file, which will have the extension
.t3x. Its syntax is based as well on the chunker and the interchunk.

Pattern matching

Chunk matching is based on the name of the chunk. Unmatched chunks
receive the default processing.

How it works

The differences with regard to the interchunk module are the following:

• It is not allowed to write chunks (<chunk>) in the output: only lexi-
cal units (<lu> or <mlu>) and blanks can be written.

• New detection attribute name in <cat-item>, which is used in the
<pattern> part of rules isolatedly, to force pattern detection basing
on its name.

• Also the attribute side is not used here, as in the interchunk, for
the same reason: the bilingual dictionary is not looked up.

Default action

In this module, the default action is to write the words contained in the
chunks, replacing the references with the parameters of the chunk. It will
be applied to most chunks, since it is foreseen that this module performs
non-default actions only for specific cases requiring some special process-
ing.

Also the case policy is applied by default (see Section 3.5.3.2).
In any case, blanks outside chunks are copied in the same order as are

read, since chunk matching is done individually (this module does not
group chunks).

3.5.6 Preprocessing of the structural transfer module

Specification files for the structural transfer modules, also called transfer
rules files, are pre-processed by the program apertium-preprocess-transfer,
which calculates the patterns to match rules preconditions, and indexes

3.6. DE-FORMATTER AND RE-FORMATTER 111

the rules to speed up its processsing during execution time. This infor-
mation is saved in a binary file which is read together with the bilingual
dictionary and the rules file itself, because the structural transfer and lexi-
cal transfer modules are executed together.

3.6 De-formatter and re-formatter

3.6.1 Format processing

This section describes how the de-formatter and re-formatter process the
format of the documents. These two modules are created from a set of
format specification rules in XML, which are described in Section 3.6.2.

Apertium can process documents in XML, HTML, RTF and plain text.
For all these document types, format is encapsulated as explained in the
following lines.

Text strings that are identified as part of the format —from now on re-
ferred to as blocks of format or superblanks— are encapsulated between de-
limiters that depend on the specification of the data flow between modules
(which is described in detail in Section 2); so, in the flow format (sections
2.2.1 and 2.3), superblanks are put between brackets ’[’ and ’]’. Each of
these encapsulated strings will be treated as it were a blank (page 34)
—that is why they are called superblanks— and will be restored in the cor-
rect order in the translator’s output.

As has been explained in Section 2, when the blocks of format are large
(as is sometimes the case in HTML with Javascript code fragments, or in
RTF with bitmap images), these blocks will be saved as temporary files so
that they can be removed from the data flow of the translation.

Sometimes, the format in a document can implicitly indicate the di-
vision of the text into sentences (see page 13 in Section 2). For example,
section or document titles can be a sentence without full stop. If we know
that a format mark is indicating this division, we have to take advantage of
this information in order to do a better translation. Some examples of for-
mat that give us data about the end of a sentence are: two consecutive line
breaks in plain text format, a </h1> tag in HTML, etc. The de-formatter
generates in such cases a mark of sentence end that is equivalent to a full
stop.

112 CHAPTER 3. MODULES SPECIFICATION

3.6.1.1 Format encapsulation method

The types of blocks of format or superblanks that can be generated as a
result of the format processing are the following:

• Non-empty blocks of format or superblanks. They contain exclusively
format marks of the source document. In the data flow described in
Section 2 , they begin with a left square bracket ’[’ and end with a
right square bracket ’]’.

• Blocks of format with reference to an external file or extensive superblanks.
They encapsulate long format fragments in a way that improves the
translator’s performance. In the data flow described in Section 2,
they begin with the characters ’[@’, then there is the name of the file
where the format fragment extracted from the source text is saved,
and finally they end with a right square bracket ’]’.

• Empty blocks of format. They contain artificial information on text di-
vision obtained from the format data. Before the empty block of for-
mat, the system places the appropriate artificial punctuation mark.
When the original format is restored in the document at the end of
the process, the presence of a block of format like this will cause the
deletion of the character right before the block in the data flow.

The general criteria applied to the creation of blocks of format are the
following:

• Everything that is considered not to be part of the text to be trans-
lated, has to be encapsulated in blocks of format.

• There can not be two or more strictly consecutive non-empty blocks
of format. Two consecutive blocks of format must be merged into a
single block.

• Empty blocks of format must precede a non-empty block of format
or the end of the file.

Figure 3.48 shows an example document the format of which must be
processed before translation; the encapsulation corresponds to the flow
format not based on XML. Figure 3.49 displays the result of processing the
mentioned document.

We would like to emphasize the following from this example:

3.6. DE-FORMATTER AND RE-FORMATTER 113

<html>
<head>
<title>This is the title</title>
<script>
<!-- ... (an extensive code block) -->
</script>
</head>
<body>
<p>This
is a paragraph in two lines</p>
</body>
</html>

Figure 3.48: Example of HTML document

[<html>
<head>
<title>]This is the title.[][@/tmp/temp35345]This[
]is a paragraph in two lines.[][</p>
</body>
</html>]

Figure 3.49: Example of HTML document where the blocks of format have been
encapsulated by the de-formatter

114 CHAPTER 3. MODULES SPECIFICATION

• The system does not generate consecutive blocks of format with con-
tent (non-empty).

• Tags like </title> or </p> cause the insertion of an artificial punc-
tuation mark; this insertion is done systematically, even when it is
not necessary, because it does not interfere and is efficient.

• Extensive superblanks are literally removed from the translation pro-
cess. In this case, the temporary file temp35345 contains the tags
from </title> to <p>

• Simple blanks between words are not encapsulated. But the system
does encapsulate multiple blanks (two or more consecutive blanks),
tabs, etc. Also line breaks are encapsulated.

3.6.2 Data: format specification rules

This section describes how the de-formatter and re-formatter are gener-
ated from a format specification in XML.

Rules for format, like linguistic data, are specified in XML, and they
contain regular expressions with flex syntax. The specification is divided
in three parts (see its DTD in the Appendix A.6):

• Configuration options. Here one specifies the value for the max-
imum length of a non-extensive superblank, the input and output
encodings, whether case must be considered, and the regular expres-
sions for escape characters and space characters.

• Format rules. Describes the set of tags belonging to a specific format
which have to be included in a block of format by the de-formatter.
These tags may, optionally, indicate a sentence end, in which case the
de-formatter will insert an artificial punctuation mark (followed by
an empty block of format, as explained in the previous section). One
has to specify the priority of application of the rules, although, when
this is not relevant, it is possible to give the same priority to all the
rules by assigning them the same value (any number).

Everything that is not specified as format will be left without encap-
sulation and, therefore, will be considered as translatable text.

• Replacement rules. Allow to replace special characters in the text.
A regular expression will match a set of special characters, and will
replace it with the specified characters. For example, in HTML, the

3.6. DE-FORMATTER AND RE-FORMATTER 115

characters specified in hexadecimal have to be replaced with the cor-
responding entity or ASCII character. For example, camión
corresponds to camión.

Rules are described in more detail next.

• Root of the specification file. The attribute name contains the name
of the format.

<?xml version="1.0" encoding="ISO-8859-1"?>
<format name="html">
<options>
...
</options>

<rules>
...
</rules>

</format>

It has to include the options and rules, an example of which is pre-
sented next:

• Options.

<options>
<largeblocks size="8192"/>
<input encoding="ISO-8859-1"/>
<output encoding="ISO-8859-1"/>
<escape-chars regexp=’[\[\]ˆ$\\]’/>
<space-chars regexp=’[\n\t\r]’/>
<case-sensitive value="no"/>

</options>

The element <largeblocks> specifies the maximum length of a non-
extensive superblank, through the value of the attribute size. The ele-
ments <input> and <output> specify the input and output encoding of
the text, through the attribute encoding.

The element escape-chars specifies, by means of a regular expres-
sion declared in the value of the attribute regexp, which characters must
be escaped with a backslash. The element <space-chars> specifies the
set of characters that must be considered as blanks.

Finally, the element case-sensitive specifies if case is relevant in
the specifications of format attributes in which regular expressions are
contained.

116 CHAPTER 3. MODULES SPECIFICATION

• Rules. There are format rules and replacement rules.

<rules>
<format-rule ... >
...

</format-rule>
...

<replacement-rule>
...

</replacement-rule>
...

</rules>

The two types are described in the following points.

• Format rules. The de-formatter will encapsulate in blocks of format
the tags indicated by these rules in the field regexp. If they are begin
and end tags, and everything delimited by them is format, one has
to specify a regexp both for begin and for end:

<format-rule eos="no" priority="1">
<begin regexp=’"\<!--"’/>
<end regexp=’"--\>"’/>

</format-rule>

Otherwise only one begin-end element is used:

<format-rule eos="yes" priority="3">
<begin-end regexp=’"<"[/]?"li"[ˆ>]*">"’/>

</format-rule>

Besides, in priority you have to specify a priority to tell the sys-
tem in which order the format rules must be applied (the absolute
value is not relevant, only the order resulting from the values). In
“eos” you indicate, with yes or no, whether the block of format
that contains the detected pattern must be preceded by an artificial
punctuation mark or not.11

11In all these cases, the typical entities < and > are used to represent the char-
acters < and > respectively.

3.6. DE-FORMATTER AND RE-FORMATTER 117

• Replacement rules. Are used to replace special characters in the text.
The regular expression in the attribute regexp will recognize a set
of special characters and will replace them with the specified char-
acters in the text to be translated. The correspondence between orig-
inal and replacement characters is stated in the attributes source
and target of the replace elements, which can be multiple:

<replacement-rule regexp=’"&"[ˆ;]+;’>
<replace source="&Agrave;" target="À"/>
<replace source="&#192;" target="À"/>
<replace source="&#xC0;" target="À"/>
<replace source="&#xc0;" target="À"/>
<replace source="&Aacute;" target="Á"/>
<replace source="&#193;" target="Á"/>
<replace source="&#xC1;" target="Á"/>
<replace source="&#xc1;" target="Á"/>
...

</replacement-rule>

• Regular expressions of regexp attributes. They have the syntax
used in flex [9].

As example of a format specification, we will give that for HTML. The
explanation given in the following paragraphs can be followed looking at
Figure 3.50.

In the first place, we find the format rule that specifies in a general way
all the HTML tags: it considers as HTML tag everything that begins with
the sign < and ends with the sign >. This rule has the lowest priority (4)
so that the more specific rules are applied preferentially. But before con-
sidering a tag in a general way by applying this rule, some of the higher
priority rules will be applied. In the case of HTML, the highest prior-
ity is for comments <!-- ... -->. The marks for beginning and end
<script> </script> and <style> </style>, where everything in-
cluded by them is considered to be format, has priority 2. Priority 3 is
for tags that indicate end of sentence (artificial punctuation), which are
</br>, </hr>, </p>, etc.

Last of all are the replacement rules, which replace all the codes that
begin with &, as specified in the regular expression. Then, each one of the
replacements is defined: À, as well as À, À and À
are replaced with À. The remaining special characters are declared in the
same way.

118 CHAPTER 3. MODULES SPECIFICATION

<?xml version="1.0" encoding="ISO-8859-1"?>
<format name="html">
<options>
<largeblocks size="8192"/>
<input encoding="ISO-8859-1"/>
<output encoding="ISO-8859-1"/>
<escape-chars regexp=’[\[\]ˆ$\\]’/>
<space-chars regexp=’[\ n\ t\ r]’/>
<case-sensitive value="no"/>

</options>

<rules>
<format-rule eos="no" priority="1">

<begin regexp=’"<!--"’/>
<end regexp=’"-->"’/>

</format-rule>

<format-rule eos="no" priority="2">
<begin regexp=’"<script"[ˆ>]*">"’/>
<end regexp=’"</script"[ˆ>]*">"’/>

</format-rule>
<format-rule eos="no" priority="2">
<begin regexp=’"<style"[ˆ>]*">"’/>
<end regexp=’"</style"[ˆ>]*">"’/>

</format-rule>

<format-rule eos="yes" priority="3">
<begin-end regexp=’"<"[/]?"br"[ˆ>]*">"’/>

</format-rule>
<!-- Here come more declarations of format-rule eos="yes"-->
<!-- ... -->

<format-rule eos="no" priority="4">
<begin-end regexp=’"<"[a-zA-Z][ˆ>]*">"’/>

</format-rule>

<replacement-rule regexp=’"&"[ˆ;]+;’>
<replace source="&Agrave;" target="À"/>
<replace source="&#192;" target="À"/>
<replace source="&#xC0;" target="À"/>
<replace source="&#xc0;" target="À"/>
<!-- Here come more replace elements -->
<!-- ... -->

</replacement-rule>
</rules>

</format>

Figure 3.50: Part of the rules definition for HTML format

3.6. DE-FORMATTER AND RE-FORMATTER 119

3.6.3 Generation of de-formatters and re-formatters

To generate the de-formatter and re-formatter for a given format, the XML
rules that declare the format are applied a style sheet that carries out the
generation. This XSLT transformation produces a lex [9] file that, once
compiled, is the executable of the de-formatter and the re-formatter for
the specified format.

Thanks to the general specification of formats described in this chap-
ter, it has been possible to define specifications for HTML, RTF and plain
text. These specifications are in the apertium package, in the respective
files html-format.xml, rtf-format.xml, txt-format.xml. In par-
ticular, it is quite simple to define de-formatters and re-formatters for any
XML format.

120 CHAPTER 3. MODULES SPECIFICATION

Chapter 4

Installing and running the system

4.1 System requirements

The system where you want to install and run Apertium must have the
following programs installed:

• libxml2 version 2.6.17 or later (on Ubuntu you may need to install
libxml2-dev too)

• xmllint tool (usually comes with libxml2, but may be an inde-
pendent package on your system, i.e. Debian GNU-Linux)

• xsltproc tool (non-PowerPC users); also comes with libxml2 but
may also be an independent package in your system, as happens
with the xmllint tool

• sabcmd tool (PowerPC users), provided by package sablotron

• flex 2.5.4 or earlier (in some distributions, flex-old package)

• GNU make, gcc (g++), bash shell

4.2 Installing program packages

To install the Apertium machine translation system programs and libraries
first you need to download (from http://sourceforge.net/projects/
apertium), compile and install the latest version of the following pack-
ages, in the specified order:

1. lttoolbox

121

122 CHAPTER 4. INSTALLING AND RUNNING THE SYSTEM

2. apertium

The simplest way to compile each package is:

1. Go to the directory containing the package’s source code and type
./configure to configure the package for your system. If you’re
using csh on an old version of System V, you might need to type sh
./configure instead to prevent csh (the default shell in old Sys-
tem V) from trying to execute configure itself. Running configure
takes a while. While running, it prints some messages telling which
features it is checking for.

2. Type make to compile the package

3. Type make install (possibly with root privileges) to install the
programs and any data files and documentation.

4. You can remove the program binaries and object files from the source
code directory by typing make clean. To remove also the files that
configure created (so you can compile the package for a different
kind of computer), type make distclean. There is also a
maintainer-clean option in the Makefile, but that is intended
mainly for the package’s developers. If you use it, you may have to
get all sorts of other programs in order to regenerate files that came
with the distribution.

If you don’t have root privileges to install the programs in your system,
you can use the -prefix flag with the configure script to install them at
your user account. For example:

$ pwd
/home/me/lttoolbox-0.9.1
$./configure --prefix=/home/me/myinstall

Libraries will be installed in the LIBDIR=$prefix/lib directory. If
no -prefix flag is specified with configure script, LIBDIR will be /usr/local/lib.

If you find some error to link against installed libraries in a given direc-
tory LIBDIR, you must either use libtool, and specify the full pathname
of the library, or use the LIBDIR flag during linking and do at least one of
the following:

• add LIBDIR to the LD_LIBRARY_PATH environment variable dur-
ing execution

4.3. INSTALLING DATA PACKAGES 123

• add LIBDIR to the LD_RUN_PATH environment variable during link-
ing

• use the -Wl, --rpath -Wl, LIBDIR linker flag

• have your system administrator add LIBDIR to /etc/ld.so.conf
and run ldconfig

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.

4.3 Installing data packages

To install the linguistic data packages, follow these steps:

1. Download a data package (apertium-LANG1-LANG2-V ERSION.tar.gz)
from Apertium’s website in Sourceforge (http://apertium.sourceforge.
net/). For example, to get version 0.9 of the linguistic data for
the Spanish–Catalan translator, you need to download the package
apertium-es-ca-0.9.tar.gz.

2. Unpack the tarball in any directory, go to this directory and type
make in the terminal. Wait while linguistic data are compiled.

4.4 Using the translator

There are Apertium versions that work both in Linux systems (always
more up-to-date) and in Windows systems. The information in this sec-
tion is intended for Linux users.

To run the translator, you have to use the apertium tool referring to
the directory where linguistic data are saved, and specifying the transla-
tion direction (es-ca, ca-es, es-gl, etc.), the file format (txt, html,
rtf), the name of the file to be translated and the name of the output file.
So, the command structure is as follows:

$ apertium -d <directory> <translation> <format>

< input_file > output_file

For example, if your directory is /home/maria/apertium-es-ca,
you have to type the following to translate a file in txt format from Span-
ish to Catalan:

124 CHAPTER 4. INSTALLING AND RUNNING THE SYSTEM

$ apertium -d /home/maria/apertium-es-ca es-ca
txt <file_sp >file_ca

It is recommended to go to the directory where linguistic data are saved,
because this way you only need to type a dot to refer to the current direc-
tory:

$ apertium -d . es-ca txt <file_sp >file_ca

If no format is specified, the default format is txt. When working
with the txt, html and rtf formats, unknown words are marked with
an asterisk (*) and errors with a symbol (@, # or /); if you wish that neither
unknown words nor errors are marked, you have to add a u to the format
name. Therefore, the format options are the following:

• txt : Default option, text with marks for unknown words and errors

• txtu : text without marks for unknown words and errors

• html : HTML with marks for unknown words and errors

• htmlu : HTML without marks for unknown words and errors

• rtf : RTF with marks for unknown words and errors

• rtfu : RTF without marks for unknown words and errors

If you do not wish to translate a file but just a sentence or a paragraph
in the screen, you can run the apertium tool without specifying any file
name. The command, if you are in the directory where linguistic data are
saved, would be the following:

$ apertium -d . es-ca

Then, you have to type or paste the text you wish to translate (it can
contain line breaks). To get the translated version, press Ctrl + D. The
translation will be displayed on the screen.

A third way of translating with Apertium is using the echo command
to send text through the translator:

$ echo "text to be translated" | apertium . es-ca

Chapter 5

Maintaining linguistic data

5.1 Description of linguistic data currently avail-
able

At present, Apertium has linguistic data for three language pairs : Spanish–
Catalan and Spanish–Galician. The files containing the linguistic data
are saved in a single directory: apertium-es-ca for the pair Spanish–
Catalan and apertium-es-gl for the pair Spanish–Galician. The names
of the files in this directory have the following structure:

• apertium-PAIR.LANG.dix : monolingual dictionary for LANG.
• apertium-PAIR.LANG1-LANG2.dix : LANG1-LANG2 bilingual dic-

tionary.
• apertium-PAIR.trules-LANG1-LANG2.xml : structural trans-

fer rules for the translation from LANG1 to LANG2 .
• apertium-PAIR.LANG.tsx : tagger definition file for LANG.
• apertium-PAIR.post-LANG.dix : Post-generation dictionary for
LANG (applies when translating into LANG).
• directory LANG-tagger-data : contains data needed for the LANG

tagger (corpora, etc.)

apertium-PAIR refers to the linguistic combination of the translator.
Its two possible values at the moment are apertium-es-ca and
apertium-es-gl. According to this structure, the Catalan monolingual
dictionary is called apertium-es-ca.ca.dix, the Spanish–Galician bilin-
gual dictionary is called apertium-es-gl.es-gl.dix and the struc-
tural transfer rules file for the translation from Catalan into Spanish is
called apertium-es-ca.trules-ca-es.xml.

125

126 CHAPTER 5. MAINTAINING LINGUISTIC DATA

The linguistic data available (by January 2006) for the different lan-
guage pairs are summarized in the following table.

Translator Apertium-es-ca
Spanish monolingual dictionary 11.800 entries
Catalan monolingual dictionary 11.800 entries
Spanish–Catalan bilingual dictionary 12.800 entries (correspon-

dences es-ca)
Structural transfer rules from Spanish into
Catalan

44 rules

Structural transfer rules from Catalan into
Spanish

58 rules

Spanish post-generation dictionary 25 entries and 5 paradigms
Catalan post-generation dictionary 16 entries and 57 paradigms

Translator Apertium-es-gl
Spanish monolingual dictionary 9.000 entries
Galician monolingual dictionary 8.600 entries
Spanish–Galician bilingual dictionary 8.500 entries (correspon-

dences es-gl)
Structural transfer rules from Spanish into Gali-
cian

46 rules

Structural transfer rules from Galician into
Spanish

38 rules

Spanish post-generation dictionary 36 entries and 12 paradigms
Galician post-generation dictionary 74 entries and 48 paradigms

5.2 Adding words to monolingual and bilingual
dictionaries

When extending or adapting Apertium, the most likely operation that will
be performed will be to extend its dictionaries. In fact, it will be far more
common than adding transfer or post-generation rules.

We describe next the most important things one has to take into ac-
count when adding new words to the translator. This information is more
general than the data provided in the section describing dictionaries (chap-
ter 3.1.2), although we give here some practical information that might be
very useful to the users who decide to make changes in the translator.

IMPORTANT: Every time a set of modifications is made to any of the
dictionaries, the modules have to be recompiled. Type make in the direc-
tory where the linguistic data are saved (apertium-es-ca, apertium-es-gl or
what may be applicable) so that the system generates the new binary files.

5.2. ADDING WORDS TO DICTIONARIES 127

If you want to add a new word to Apertium, you need to add three
entries in the dictionaries. Suppose you are working with the Spanish-
Catalan pair. In this case, you have to add:

1. an entry in the Spanish monolingual dictionary: so that the translator
can analyze (”understand”) the word when it finds it in a text, and
generate it when translating this word into Spanish.

2. an entry in the bilingual dictionary: so that you can tell Apertium
how to translate this word from one language to the other.

3. an entry in the Catalan monolingual dictionary: so that the translator
can analyze (”understand”) the word when it finds it in a text, and
generate it when translating this word into Catalan.

You will need to go to the directory containing the XML dictionaries
(for the Spanish-Catalan pair, this is apertium-es-ca) and open with
a text editor or a specialized XML editor the three dictionary files men-
tioned: apertium-es-ca.es.dix, apertium-es-ca.es-ca.dix and
apertium-es-ca.ca.dix. The entries you need to create in these three
dictionaries share a common structure.

Monolingual dictionary (Spanish)
You may want, for example, to add the Spanish adjective cósmico, whose

equivalent in Catalan is còsmic. The first step is to add this word to the
Spanish monolingual dictionary.

You will see that a monolingual dictionary has basically two types
of data: paradigms (in the ”<pardefs>” section of the dictionary, each
paradigm inside a <pardef> element) and word entries (in the main
(<section> of the dictionary, each one inside an <e> element). Word
entries consist of a lemma (that is, the word as you would find it in a typ-
ical paper dictionary) plus grammatical information; paradigms contain
the inflection data of all lemmas in the dictionary. You can search a partic-
ular word by searching the string lm="word" (lm meaning lemma). Bear
in mind, however, that the element lm is optional and some other dictio-
naries may not contain it.

Look at the word entries in the Spanish monolingual dictionary, for
example at the entry for the adjective bonito. You can find it by searching
lm="bonito":

<e lm="bonito">
<i>bonit</i>

128 CHAPTER 5. MAINTAINING LINGUISTIC DATA

<par n="absolut/o__adj"/>
</e>

To add a word, you will have to create an entry with the same struc-
ture. The part between <i> and </i> contains the prefix of the word that
is common to all inflected forms, and the element <par> refers to the in-
flection paradigm of this word. Therefore, this entry means that the adjec-
tive bonito inflects like the adjective absoluto and has the same morpholog-
ical analysis: the forms bonito, bonita, bonitos, bonitas are equivalent to the
forms absoluto, absoluta, absolutos, absolutas and have the morphological
analysis: adj m sg, adj f sg, adj m pl and adj f pl respectively.

Now, you have to decide which is the lexical category of the word you
want to add: the word cósmico is an adjective, like bonito. Next, you have to
find the appropriate paradigm for this adjective. Is it the same as the one
for bonito and absoluto? ¿Can you say cósmico, cósmica, cósmicos, cósmicas?
The answer is yes, and, with all this information, you can now create the
correct entry:

<e lm="cósmico">
<i>cósmic</i>

<par n="absolut/o__adj"/>
</e>

If the word you want to add has a different paradigm, you have to find
it in the dictionary and assign it to the entry. You have two ways to find
the appropriate paradigm: looking in the <pardefs> section of the dic-
tionary, where all the paradigms are defined inside a <pardef> element,
or finding another word that you think may already exist in the dictionary
and that has the same inflection paradigm as the one to be added. For
example, if you want to add the word genoma, you need to find an ap-
propriate paradigm for a noun whose gender is masculine and forms the
plural with the addition of an -s. This will be the paradigm ”abismo n”
in our present dictionaries. Therefore, the entry for this new word would
be:

<e lm="genoma">
<i>genoma</i>

<par n="abismo__n"/>
</e>

In exceptional cases you will need to create a new paradigm for a cer-
tain word. You can look at the structure of other paradigms and create

5.2. ADDING WORDS TO DICTIONARIES 129

one accordingly. For a more detailed description of paradigms and word
entries in the dictionaries, refer to section 3.1.2.

Monolingual dictionary (Catalan)
Once you have added the word to one monolingual dictionary, you

have to do the same to the other monolingual dictionary of the translation
pair (in our example, the Catalan monolingual dictionary) using the same
structure. The result would be:

<e lm="còsmic">
<i>còsmi</i>

<par n="acadèmi/c__adj"/>
</e>

Monolingual dictionary (Galician)
In the case you are trying to improve the XML dictionaries for the

Spanish-Galician pair, you will need to go to the directory apertium-es-gl
and open with a text editor or a specialized XML editor the three dictio-
nary files apertium-es-gl.es.dix, apertium-es-gl.es-gl.dix and
apertium-es-gl.gl.dix. In that case, once you have added the new
Spanish word genoma to the Spanish monolingual dictionary (apertium-es-gl.es.dix),
you have to add the equivalent Galician word xenoma to the Galician mono-
lingual dictionary (apertium-es-gl.gl.dix), that is:

<e lm="xenoma">
<i>xenoma</i>

<par n="Xulio__n"/>
</e>

Bilingual dictionary
The last step is to add the translation to the bilingual dictionary.
A bilingual dictionary does not usually have paradigms, only lemmas.

An entry contains only the lemma in both languages and the first gram-
matical symbol (the lexical category) of each one. Entries have a left side
(<l>) and a right side (<r>), and each language has always to be in the
same position: in our system, it has been agreed that Spanish occupies the
left side, and Catalan, Galician and Portuguese the right side.

With the addition of the lemma of both words, the system will trans-
late all their inflected forms (the grammatical symbols are copied from the
source language word to the target language word). This will only work if
the source language word and the target language word are grammatically
equivalent, that is, if they share exactly the same grammatical symbols for

130 CHAPTER 5. MAINTAINING LINGUISTIC DATA

all of their inflected forms. This is the case with our example; therefore,
the entry you have to add to the bilingual dictionary is:

<e>
<p>
<l>cósmico<s n="adj"/></l>
<r>còsmic<s n="adj"/></r>

</p>
</e>

This entry will translate all the inflected forms, that is, adj m sg, adj
f sg, adj m pl and adj f pl. It works for the translation in both di-
rections: from Spanish to Catalan and from Catalan to Spanish.

In the case of the Spanish-Galician pair, the following bilingual entry in
the Spanish-Galician bilingual dictionary (apertium-es-gl.es-gl.dix)
will translate all the inflected forms for the equivalent words genoma/xenoma
in both directions:

<e>
<p>
<l>genoma<s n="n"/></l>
<r>xenoma<s n="n"/></r>

</p>
</e>

What to do if the word pair is not equivalent grammatically (their
grammatical symbols are not exactly the same)? In that case, you need
to specify all the grammatical symbols (in the same order as they are spec-
ified in the monolingual dictionaries) until you reach the symbol that dif-
fers between the source language word and the target language word. For
example, the Spanish noun limón has masculine gender and its equivalent
in Catalan, llimona, has feminine gender. The entry in the bilingual dictio-
nary must be as follows:

<e>
<p>
<l>limón<s n="n"/><s n="m"/></l>
<r>llimona<s n="n"/><s n="f"/></r>

</p>
</e>

A more difficult problem arises when two words have different gram-
matical symbols and the grammatical information of the source language

5.2. ADDING WORDS TO DICTIONARIES 131

word is not enough to determine the gender (masculine or feminine) or
the number (singular or plural) of the target language word. Take for ex-
ample the Spanish adjective canadiense. Its gender is masculine–feminine
since it is invariable in gender, that is, it can go both with masculine and
feminine nouns (hombre canadiense, mujer canadiense). In Catalan, on the
other hand, the adjective has a different inflection for the masculine and
the feminine (home canadenc, dona canadenca). Therefore, when translating
from Spanish to Catalan it is not possible to know, without looking at the
accompanying noun, whether the Spanish adjective (mf) has to be trans-
lated as a feminine or a masculine adjective in Catalan. In that case, the
symbol GD (for ”gender to be determined”) is used instead of the gender
symbol. The word’s gender will be determined by the structural transfer
module, by means of a transfer rule (a rule that detects the gender of the
preceding noun in this particular case). Therefore, GD must be used only
when translating from Spanish to Catalan, but not when translating from
Catalan to Spanish, as in Spanish the gender will always be mf regardless
of the gender of the original word. In the bilingual dictionary you will
need to add, in this case, more than one entry with direction indications,
as you must specify in which translation direction the gender remains un-
determined. The entries for this adjective should be as follows:

<e r="LR">
<p>
<l>canadiense<s n="adj"/><s n="mf"/></l>
<r>canadenc<s n="adj"/><s n="GD"/></r>

</p>
</e>
<e r="RL">
<p>
<l>canadiense<s n="adj"/><s n="mf"/></l>
<r>canadenc<s n="adj"/><s n="f"/></r>

</p>
</e>
<e r="RL">
<p>
<l>canadiense<s n="adj"/><s n="mf"/></l>
<r>canadenc<s n="adj"/><s n="m"/></r>

</p>
</e>

”LR” means left to right and ”RL”, right to left. Since Spanish is on the
left and Catalan on the right, the adjective will be GD only when translating

132 CHAPTER 5. MAINTAINING LINGUISTIC DATA

from Spanish to Catalan (LR). For the translation RL you need to create two
entries, one for the adjective in feminine and another one for the adjective
in masculine.1

The same principle applies when it is not possible to determine the
number of the target word for the same reasons mentioned above. For ex-
ample, the Spanish noun rascacielos (”skyscraper”) is invariable in number,
that is, it can be singular as well as plural (un rascacielos, dos rascacielos). In
Catalan, on the other hand, the noun has a different inflection for the sin-
gular and for the plural (un gratacel, dos gratacels). In this case the symbol
used is ”ND” (”number to be determined”) and the entries should be like
this:

<e r="LR">
<p>
<l>rascacielos<s n="n"/><s n="m"/><s n="sp"/></l>
<r>gratacel<s n="n"/><s n="m"/><s n="ND"/></r>

</p>
</e>
<e r="RL">
<p>
<l>rascacielos<s n="n"/><s n="m"/><s n="sp"/></l>
<r>gratacel<s n="n"/><s n="m"/><s n="pl"/></r>

</p>
</e>
<e r="RL">
<p>
<l>rascacielos<s n="n"/><s n="m"/><s n="sp"/></l>
<r>gratacel<s n="n"/><s n="m"/><s n="sg"/></r>

</p>
</e>

For a more detailed description of this kind of entries, refer to sec-
tion 39.

5.2.1 Adding direction restrictions

In the previous example we have already seen the use of direction restric-
tions for entries with undetermined gender or number (GD or ND). These
restrictions can also be used in other cases.

It is important to note that the current version of Apertium can give
only a single equivalent for each source-language lexical form (a lexical

1You could also group them using a small paradigm

5.2. ADDING WORDS TO DICTIONARIES 133

form is the lemma plus its grammatical information), that is, no word-
sense disambiguation is performed.2 When a lexical form can be trans-
lated in two or more different ways, one has to be chosen (the most gen-
eral, the most frequent, etc.). You can tell Apertium that a certain word
has to be analyzed (”understood”) but not generated, as it is not the trans-
lation of any word in the other language.

Let’s see this with an example. The Spanish noun muñeca can be trans-
lated in two different ways in Catalan depending on its meaning: canell
(”wrist”) or nina (”doll”). The context decides which translation is the cor-
rect one, but in its present state Apertium can not make such a decision
.3 Therefore, you have to decide which word you want as an equivalent
when translating from Spanish to Catalan. From Catalan to Spanish, both
words can be translated as muñeca without any problem. You have to spec-
ify all these circumstances in the dictionary entries using direction restric-
tions (LR meaning ”left to right”, that is, es–ca, and RL meaning ”right to
left”, that is, ca–es). If you decide to translate muñeca as canell in all cases,
the entries in the bilingual dictionary shall be:

<e>
<p>
<l>muñeca<s n="n"/><s n="f"/></l>
<r>canell<s n="n"/><s n="m"/></r>

</p>
</e>

<e r="RL">
<p>
<l>muñeca<s n="n"/></l>
<r>nina<s n="n"/></r>

</p>
</e>

This means that translation directions will be:

muñeca --> canell
muñeca <-- canell
muñeca <-- nina

2The system performs only part-of-speech disambiguation for homograph words, that
is, for ambiguous words that can be analyzed as more than one lexical form, like vino in
Spanish, that can mean both ”wine” and ”he/she came”. This type of disambiguation is
performed by the tagger.

3See Section 5.2.2 on multiword units for ways to circumvent this problem.

134 CHAPTER 5. MAINTAINING LINGUISTIC DATA

(Note that that there is also a gender change in the case of muñeca (fem-
inine) and canell (masculine)).

It should be emphasized that a lemma can not have two translations in
the target language, because the system would give an error when trans-
lating that lemma (see Section 5.5 ”Detecting errors” to see how to find
and correct these and other types of errors). When a word can be trans-
lated in two different ways in the target language in all contexts, you need
to choose one as the translation equivalent and leave the other one as a
lemma that can be analyzed but not generated, using direction restrictions
like in the previous example. For example, the Catalan lemmas mot and
paraula can be both translated into Spanish as palabra (”word”) and the
entries in the bilingual dictionary should look like this:

<e>
<p>
<l>palabra<s n="n"/></l>
<r>paraula<s n="n"/></r>

</p>
</e>

<e r="RL">
<p>
<l>palabra<s n="n"/><s n="f"/></l>
<r>mot<s n="n"/><s n="m"/></r>

</p>
</e>

Therefore, for this lemmas the translation directions will be:

palabra --> paraula
palabra <-- paraula
palabra <-- mot

One may have to specify restrictions regarding translation direction
also in monolingual dictionaries. For example, both Spanish forms can-
taran and cantasen should be analyzed as lemma cantar, verb, subjunctive
imperfect, 3rd person plural, but when generating Spanish text, one has
to decide which one will be generated. Monolingual dictionaries are read
in two directions depending on its purpose: for the analysis, the reading
direction is left to right; for the generation, right to left. Therefore, a word
that must be analyzed but not generated must have the restriction LR, and
a word that must be generated but not analyzed must have the restriction
RL.

5.2. ADDING WORDS TO DICTIONARIES 135

The case of cantaran or cantasen must have already been taken care of
in inflection paradigms and it is unlikely to be a problem for most people
extending a dictionary. In some other cases it can be necessary to introduce
a restriction in the word entries of monolingual dictionaries.

5.2.2 Adding multiwords

It is possible to create entries consisting of two or more words, if these
words are considered to build a single ”translation unit”. These multiword
units can also be useful when it comes to select the correct equivalent for
a word inside a fixed expression. For example, the Spanish word dirección
may be translated into two Catalan words: direcció (”direction, manage-
ment, directorate, steering”, etc.) and adreça (”address”); including, for
example, frequent multiword units such as dirección general→ direcció gen-
eral (”general directorate”) and dirección postal→ adreça postal (”postal ad-
dress”) may help get improved translations in some situations.

Multiword units can be classified basically into two categories: multi-
words with inner inflection and multiwords without inner inflection.

5.2.2.1 Multiwords without inner inflection

They are just like the normal one-word entries, with the only difference
that you need to insert the element (which represents a blank) be-
tween the individual words that make up the unit. Therefore, if you want
to add, for example, the Spanish multiword hoy en dı́a (”nowadays”), whose
equivalent in Catalan is avui dia, the entries you need to add to the differ-
ent dictionaries are:

• Spanish monolingual dictionary:

<e lm="hoy en dı́a">
<i>hoyendı́a</i>
<par n="ahora__adv"/>

</e>

• Catalan monolingual dictionary:

<e lm="avui dia">
<i>avuidia</i>
<par n="ahir__adv"/>

</e>

136 CHAPTER 5. MAINTAINING LINGUISTIC DATA

• Spanish-Catalan bilingual dictionary:

<e>
<p>
<l>hoyendı́a<s n="adv"/></l>
<r>avuidia<s n="adv"/></r>

</p>
</e>

For Spanish-Galician pair, if you want to add, for example, the Spanish
multiword manga por hombro (”disarranged”), whose equivalent in Gali-
cian is sen xeito nin modo, the entries you need to add are:

• Spanish monolingual dictionary:

<e lm="manga por hombro">
<i>mangaporhombro</i>
<par n="ahora__adv"/>

</e>

• Galician monolingual dictionary:

<e lm="sen xeito nin modo">
<i>senxeitoninmodo</i>
<par n="Deo_gratias__adv"/>

</e>

• Spanish-Galician bilingual dictionary:

<e>
<p>
<l>mangaporhombro<s n="adv"/></l>
<r>senxeitoninmodo<s n="adv"/></r>

</p>
</e>

5.2.2.2 Brief introduction to paradigms

The paradigms of the previous examples, as adverbs do not inflect, con-
tain only the grammatical symbol of the lexical form, as you see in this
example:

5.2. ADDING WORDS TO DICTIONARIES 137

<pardef n="ahora__adv">
<e>
<p>
<l/>
<r><s n="adv"/></r>

</p>
</e>

</pardef>

Paradigms are build like a lexical entry. We have seen so far lexical
entries where the common part of the lemma is put between <i> </i>:

<e lm="cósmico">
<i>cósmic</i>
<par n="absolut/o__adj"/>

</e>

But you can also express the same with a pair of strings: a left string
<l> and a right string <r> inside a <p> element:

<e lm="cósmico">
<p>
<l>cósmic</l>
<r>cósmic</r>

</p>
<par n="absolut/o__adj"/>

</e>

These two entries are equivalent. The use of the <i> element helps
get more simple and compact entries, and you can use it when the left
side and the right side of the string pair are identical. As has been ex-
plained before, monolingual dictionaries are read LR for the analysis of a
text and RL for the generation. Therefore, when there is some difference
between the analysed string and the generated string (not very usual) the
entry can not be written using the <i> element. This is what happens in
paradigms, where the left and right strings are never identical, since the
right side must contain the grammatical symbols that will go through all
the modules of the system.

5.2.2.3 Multiwords with inner inflection

They consist of a word that can inflect (typically a verb) followed by one or
more invariable words. For these entries you need to specify the inflection

138 CHAPTER 5. MAINTAINING LINGUISTIC DATA

paradigm just after the word that inflects. The invariable part must be
marked with the element <g> (for group) in the right side. The blanks
between words are indicated, like in the previous case, with the element
. Look at the following example for the Spanish multiword echar de
menos (to miss), translated into Catalan as trobar a faltar:

• Spanish monolingual dictionary:

<e lm="echar de menos">
<i>ech</i>
<par n="aspir/ar__vblex"/>
<p>
<l>demenos</l>
<r><g>demenos</g></r>

</p>
</e>

• Catalan monolingual dictionary:

<e lm="trobar a faltar">
<i>trob</i>
<par n="abander/ar__vblex"/>
<p>
<l>afaltar</l>
<r><g>afaltar</g></r>

</p>
</e>

• Spanish-Catalan bilingual dictionary:

<e>
<p>
<l>echar<g>demenos</g><s n="vblex"/></l>
<r>trobar<g>afaltar</g><s n="vblex"/></r>

</p>
</e>

Note that the grammatical symbol is appended at the end, after the
group marked with the <g>.

It can be the case that a lemma is a multiword of this kind in one lan-
guage and a single word in the other language. In that case, in the bilin-
gual dictionary, the multiword will contain the <g> element and the single
word will not. In the monolingual dictionaries, each entry will be created

5.2. ADDING WORDS TO DICTIONARIES 139

according to its type. Look at the following example for the Spanish multi-
word darse cuenta (to realize), translated into Catalan as the verb adonar-se:4

• Spanish monolingual dictionary:

<e lm="darse cuenta">
<i>d</i>
<par n="d/ar__vblex"/>
<p>
<l>cuenta</l>
<r><g>cuenta</g></r>

</p>
</e>

• Catalan monolingual dictionary:

<e lm="adonar-se">
<i>adon</i>
<par n="abander/ar__vblex"/>

</e>

• Spanish-Catalan bilingual dictionary:

<e>
<p>
<l>dar<g>cuenta</g><s n="vblex"/></l>
<r>adonar<s n="vblex"/></r>

</p>
</e>

The same principles and actions described for basic entries (gender and
number change, direction restrictions, etc.) apply to all kinds of multi-
words. For a more detailed description of multiword units, refer to sec-
tion 3.1.2.6.

4The verb adonar-se is considered a simple word, since the incorporation of enclitic
pronouns (such as ”-se”) is treated inside the inflection paradigms of verbs (for all the
Romance languages of Apertium); therefore, it is not necessary to specify them in lexical
entries. The correct placement of clitic pronouns is one of the main reasons for using the
<g>... </g> labels around the invariable part of multi-word verbs.

140 CHAPTER 5. MAINTAINING LINGUISTIC DATA

5.2.3 Consider contributing your improved lexical data

If you have successfully added general-purpose lexical data to any of the
Apertium language pairs, please consider contributing it to the project so
that we can offer a better toolbox to the community. You can e-mail your
data (in three XML files, one for each monolingual dictionary and another
one for the bilingual dictionary) to the following addresses:

Spanish-Catalan data Mireia Ginestı́: mginesti@dlsi.ua.es
Spanish-Portuguese data Carme Armentano: carmentano@dlsi.ua.es5

Spanish-Galician data Xavier Gómez-Guinovart: xgg@uvigo.es

If you believe you are going to contribute more heavily to the project,
you can join the development team through www.sourceforge.net. If you
do not have a Sourceforge account, please create one; then write to Mikel
L. Forcada (mlf@ua.es) or Sergio Ortiz (sortiz@dlsi.ua.es), or to
Xavier Gómez Guinovart if you are interested in the Spanish-Galician lan-
guage pair, explaining briefly your motivations and background to join the
project. The usual way to contribute is to use CVS; as a project member,
you will be able to commit your changes to dictionaries directly.

The addition of simple lexical contributions will soon be made simpler
by means of web forms in http://xixona.dlsi.ua.es/prototype/
webform/, so that contributors do not have to deal directly with XML.

You should be aware that the data you contribute to the project, once
added, will be freely distributed under the current license (GNU General
Public License or Creative Commons 2.5 attribution-sharealike-noncommercial,
as indicated). Make sure the data you contribute is not affected by any
kind of license which may be incompatible with the licenses used in this
project. No kind of agreement or contract is created between you and the
developers. If you have any doubt, or you plan to make a massive contri-
bution, contact Mikel L. Forcada.

5.3 Adding structural transfer (grammar) rules

The content in this chapter partially repeats information already presented
in the chapter describing the structural transfer module (Section 3.5), al-
though rules are described here in a more general and practical way, aimed
at those who wish a first approach to them.

Structural transfer rules carry out transformations to the analysed and
disambiguated text, which are needed because of grammatical, syntacti-

5.3. ADDING STRUCTURAL TRANSFER RULES 141

cal and lexical divergences between the two languages involved (gender
and number changes to ensure agreement in the target language, word
reorderings, changes in prepositions, etc.). The rules detect patterns (se-
quences) of source text lexical forms and apply to them the correspond-
ing transformations. The module detects the patterns in a left-to-right,
longest-match way; for example, the phrase the big cat will be detected and
processed by the rule for determiner–adjective–noun and not by the rule for
determiner–adjective, since the first pattern is longer. If two patterns have
the same length, the rule that applies is the one defined in the first place.

The structural transfer module (generated from the structural transfer
rules file) calls the lexical transfer module (generated from the bilingual
dictionary) all through the process to determine the target language equiv-
alents of the source language lexical forms.

The structural transfer rules are contained in a XML file, one for each
translation direction (for example, for the translation from Spanish to Cata-
lan, the file is apertium-es-ca.trules-es-ca.xml). You need to edit
this file if you want to add or change transfer rules.

Rules have a pattern and an action part. The pattern specifies which
sequences of lexical forms have to be detected and processed. The ac-
tion describes the verifications and transformations that need to be done
on its constituents. Usual transformation operations (such as gender and
number agreement) are defined inside a macroinstruction which is called
inside the rule. At the end of the action part of the rule, the resulting lexi-
cal forms in the target language are sent out so that they are processed by
the next modules in the translation system.

A transfer rules file contains four sections with definitions of elements
used in the rules, and a fifth section where the actual rules are defined.
The sections are the following:

• <section-def-cats>: This section contains the definition of the
categories which are to be used in the rule patterns (that is, the type
of lexical forms that will be detected by a certain rule). For the rule
presented below, the categories det and nom (determiner and noun)
need to be defined here. Categories are defined specifying the gram-
matical symbols that the lexical forms have. An asterisk indicates
that one or more grammatical symbols follow the ones specified. The
following is the definition of the category det, which groups deter-
miners and predeterminers6 in the same category since they play the
same role for transfer purposes:

6such as in Spanish todo, toda, todos, todas

142 CHAPTER 5. MAINTAINING LINGUISTIC DATA

<def-cat n="det">
<cat-item tags="det.*"/>
<cat-item tags="predet.*"/>

</def-cat>

It is also possible to define as a category a certain lemma, like the
following for the preposition en:

<def-cat n="en">
<cat-item lemma="en" tags="pr"/>

</def-cat>

• <section-def-attrs>: This section contains the definition of the
attributes that will be used inside of the rules, in the action part. You
need attributes for all the categories defined in the previous section,
if they are to be used in the action part of the rule (to make verifica-
tions on them or to send them out at the end of the rule), as well as
for other attributes needed in the rule (such as gender or number).
Attributes have to be defined using their corresponding grammatical
symbols and can not have asterisks; its name must be unique. The
following are the definitions for the attributes a det (for determin-
ers) and gen (gender):

<def-attr n="a_det">
<attr-item tags="det.def"/>
<attr-item tags="det.ind"/>
<attr-item tags="det.dem"/>
<attr-item tags="det.pos"/>
<attr-item tags="predet"/>

</def-attr>

<def-attr n="gen">
<attr-item tags="m"/>
<attr-item tags="f"/>
<attr-item tags="mf"/>
<attr-item tags="nt"/>
<attr-item tags="GD"/>

</def-attr>

• <section-def-vars>: This section contains the definition of the
variables used in the rules.

5.3. ADDING STRUCTURAL TRANSFER RULES 143

<def-var n="interrogativa"/>

• <section-def-macros>: Here the macroinstructions are defined,
which contain sequences of code that are frequently used in the rules;
this way, linguists do not need to write the same actions repeatedly.
There are, for example, macroinstructions for gender and number
agreement operations.

• <section-def-rules>: This is the section where the structural
transfer rules are written.

The following is an example of a rule which detects the sequence determiner–
noun:

<rule>
<pattern>
<pattern-item n="det"/>
<pattern-item n="nom"/>

</pattern>
<action>
<call-macro n="f_concord2">
<with-param pos="2"/>
<with-param pos="1"/>

</call-macro>
<out>
<lu>
<clip pos="1" side="tl" part="whole"/>

</lu>
<b pos="1"/>
<lu>
<clip pos="2" side="tl" part="whole"/>

</lu>
</out>

</action>
</rule>

Part of the action performed on this pattern is specified inside the macroin-
struction f concord2, which is defined in the <section-def-macros>.
It performs gender and number agreement operations: if there is a gender
or number change between the source language and the target language
(in the noun), the determiner changes its gender or number accordingly;
furthermore, if gender or number are undetermined (GD or ND7), the noun

7See pages 40 or 131

144 CHAPTER 5. MAINTAINING LINGUISTIC DATA

receives the correct gender or number values from the preceding deter-
miner. In the Apertium es–ca, es–gl and es–pt systems, there are agree-
ment macroinstructions defined for one, two, three or four lexical units
(f concord1, f concord2, f concord3, f concord4). When calling
the macroinstructions in a rule, it must be specified which is the main lex-
ical unit (the one which most heavily determines the gender or number of
the other lexical units) and which other lexical units of the pattern have to
be included in the agreement operations, in order of importance. This is
done with the <with-param pos=""/> element. In the presented rule,
the main lexical unit is the noun (position ”2” in the pattern) and the sec-
ond one is the determiner (positions ”1” in the pattern).

After the pertinent actions, the resulting lexical forms are sent out, in-
side the <out> element. Each lexical unit is defined with a <clip>. Its
attributes mean the following:

- pos: refers to the position of the lexical form in the pattern; 1 is the
first lexical form (the determiner) and 2 the second one (the noun).

- side: indicates if the lexical form is in the source language (sl) or in
the target language (tl). Of course, words are sent out always in the
target language; source language lexical forms may be needed inside
of a rule, when testing its attributes or characteristics.

- part: indicates which part of the lexical form is referred to in the
clip. You can use some predefined values:

- whole: the whole lexical form (lemma and grammatical sym-
bols). Used only when sending out the lexical unit (inside an
<out> element).

- lem: the lemma of the lexical unit

- lemh: the head of the lemma of a multiword with inner inflec-
tion (see Section 5.2.2 in this chapter, or Section 3.1.2.6 if you
wish a more detailed description)

- lemq: the queue of a lemma of a multiword with inner inflec-
tion

Apart from these predefined values, you can use any of the attributes
defined in <section-def-attrs> (for example gen or a det).

The values lemh and lemq are used when sending out multiwords
with inner inflection in order to place the head and the queue of the
lemma in the right position, since the previous module moved the

5.3. ADDING STRUCTURAL TRANSFER RULES 145

queue just after the lemma head for various reasons. In practice, in
our system, this means that you must use these values instead of
whole when sending out verbs. This is because, in our dictionaries,
multiwords with inner inflection are always verbs and, if you use the
value whole when sending them out, the multiword would not be
well formed (the head and the queue of the lemma would not have
the correct position and the multiword could not be generated by the
generator).

Therefore, a rule that has a verb in its pattern must send the lexical
forms like in the following two examples:

<rule>
<pattern>
<pattern-item n="verb"/>

</pattern>
<action>
<out>
<lu>
<clip pos="1" side="tl" part="lemh"/>
<clip pos="1" side="tl" part="a_verb"/>
<clip pos="1" side="tl" part="temps"/>
<clip pos="1" side="tl" part="persona"/>
<clip pos="1" side="tl" part="gen"/>
<clip pos="1" side="tl" part="nbr"/>
<clip pos="1" side="tl" part="lemq"/>

</lu>
</out>

</action>
</rule>

<rule>
<pattern>
<pattern-item n="verb"/>
<pattern-item n="prnenc"/>

</pattern>
<action>
<out>
<mlu>
<lu>
<clip pos="1" side="tl" part="lemh"/>
<clip pos="1" side="tl" part="a_verb"/>

146 CHAPTER 5. MAINTAINING LINGUISTIC DATA

<clip pos="1" side="tl" part="temps"/>
<clip pos="1" side="tl" part="persona"/>
<clip pos="1" side="tl" part="nbr"/>

</lu>
<lu>
<clip pos="2" side="tl" part="lem"/>
<clip pos="2" side="tl" part="a_prnenc"/>
<clip pos="2" side="tl" part="persona"/>
<clip pos="2" side="tl" part="gen"/>
<clip pos="2" side="tl" part="nbr"/>
<clip pos="1" side="tl" part="lemq"/>

</lu>
</mlu>

</out>
</action>

</rule>

The first rule detects a verb and places the queue in the correct place,
after all the grammatical symbols. The lexical unit is sent specifying the
attributes separately: lemma head, lexical category (verb), tense, person,
gender (for the participles), number and lemma queue.

The second rule detects a verb followed by an enclitic pronoun and
sends the two lexical forms specifying also the attributes separately; the
first lexical unit consists of: lemma head, lexical category (verb), tense,
person and number; the second lexical unit consists of: lemma, lexical
category (enclitic pronoun), person, gender, number and lemma queue (of
the first lexical form). This way, the queue of the lemma is placed after
the enclitic pronoun. The two lexical units (verb and enclitic pronoun) are
sent inside a <mlu> element, since they have to reach the morphological
generator as a multilexical unit (multiword).

Taking into account what we have explained here, if you want to add
a new transfer rule you have to follow these steps:

1. Specify which pattern you want to detect. Bear in mind that words
are processed only once by a rule, and that rules are applied left to
right and choosing the longest match. For example, imagine you
have in your transfer rules file only two rules, one for the pattern
determiner–noun and one for the pattern noun–adjective. The Spanish
phrase el valle verde (”the green valley”) would be detected and pro-
cessed by the first one, not by the second. You will need to add a rule
for the pattern determiner - noun - adjective if you wish that the three
lexical units are processed in the same pattern.

5.4. ADDING DATA FOR THE PART-OF-SPEECH TAGGER 147

2. Describe the operations you want to perform on the pattern. In the
Apertium es-ca, es-gl and es-pt systems, simple agreement op-
erations (gender and number agreement) are easy to perform in a
rule by means of a macroinstruction. To perform other operations,
you will need to use more complicated elements; for a more detailed
description of the language used to create rules, refer to the section
3.5.4.

3. Send the lexical units of the pattern in the target language inside an
<out> element. Each lexical unit must be included in a <lu> ele-
ment. If two or more lexical units must be generated as a multilexical
unit (only for enclitic pronouns in the present language pairs) , they
must be grouped inside a <mlu> element.

All the words that are detected by a rule (that are part of a pattern)
must be sent out at the end of the rule so that the next module (the
generator) receives them. If a lexical unit is detected by a pattern and
is not included in the <out> element, it will not be generated.

5.4 Adding data for the lexical categorial disam-
biguator (part-of-speech tagger)

The lexical categorial disambiguator takes the linguistic information needed
to disambiguate a text basically from two sources: a tagset definition file
and corpora. The tagset definition file is contained in the linguistic data
directory and its name has the structure apertium-PAIR.LANG.tsx,
whereas corpora information is contained in the LANG-tagger-data di-
rectory included in the previous directory.

The tagset definition file contains the definition of the coarse tags (or cat-
egories) used by the tagger when being trained and when disambiguating
a text, as well as tag co-occurrence restrictions that help obtain better tag
probabilities. In Section 3.2 you can find a detailed description of its char-
acteristics.

The corpora that need to be in the LANG-tagger-data directory are
different depending on whether the tagger is trained in a supervised way
(with manually disambiguated text) or unsupervised (without manually
disambiguated text):

• to train the tagger in a supervised way you need the files (examples
from es-tagger-data): es.tagged.txt, es.untagged, es.tagged,
es.dic.

148 CHAPTER 5. MAINTAINING LINGUISTIC DATA

• to train the tagger in an unsupervised way you need the files (exam-
ples from es-tagger-data): es.crp.txt, es.crp, es.dic

These files have the following characteristics:

• es.tagged.txt: A Spanish corpus in plain text format.

• es.untagged: The corpus es.tagged.txt morphologically anal-
ysed, which means, processed by the de-formatter and the morpho-
logical analyser (automatically generated corpus).

• es.tagged: The preceding corpus manually disambiguated.

• es.crp.txt: A large corpus (hundreds of thousands of words)
used when training the tagger in an unsupervised way with Baum-
Welch reestimation.

• es.crp: The preceding corpus processed consecutively by the de-
formatter and the morphological analyser (automatically generated
corpus).

• es.dic: File created from the Spanish monolingual dictionary *.es.dix,
by means of the lt-expand and apertium-filter-ambiguity
tools, which expand the dictionary and filter the ambiguity classes,
so that the file contains all the forms identified as different ambiguity
classes by the tagger defined with *.es.tsx; that is, which lexical
categories can be homographs (automatically generated corpus).

When downloading Apertium from Sourceforge (http://apertium.
sourceforge.net/), if the tagger has been trained in a supervised way,
it is probable that you get the files needed for this kind of training, es.tagged
and es.tagged.txt (for Spanish). The other required files are automat-
ically generated when running the training. If the tagger has been trained
in an unsupervised way, you will not get any corpus in the download
since the files required for this kind of training are huge. If you wish to
train the tagger with this method, you will need to collect a large corpus
and name it es.crp.txt. The other required files are automatically gen-
erated when running the training.

Anyway, the Apertium translator comes with all the data required for
a good performance of the tagger. You don’t need to train the tagger in
order to use Apertium. A retraining might be required in the case that
you have made really extensive changes to the dictionaries or you have
modified the tagset definition file.

Therefore, the tagger data can be modified in two ways:

5.5. DETECTING ERRORS 149

1. Change the tagset definition file. You can add, change or delete the
coarse tags used by the tagger, if you think that a new category could
be useful for the disambiguation or that a certain category should be
modified to obtain better results. You can also add restrictions (for
example, you can forbid the sequence determiner–determiner if this
is an impossible combination in a given language and can help in the
disambiguation of certain homograph words).

2. Modify the corpora used to train the tagger. You can modify the
manually disambiguated text (es.tagged for Spanish) if you think
that certain tags have been wrongly selected. You can also add sen-
tences to this text (and to es.tagged.txt, used to automatically
generate the corpus es.untagged) in order to add information to
the tagger, since it is possible that certain combinations are incor-
rectly disambiguated because the tagger has not found them in the
training corpora.

There are two commands to run the training:

• to train in a supervised way, type, in the directory containing the lin-
guistic data (example for es–ca): make -f es-ca-supervised.make

• to train in an unsupervised way, type, in the directory containing the
linguistic data (example for es–ca): make -f es-ca-unsupervised.make

In both cases, planned files will be automatically generated.

5.5 Detecting errors

It is easy to make errors when adding new words or transfer rules to the
Apertium system.

On the one hand, it is possible that, when compiling the new files, the
system displays an error message. In this case, this is a formal error (a
missing XML tag, a tag that is not allowed in a certain context, etc.). You
just have to go to the line number indicated by the error message, cor-
rect the error and compile again. On the other hand, there are other types
of errors not detected when compiling, but which can make the system
mistranslate a word or give an incomprehensible text string. These are lin-
guistic errors, which can be detected and corrected with the tips given in

150 CHAPTER 5. MAINTAINING LINGUISTIC DATA

this chapter. The following information is for Linux users, since Apertium
works for the moment only in this operating system.8

5.5.1 Adjusting error symbols

When the system encounters a problem to translate any word of a source
language text, in the default mode the system outputs the problematic
word together with a symbol that indicates that an error has occurred.
The meaning of the different symbols is the following:

• ’@’: The problem is in the lexical transfer module, which can not
translate the lexical form (the bilingual dictionary does not contain
it)

• ’#’: The problem has occurred in the generator, which can not gener-
ate the surface form from the input lexical form (the morphological
dictionary does not contain it in the generation direction)

• ’/’: This symbol separates two or more surface forms delivered by
the generator. The problem, therefore, is in the target language mono-
lingual dictionary, which has, in the generation direction, two sur-
face forms for a single lexical form, when it should have only one.

The generation module has three modes, which enable us to decide
how errors will be displayed in the final output. The three possible pa-
rameters are:

• -n : error symbols and the unknown-word symbol will NOT be dis-
played, and neither will any grammatical symbols

• -g : error symbols and the unknown-word symbol will be displayed
(default mode)

• -d : error symbols and the unknown-word symbol will be displayed,
as well as the grammatical symbols of the lexical forms producing
the error.

The preferable mode depends on the type of user and on the translation
purpose. The first option is the most suitable when the user does not want
that external signs interfere in the reading of the translation. The second

8There are in http://apertium.org experimental packages for Windows with
fixed linguistic data (non-modifiable binary files).

5.5. DETECTING ERRORS 151

option is useful when the user wants the system to show where there has
been a problem in the translation (errors or unknown words) in order to be
able to post-edit it easily. The third option is ideal for linguistic developers
of Apertium, since it displays all the linguistic information of the forms
that produced an error.

Taking advantage of the error symbols output by the system, it is pos-
sible to carry out a thorough test of the dictionaries of a certain language
pair. This will enable you to detect and correct all its errors. To learn how
to do it, see Section 5.5.4.

5.5.2 Output of the different Apertium modules

Sometimes it is difficult to find the origin of an error. In such cases, it is
useful to see the output of each of the modules. As all the data processed
by the system, from the original text to the translated text, circulate be-
tween the eight modules of the system in text format, it is possible to stop
the text stream at any point to know what is the input or the output of a
certain module.

Using a pipeline structure and the echo or cat commands, you can
send a text through one or more modules to analyse their output and de-
tect the origin of the error. We describe next how to do it. You have to
move to the directory where the linguistic data are saved and type the
described commands.

5.5.2.1 The morphological analyser output

To know how a word is analyzed by the translator, type the following in
the terminal (example for the Catalan word sabates):

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin

You can replace ca-es with the translation direction you want to test.
The output in Apertium should be:

ˆsabates/sabata<n><f><pl>$ˆ./.<sent>$[][]

The string structure is ˆword/lemma<morphological analysis>$. The
<sent> tag is the analysis of the full stop, as every sentence end is repre-
sented as a full stop by the system, whether or not explicitly indicated in
the sentence.

The analysis of an unknown word is (ignoring the full stop info):

ˆgenoma/*genoma$

152 CHAPTER 5. MAINTAINING LINGUISTIC DATA

and the analysis of an ambiguous word:

ˆcasa/casa<n><f><sg>/casar<vblex><pri><p3><sg>/casar<vblex><imp><p2><sg>$

Each lexical form (lemma plus morphological analysis) is presented as
a possible analysis of the word casa.

5.5.2.2 The tagger output

To know the output of the tagger for a source language text, type the fol-
lowing in the terminal (example for the Catalan-Spanish direction):

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin
|apertium-tagger -g ca-es.prob

The output will be:

ˆsabata<n><f><pl>$ˆ./.<sent>$[][]

The output for an ambiguous word will be like the one above, since the
tagger chooses one lexical form among all the possibilities. Therefore, the
output for casa in Catalan will be, for example (depending on the context):

ˆcasa<n><f><sg>$ˆ.<sent>$[][]

5.5.2.3 The pretransfer output

This module applies some changes to multiwords (move the lemma queue
of a multiword with inner inflection just after the lemma head). To know
its output, type:

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin
|apertium-tagger -g ca-es.prob | apertium-pretransfer

Since sabates is not a multiword, this module does not alter its input.

5.5.2.4 The structural and lexical transfer output

To know how a word, phrase or sentence is translated into the target lan-
guage and processed by structural transfer rules, type the following in the
terminal:

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin
|apertium-tagger -g ca-es.prob | apertium-pretransfer
| ./ca-es.transfer ca-es.autobil.bin

5.5. DETECTING ERRORS 153

The output for this word will be:

ˆzapato<n><m><pl>$ˆ.<sent>$[][]

Analysing how a word or phrase is output by this module can help
you detect errors in the bilingual dictionary or in the structural transfer
rules. Typical bilingual dictionary errors are: two equivalents for the same
source language lexical form, or wrong assignment of grammatical sym-
bols. Errors due to structural transfer rules vary a lot depending on the
actions performed by the rules.

5.5.2.5 The morphological generator output

To know how a word is generated by the system, type the following in the
terminal:

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin
|apertium-tagger -g ca-es.prob | apertium-pretransfer
| ./ca-es.transfer ca-es.autobil.bin | ltproc -g ca-es.autogen.bin

With this command you can detect generation errors due to an incor-
rect entry in the target language monolingual dictionary or to a divergence
between the output of the bilingual dictionary (the output of the previous
module) and the entry in the monolingual dictionary.

The correct output for the input sabates would be:

zapatos.[][]

There are in this step no grammatical symbols, and the word appears
inflected.

5.5.2.6 The post-generator output

It is not very usual to have errors due to the post-generator, because of its
generally small size and the fact that it is seldom changed after adding
usual combinations, but you can also test how a source language text
comes out of this module, by typing:

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin
|apertium-tagger -g ca-es.prob | apertium-pretransfer
| ./ca-es.transfer ca-es.autobil.bin | ltproc -g ca-es.autogen.bin
| ltproc -p es-ca.autopgen.bin

154 CHAPTER 5. MAINTAINING LINGUISTIC DATA

5.5.2.7 The Apertium output

You can put all the modules of the system in the pipeline structure and
see how a source language text goes through all the modules and gets
translated into the target language. You just have to add the re-formatter
to the previous command:

echo "sabates" | apertium-destxt | lt-proc ca-es.automorf.bin
|apertium-tagger -g ca-es.prob | apertium-pretransfer
| ./ca-es.transfer ca-es.autobil.bin | ltproc -g ca-es.autogen.bin
| ltproc -p es-ca.autopgen.bin | apertium-retxt

This is the same as using the apertium shell script provided by the
Apertium package:

echo "sabates" | apertium . ca-es

(The dot indicates the directory where the linguistic data are saved, in this
case the current directory).

Of course, instead of typing all the presented commands every time
you need to test a translation, you can create shell scripts for every action
and use them to test the output of each module.

5.5.3 Error examples

1) We can get the following kind of output in a translation:

$ echo "nord" | apertium . ca-es
$ #norte<n><m><sg>

This means that the word was correctly translated by the bilingual dic-
tionary but that the system does not find it in the Spanish morphological
dictionary to generate it. The problem can be in the morphological dictio-
nary but can also be caused by an incorrect bilingual entry, in which the
grammatical symbols that the translated word is assigned do not corre-
spond with the grammatical symbols that this word has in the morpho-
logical dictionary.

2) The following es-ca bilingual entry does not take into account the
gender change between adhesiu (masculine) and pegatina (feminine), caus-
ing the translator to give an error:

5.5. DETECTING ERRORS 155

<e>
<p>
<l>pegatina<s n="n"/></l>
<r>adhesiu<s n="n"/></r>

</p>
</e>

$ echo "adhesiu" | apertium . ca-es
$ #pegatina<n><m><sg>

The correct entry should be:

<e>
<p>
<l>pegatina<s n="n"/><s n="f"/></l>
<r>adhesiu<s n="n"/><s n="m"/></r>

</p>
</e>

3) The following error is given when the source language lexical form
can not be found in the bilingual dictionary, either because there is not an
entry for this lemma or because the entry does not correspond with the
grammatical symbols received from the analyser:

$ echo "illot" | apertium . ca-es
$ @illot<n><m><sg>

4) When a source language lexical form has two correspondences in the
bilingual dictionary, the translator output is like the following one:

$ echo "llavor" | apertium . ca-es
$ #pepita<n>/semilla<n><m><sg>

The solution is to put a direction restriction in one of the bilingual en-
tries.

Some errors can be due to structural transfer rules. The way to solve a
problem whose origin we don’t know, is to test the output of the different
modules to detect where the problem arises.

156 CHAPTER 5. MAINTAINING LINGUISTIC DATA

5.5.4 Testing the integrity of the dictionaries

It is highly advisable to test the integrity of our dictionaries from time to
time, especially if we changed them significantly –or if we changed the
transfer rules, because some errors can be due to its application.

The test is carried out in one translation direction. For this reason, for
a given language pair, you will have to perform two tests, one in each
direction.

The steps you have to follow to perform the test are:

• expand the source language monolingual dictionary, using the lt-expand
tool, to obtain all the lexical forms (which are the forms that appear
on the right of the colon in the output file);

• send these lexical forms (except those that are only generation forms,
which lt-expand will have marked with the symbol ’<’) through
all the system modules from pretransfer to the generator;

• Search in the result, the lexical forms marked with the symbols ’#’ ,
’@’ or ’/’, which will be the error forms (see Section 5.5.1).

5.6 Generating a new Apertium system from mod-
ified data

If you make changes to any of the linguistic data files of Apertium (dic-
tionaries, transfer rules or tagger definition file), the changes will not be
applied until you recompile the modules. To do this, type make in the
directory where the linguistic data are saved so that the system generates
the new binary files.

If changes were made to the tagger definition file or to the corpora used
to train the tagger, you will need also to retrain the tagger: in the same lin-
guistic data directory, you have to type (example for the Spanish tagger
in the es-ca translator) make -f es-ca-unsupervised.make for un-
supervised training or make -f es-ca-supervised.make for super-
vised training.

After compilation, apertium will already use the new data.

Chapter 6

Data insertion web forms

This chapter describes the dictionary maintaining system in Apertium 2.
It is organized in two sections. Section 6.2 gives the necessary information
to install and adjust the web application for word insertion. Section 6.3
describes how to use the tool to add linguistic data.

6.1 Introduction

Adding lemmas to the dictionaries of the different languages in Apertium
is a slow task if you do it by manually editing the XML dictionaries; for this
reason web forms have been created, which make the word insertion task
considerably easier and, furthermore, allow the users to do it remotely
from any computer with Internet access.

The tool consists of a set of forms written in php which can be used
from any Internet navigator, either locally in the same computer where
dictionaries are saved, or remotely.

6.2 Installing and managing

6.2.1 Installing the tool

The installation must be done in a Unix machine which has an Apache
web server with php installed. So, you will first need to install the php
server if it is not installed, and then proceed to install the form tool.

To install the tool, download the package ‘apertium-lexical-webform-0.9’
from the Apertium web page in Sourceforge (http://apertium.sourceforge.
net/) and unpack it in the directory where you want to leave the tool.

157

158 CHAPTER 6. DATA INSERTION WEB FORMS

cd /path/to the /forms tar -xvzf
/path/apertium-lexical-webform-0.9.tar.gz

You must take into account that Apache only serves the pages that are
in the root directory that we configured. Therefore, the directory where
you place the forms must be a subdirectory inside the root directory of the
Apache server.

Next, you have to edit the configuration file, which you can find in pri-
vate/config.php, and give the appropriate values to the configuration vari-
ables:

• $anmor: entire path of the morphological analyser lt-proc.

• $dicos path: path to the directory where the final dictionaries and
the compiled binaries of each dictionary are saved. This directory
must contain a subdirectory for each dictionary with which the form
can work. The subdirectory name must have the following struc-
ture: paradigmes-ll-rr , where ll and rr are the initials of the
language pair involved. Each directory must contain the final dictio-
naries used by the machine translation system and the correspond-
ing compiled binaries. These directories can be replaced with sym-
bolic links in the case that they are located in a different place.

• $usuaris professionals: a list of the professional users in the
system that have permission to insert words in the form dictionaries
and to validate entries pending confirmation.

• $mail: E-mail address of the administrator of the forms. When
someone wants to register as a user, an e-mail will be sent to this
address.

Once the parameters of this file have been configured, the forms server
is already in use.

6.2.2 Directory structure

All the files required by the application are structured as follows:

• /index.php: displays the initial insertion form. It has a section for
each language pair, where the user inserts the SL lemma and the TL
lemma and chooses the appropriate part of speech. After pressing
the ’Go on’ button, the next page is displayed, where the user has to
select the appropriate inflection paradigms for the SL lemma and the
TL lemma.

6.2. INSTALLING AND MANAGING 159

• /dics: directory that contains the dictionaries with the entries in-
serted from the forms. It contains the files with the entries from non-
professional users (pending validation) and the dictionaries with the
XML entries from professional users.

• /private: most modules used in the forms are saved here. It con-
tains also the directories with the definition of paradigms for all the
languages of the forms; these directories have the name paradigmes-ll-rr,
where ll and rr are the initials of a given language pair. The order
chosen for the two languages, first ll and then rr, depends on the or-
der defined for entries in the bilingual dictionary. This directory con-
tains also the files that carry out the whole processing of the words
being inserted. These files are:

– resultado.php: This php is called when two words for
any language pair are inserted from the module index.php. Ba-
sically, what it does is to establish the language pair involved
($LR and $RL) and the part of speech of the words being in-
serted ($tipus). It is included in the selec.php module, that is the
next one called in the insertion process. In the case that the ti-
pus (type) of the word being inserted is a multiword unit (Multi
Word Verb), then multip.php is the module included and called
instead of selec.php. The Multi Word Verb elements consist of a
verb that can inflect followed by an invariable queue of one or
more words (see Section 3.1.2.6 for a detailed description).

– selecc.php: This module is in charge of the selection of
paradigms for the pair of words, the SL word and the TL word.
It displays a list of paradigms to be chosen from, which depends
on the part of speech of the entry being inserted. When a new
paradigm is selected for a lemma, it displays some examples of
inflected forms of the lemma according to the chosen paradigm.
If the user accepts the chosen paradigms, the module calls in-
sertarPro.php or insertar.php depending on whether the user is
professional or non-professional respectively.

– multip.php: It has the same function as the selecc.php mod-
ule but for multiword units. It uses the same variables and per-
forms the same actions, but in the examples displayed, the verb
is inflected and the words of the queue are added after it. It
works in an analogous way as the selecc.php module, whose de-
tailed description can be found in Section 6.2.3.2.

160 CHAPTER 6. DATA INSERTION WEB FORMS

– valida.php: This module is called when a professional
user wants to validate words that are in the queue of entries
pending validation. It consults the file of words to be validated
reading them one by one; it takes the data of the entry in turn
(LRlem, RLlem, paradigmaLR, paradigmaRL, LR, RL, etc.) and calls
selecc.php to continue with the insertion process of that specific
entry.

– insertarPro.php: This module is called when the paradigms
for the SL word and the TL word have already been selected
(which was done in selecc.php), and displays what the resulting
XML entries will look like for the three dictionaries (SL mono-
lingual, bilingual and TL monolingual) . From this screen it is
possible to directly modify the code, and finally to accept the
new entry or to cancel the operation.

– ins multip.php: It has the same function as insertarPro.php
but it is designed for multiword entries, therefore, the entry is
treated differently so that the inserted XML code is correct.

– insertar.php: This module is equivalent to insertarPro.php
but for non-professional users. The actions it performs are much
more simple, since the module just adds the lemmas and the
paradigms selected by the non-professional user to the file of
words to be validated; they remain in this file until a profes-
sional user validates them.

– verSemi.php: This module displays the file of entries in-
serted by non-professional users which are waiting for valida-
tion. It is useful for professional users who, before starting vali-
dating words, want to see which words are in the queue waiting
for validation. It can be called from a link displayed in the form
generated by selec.php.

– paradigmas.xsl: Style sheet used to generate the paradigm
files that are used by the form modules. It is used with the
specification of paradigms of a language written in XML format.
This question will be explained in more detail in Section 6.2.5
Paradigm files.

– creaparadigma.awk: awk file used also to generate the men-
tioned paradigm files.

– gen paradig.sh: Script that can be used if we want to gen-
erate automatically the paradigm files for all the language pairs
installed in our system.

6.2. INSTALLING AND MANAGING 161

In the next sections you will find a detailed description of the tasks of
each module.

6.2.3 Php files

6.2.3.1 resultado.php

Depending on the value of the variable $nomtrad updated by index.php,
the module assigns the appropriate values to $LR and $RL (source lan-
guage and target language respectively). Then, according to the part of
speech of the word being inserted, the variable $tipo is assigned the ap-
propriate value, and then selec.php or multip.php are called depending on
whether the word is a simple unit or a multiword unit.

6.2.3.2 selecc.php

The function of this module is the selection of a paradigm for the words
being inserted. The user will have to select a paradigm for the SL word
and another one for the TL word.

There are a group of variables which, depending on the part of speech
of the word, are assigned certain values that will be used at the end ; these
variables are:

• cadFich: part of speech of the lemma.

• show: string displayed in the form that indicates the part of speech
of the word being inserted.

• tag: string with the XML tag output by the morphological analyser
for this part of speech.

• tagout: string with the XML code that shows the part of speech of
the word. This string will be used when building the final XML entry
that will be inserted in the dictionary.

• nota: string with possible comments to be inserted in the XML code
of the entry.

Forms work with 4 kinds of dictionaries:

• Semi-professional dictionaries: They contain the words inserted from
the form by non-professional users and which are pending valida-
tion. Their extension is ”semi.dic”

162 CHAPTER 6. DATA INSERTION WEB FORMS

• Form dictionaries: They contain the words inserted from the form by
professional users, and also the ones that have been validated from
the semi-professional dictionaries. Their extension is ”webform”.

• Final dictionaries: The files with all the entries written in XML code.
These are the files finally used by the translator after being compiled.
Their extension is ”dix”.

• Final compiled dictionaries: These are the compiled final dictionaries,
which can already be used by the binaries of the translator. Their
extension is ”bin”

All these dictionaries are used by the forms; there are variables that
contain the paths to them. Values are also assigned to variables that man-
age the paths to the auxiliary and the configuration files:

• path: path to the temporary dictionaries.

• fich LR: source language dictionary with the words inserted from
the form that are not yet in the final dictionary nor in the compiled
dictionary.

• fich RL: target language dictionary with the words inserted from
the form that are not yet in the final dictionary nor in the compiled
dictionary.

• fich LRRL: bilingual dictionary with the words inserted from the
form that are not yet in the final dictionary nor in the compiled dic-
tionary.

• fich-semi: entries inserted from the form by non-professional
users and which are pending validation.

• path paradigmasLR: path to the files that contain the inflection
paradigms of the source language.

• path paradigmasRL: path to the files that contain the inflection
paradigms of the target language.

• anmor: path to the morphological analyser.

• aut LRRL: path to the bilingual binary from source language to tar-
get language.

• aut RLLR: path to the bilingual binary from target language to source
language.

6.2. INSTALLING AND MANAGING 163

Then the html code is inserted with the operations to be performed
depending on the selected action. The actions performed by the module
are the following, in sequential order:

• Tests that the source language lemma being inserted is not already
in the dictionaries containing the words inserted from the form. If
selecc.php has been called from the word validation screen (valida.php),
then the module tests that the lemma is not already in the file of
words inserted by non-professional users. It tests this also in the fi-
nal dictionary.

• Performs the same test for the target language.

• Code is written to select translation direction restrictions.

• A series of functions are defined, which will be used when generat-
ing the examples for the lemmas after the selection of the appropriate
paradigm. These are:

– esVocalFuerte

– esVocalDebil

– esVocal

– PosicioVocalTall

These functions are described later in section 6.2.3.5.

• The paradigm file is opened to display a drop-down box with the
paradigms that can be selected for the source language lemma. To
do this, the program has to test sequentially the paradigms defined
for the part of speech of the lemma, checking whether the paradigm
can be applied to the lemma in question.

• Then the same is done with the paradigms for the target language
lemma.

• After the lemmas and the corresponding paradigms have been se-
lected, examples must be generated to show how these lemmas would
be inflected according to the selected paradigms. To do this, we
need the root of the lemma (raiz LR and raiz RL), as well as the
example endings for the selected paradigm (paradigma LR and
paradigma RL); these endings are obtained from the paradigm file.
Finally, a string is build containing the generated examples (ejemplos LR
and ejemplos RL), and these are displayed.

164 CHAPTER 6. DATA INSERTION WEB FORMS

• If we arrived to this screen because we were validating words (va-
lida=1), then a button is added to the form, which allows us to
delete the current entry if we decide not to validate it.

• If the user that arrived to this screen is a professional user, then a but-
ton is added to the form, which allows the user to select the option
for the validation of words entered by non-professional users.

• Finally, after one of the action buttons located at the bottom of the
form is pressed, the applicable actions are performed. If the chosen
action is ”Delete”, which can only be the case if the user is validating
entries, the current entry is deleted from the file of entries made by
non-professional users. If the chosen action is a confirmation (”Go
on” button), the module insertarPro.php or insertar.php is
called, depending on whether the user is professional or non-professional
respectively. These modules are in charge of inserting the words in
the dictionaries.

After the entry has been inserted, the page validar.php or the page
selecc.php are displayed again, depending on whether the user was
doing a validation process (and then valida=1) or a normal insertion.

6.2.3.3 multip.php

The code and behaviour of this module is the same as selecc.php. The only
difference is that this module is designed for managing multiword units,
whereas selec.php manages the rest of units. Therefore, the main difference
is the existence of the variables $LRcua and $RLcua, which contain the
invariable queue that comes after the variable part of a multiword. When
the examples are displayed, besides showing the variable part inflected
according to the selected paradigm, also and editable text box is displayed
with the invariable queue.

When the button to continue with the insertion of the entry in the dic-
tionaries is pressed, the module ins multip.php is called instead of inser-
tarPro.php.

6.2.3.4 valida.php

This module is called when a professional user presses the button ”validate
pairs”. It reads the dictionary of entries pending validation ($fichSemi) for
the applicable language pair. Then, the module enters a loop that goes
through this file and reads the entries one by one. With the information of

6.2. INSTALLING AND MANAGING 165

a given entry, it assigns values to a set of variables that will be used in the
modules that will perform the subsequent actions. These variables are, for
example:

$LRlem $RLlem
$paradigmaLR $paradigmaRL
$direccions $tipo
$comentarios $user
$geneLR $geneRL
$numLR $numRL
$LR $RL

Once the appropriate values for these variables have been established,
the module selec.php comes into action and treats the entries as if they were
made by a professional user. After inserting the entries in the dictionaries
by means of insertarPro.php, the flow returns to valida.php, which proceeds
to the next entry to be validated.

6.2.3.5 insertarPro.php

After the lemmas have been entered and their paradigms selected in se-
lec.php, this is the module that generates the corresponding XML entries
and inserts them in the monolingual dictionaries and the bilingual dictio-
nary.

It performs many operations similar to those performed in selec.php,
such as generating the examples for the inflected word. Thus, firstly, it
gives values to cadFich, show, tag, tagout, nota depending on
the part of speech ($tipus) of the word being inserted. It assigns paths to
the file location variables and defines some required functions as occurred
in selec.php.

• esVocalFuerte: Returns true if the vowel is strong, that is, a, e, o.

• esVocalDebil: Returns true if the vowel is weak, that is i, u.

• esVocal: Returns true if the character passed as an argument is a
vowel.

• diptongo: Returns true if the two letters passed as an argument
make a diphthong. This will be the case when at least one of the two
vowels is not strong.

166 CHAPTER 6. DATA INSERTION WEB FORMS

• acentuar: It receives a text string and accentuates it according to
the Spanish accentuation rules, depending on the parameter $sigu-
ienteletra.

• esMayuscula: Returns true if the character is in upper case.

• TieneAcento: Returns true if the string has an accent.

• acentua: Accentuates the last accentuable vowel of a word with an
open or closed accent, depending on the direction specified in the
parameter $sentit.

• PonQuitaAcento: Inserts or removes the accent of the first string
passed as an argument depending on whether the second string passed
as an argument has an accent or not.

• PosicioVocalTall: Returns the position in the lemma ($lema)
for the vowel ($vocal) that separates the root from the ending. The
vowel is searched from the end to the beginning and the first occur-
rence of $vocal is returned.

Now, the same operations as in selec.php are performed. Firstly, it makes
sure that the entry is not yet in the dictionaries, and then generates the
examples of the word inflected according to the paradigm previously se-
lected. After this, it builds the string with the XML code that is going to
be inserted in the source language monolingual dictionary. With the in-
formation on the lemmas entered in selec.php, a text string is generated
($cad LR) that contains the XML code for the monolingual dictionary. This
string is displayed in a text box that can be manually edited. The same
process is done to generate the string for the target language monolingual
dictionary ($cad RL) and for the bilingual dictionary ($cad bil). Then,
the possible comments and the name of the user making the entry are
concatenated to these variables, if applicable. Finally, the form screen is
completed adding the buttons for accepting, deleting and going back. The
code to process each one of the possible actions is at the end of the file:

• Insert: In this case, it makes some character replacements so
that the entry has the right format in the dictionaries, and inserts the
strings $cad LR, $cad bil, $cad RL in the source monolingual,
bilingual and target monolingual dictionaries respectively ($fich LR,
$fich LRRL, $fich RL). If some error occurs when inserting the
entry, a warning message is displayed. If insertarPro.php was called

6.2. INSTALLING AND MANAGING 167

from a word validation process ($valida=1), then the button ”Con-
tinue” is inserted to continue with the validation. If this is not the
case, then a button to close the window is inserted, to allow the user
to end the process.

• Delete: It deletes the entry from the file of entries pending vali-
dation.

6.2.3.6 ins multip.php

It performs the same actions as insertarPro.php but it is intended for mul-
tiword units. The main difference is the existence of two additional vari-
ables, $LRcua and $RLcua, that contain the invariable part of a multi-
word. When the entry is added to the dictionaries, this queue has to be
inserted in the right place and the blanks have to be turned into
tags.

6.2.3.7 insertar.php

The function of this module is very simple. It builds a text string with the
information provided by selec.php separated by tabs. This string contains
all the required information to generate a dictionary entry:

$LRlem.$RLlem.$paradigmaLR.$direccion.$paradigmaRL.
$tipo.$comentarios.$user.$geneLR.$geneRL.
This entry is saved in a file ($fichSemi) that contains the queue with the

entries waiting for validation inserted by non-professional users. When a
professional user wishes to validate pending entries, the valida.php module
will read from this file.

6.2.3.8 verSemi.php

It displays the file of entries waiting for validation, in this way: it reads
the file containing the entries ($fichSemi) and enters a loop that reads all
the entries of the file. For each entry, it displays a line with the following
information:

$LRlem $paradigmaLR $direccion $RLlem
$paradigmaRL $tipo $comentarios

6.2.4 Dictionary files

The files containing the entries inserted from the form are saved in /dics.
There are here two kinds of files:

168 CHAPTER 6. DATA INSERTION WEB FORMS

• apertium-ll-rr.xx.webform: This is the file that contains the
entries in XML code, ready to be copied to the final dictionaries. The
name of the file has the presented structure, where ll-rr are the
initials of the language pair of the translator and xx the initials of
the language of the monolingual dictionary or the languages of the
bilingual dictionary referred to, as applicable. For example, the ini-
tials of the Spanish-Catalan translator are es-ca. For this transla-
tor, we have the Spanish monolingual (es), the Catalan monolingual
(ca) and the bilingual (es-ca) dictionaries. Therefore, this directory
will contain the following files for the Spanish-Catalan translator:

apertium-es-ca.es.webform
apertium-es-ca.ca.webform

apertium-es-ca.es-ca.webform

• oo-mm.semi.dic: This is the file containing the entries pending
validation for a given language pair. oo-mm are the initials of the
pair. For example, for the Spanish-Catalan translator this file would
be: es-ca.semi.dic

6.2.5 Paradigm files

The paradigms used for each language pair are specified in two XML files
named paradig.ll-rr.xx.xml, where xx are the initials of the lan-
guage and ll-rr the initials of the language pair. These files consist of a
set of entries describing the paradigms or inflection models for the words
of a given language. The XML file has the following parts:

• Head/root of the specification file.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="paradigmas.xsl"?>
<!DOCTYPE form SYSTEM "form.dtd">
<form lang="oc" langpair="oc-ca">

The lang attribute states the initials of the language for which paradigms
are specified, and the langpair attribute states the initials of the lan-
guage pair of the translator for which the specification is made. It is
required that the same directory containing the paradigm files con-
tains the form.dtd file, which is the DTD specifying these files. You
can find this DTD in the Appendix A.7.

6.2. INSTALLING AND MANAGING 169

• A set of elements that define the paradigms. To explain its format,
we reproduce the following example:

<entry PoS="adj" nbr="sg_pl" gen="mf">
<endings>

<stem>amable</stem>
<ending/>
<ending>s</ending>

</endings>
<paradigms howmany="1">

<par n="amable adj"/>
</paradigms>

</entry>

Each paradigm is specified in a <entry> element. This element can
have three attributes:

– PoS: the part of speech of the paradigm. It can take the values:
acr, adj, adv, noun, pname, pr, verbo. It is mandatory for any
part of speech.

– nbr: the numbers admitted by the paradigm. It can take the
values: sg, pl, sg pl, sp.

– gen: the genders admitted by the paradigm. It can take the val-
ues: m, f, m f, mf.

It has two more elements:

– endings: the root and the endings used to select the paradigm
in the form and display the inflection examples.

– paradigms: specification of the paradigm/s that define the in-
flection of an entry. It requires the attribute howmany , which
specifies the number of paradigms used by an entry. Each used
paradigm is indicated in a line, where the name of the paradigm
in the dictionary is inserted according to this format:

<par n="long adj"/>

From the XML paradigm file, it is necessary to generate the files directly
used by the modules of the forms. Running the script /private/gen paradig.sh,
the process is automatically done for all the available language pairs:

170 CHAPTER 6. DATA INSERTION WEB FORMS

cd private
./gen paradig.sh

To add a new paradigm to the forms, an appropriate entry has to be added
to the XML paradigm file, and then run the previous script to update the
working files.

The automatic process can also be done manually if we do not want to
update the files for all the installed language pairs. The manual genera-
tion of the working files has to be done with a XSL style sheet using the
following command:

xsltproc paradigmas.xsl paradigm file.xml
| ./creaparadig.awk

This action generates a working file for each part of speech. The gen-
erated files are saved in the directories /private/paradigmas.ll-rr.
These directories contain the files with the paradigms that can be used for
each language pair ll-rr and for each part of speech. Each one of these
directories contain the following files:

• paradigacr xx: paradigms for acronyms in the language xx.

• paradigadj xx: paradigms for adjectives in the language xx.

• paradigadv xx: paradigms for adverbs in the language xx.

• paradigcnjadv xx: paradigms for adverbial conjunctions in the
language xx.

• paradigcnjcoo xx: paradigms for copulative conjunctions in the
language xx.

• paradigcnjsub xx: paradigms for subordinating conjunctions in
the language xx.

• paradignoun xx: paradigms for nouns in the language xx.

• paradigpname xx: paradigms for proper nouns in the language
xx.

• paradigpr xx: paradigms for prepositions in the language xx.

• paradigverb xx: paradigms for verbs in the language xx.

The files consist of one entry per line. Each entry contains the following
information:

6.2. INSTALLING AND MANAGING 171

examples number of paradigms model paradigms (numbers) (genders)

The separator used for the different parts of an entry is the tab.

• Examples: the endings that will be used to generate the examples
when the user chooses this paradigm as a model for the word being
inserted.

• Number of paradigms: the number of paradigms that are used in the
dictionary to inflect this inflection model.

• Model paradigms: the name that have in the dictionary the paradigm/s
that will be used to inflect a new entry.

• (Numbers): Only completed for names, adjectives and acronyms. Refers
to the grammatical number in the paradigm.

• (Genders): Only completed for names, adjectives and acronyms. Refers
to the grammatical gender in the paradigm.

So, therefore, for the Spanish-Catalan translator we would have the
directory /private/paradigmas.es-ca that would contain two XML
files: paradig.es-ca.es.xml and paradig.es-ca.ca.xml, specify-
ing the paradigms used in each language. From these files, you may gen-
erate all the paradigm files for the language pair using the command:

cd private/paradigmas.es-ca
xsltproc ../paradigmas.xsl paradig.es-ca.es.xml

| ../creaparadig.awk
xsltproc ../paradigmas.xsl paradig.es-ca.ca.xml

| ../creaparadig.awk

Or you can automatically generate them for all the language pairs, us-
ing:

./private/gen paradig.sh

Among the generated working files, one would be, for example, a file
called paradigverb ca that would contain the possible verb paradigms
for Catalan, where a possible line might be:

abra/çar /ço /ci 1 abalan/çar vblex

that is generated from the XML entry:

172 CHAPTER 6. DATA INSERTION WEB FORMS

<entry PoS="verb">
<endings>

<stem>abra</stem>
<ending>çar</ending>
<ending>ço</ending>
<ending>ci</ending>

</endings>
<paradigms howmany="1">

<par n="abalan/çar vblex"/>
</paradigms>

</entry>

6.3 Using the forms

6.3.1 Introduction

When a user wants to insert new entries in a dictionary, he/she has to use
a web navigator to connect to the address where the form server has been
installed; for example:

http://xixona.dlsi.ua.es/forms

A web page will be displayed with the portal of access to Opentrad-
Apertium Insertion Form. The left margin contains links to get more
information , download the programs and contact the administrator of the
forms to request registration as a system user. To register as a user you
will have to send an e-mail to the administrator.

To insert new words, you will have to introduce the required data in the
form and press the ’Go On’ button; at this point you will have to identify
yourself as a registered user, or else you will not be able to continue. There
are two user registration types: you can be registered as a professional or
as a non-professional user. Each mode has different functionalities, that are
explained in the following section.

6.3.2 Insertion of entries

6.3.2.1 Professional mode

If you want to add a new entry to the dictionaries, you have to go to the
section of the language pair you want to improve. There, you have to enter

6.3. USING THE FORMS 173

the source language lemma and the target language lemma, and select
their part of speech. Press the Go on button to continue.

A new window is displayed, with the lemmas and some parameters
used to define the entries. If the entry already exists in one of the dic-
tionaries, a warning message is displayed and the system automatically
selects one-way translation (from left to right or vice versa). If none of the
dictionaries contain the entry, the entry will be entered for both directions.

In this window you can do three actions:

• Choose the paradigm for the SL and the TL lemmas (this is manda-
tory, the remaining actions are not).1

• Select the translation direction of the entry if it is different from the
automatically suggested.

• Add comments to the entry, that will be included in the final dictio-
nary.

Once the required actions have been done, you have to press ’Go on’ if
you want to confirm the entry or ’Close’ if you want to cancel the insertion
operation.

The following and last screen displays the three generated XML entries
for the SL monolingual, TL monolingual and bilingual dictionaries. These
entries are displayed in three text boxes that can be edited if you want to
do any change. Once you checked the entries, press the ’Insert’ button to
finally insert them in the corresponding dictionaries. You can also press
the ’Go back’ button to return to the previous step.

6.3.2.2 Non-professional mode

When a user enters the insertion system as a non-professional user, the
word insertion mechanism is the same as for the professional user, with

1Choosing the paradigm has to be done very carefully. You have to choose the
paradigm that describes exactly the grammatical and inflection characteristics of the in-
serted word. In the case of adjectives, nouns and acronyms, you have to select a paradigm
that fits the inflection of the word and the genders it may present. For example, in the case
of acronyms you have to consider the gender and the number admitted by each possible
paradigm; the paradigm BBC, for example, is for feminine singular acronyms, whereas
SA is for feminine acronyms that may have plural form. In the case of proper nouns, you
have to choose a different paradigm depending on whether the word is a proper noun of
a thing (e.g. a newspaper), a person or a place.

174 CHAPTER 6. DATA INSERTION WEB FORMS

the difference that the entries will not be saved in the dictionaries gener-
ated by the forms, but will be entered in a queue of entries pending val-
idation. The words in this queue will not be inserted in the dictionaries
until a professional user validates them.

6.3.3 Validating entries

Professional users have two additional links in the screen for paradigm
selection:

• See pairs to be validated: Selecting this option will open a screen that
displays the content of the file of entries pending validation; these
are the entries inserted by non-professional users. This is a merely
informative screen, which can be closed pressing the ’Close’ button.

• Validate pairs: This option allows a professional user to validate one
by one the entries waiting for validation. Selecting this button will
open the screen for the selection of paradigms already described in
section 6.3.2. This screen will show the data selected by the user for
the added entry. Now, the professional user can modify the lemmas,
delete the entry or continue with the insertion process. If the user
decides to proceed with the insertion, the process is the same as for
a normal insertion; only at the end, when the entry is finally added
to the dictionaries of the form, the control returns to the following
entry of the queue pending validation and displays it.

This process is repeated until all the words of the queue are validated
or until the process is finished by selecting ’Close’.

Appendix A

Document Type Definitions
(DTD) in XML

A.1 DTD for the format of dictionaries

Document type definition for the format of morphological, bilingual and
post-generation dictionaries in XML; this definition is provided with the
apertium package (last version) which can be downloaded from http:
//www.sourceforge.net.

The description of its elements can be found in Section 3.1.2.3.

<!ELEMENT dictionary (alphabet?, sdefs?,
pardefs?, section+)>

<!ELEMENT alphabet (#PCDATA)>

<!ELEMENT sdefs (sdef+)>

<!ELEMENT sdef EMPTY>
<!ATTLIST sdef n ID #REQUIRED>

<!ELEMENT pardefs (pardef+)>

<!ELEMENT pardef (e+)>
<!ATTLIST pardef n CDATA #REQUIRED>

<!ELEMENT section (e+)>

<!ATTLIST section id ID #REQUIRED
type (standard|inconditional|postblank) #REQUIRED>

175

176 APPENDIX A. XML DTDS

<!ELEMENT e (i | p | par | re)+>
<!ATTLIST e r (LR|RL) #IMPLIED

lm CDATA #IMPLIED
a CDATA #IMPLIED
c CDATA #IMPLIED

<!ELEMENT par EMPTY>
<!ATTLIST par n CDATA #REQUIRED>

<!ELEMENT i (#PCDATA | b | s | g | j | a)*>

<!ELEMENT re (#PCDATA)>

<!ELEMENT p (l, r)>

<!ELEMENT l (#PCDATA | a | b | g | j | s)*>

<!ELEMENT r (#PCDATA | a | b | g | j | s)*>

<!ELEMENT a EMPTY>

<!ELEMENT b EMPTY>

<!ELEMENT g (#PCDATA | a | b | j | s)*>
<!ATTLIST g i CDATA #IMPLIED>

<!ELEMENT j EMPTY>

<!ELEMENT s EMPTY>

<!ATTLIST s n IDREF #REQUIRED>

A.1.1 Modification of the DTD of dictionaries for lexical
selection

The DTD for the format of dictionaries has been slightly modified so that
dictionaries can be used in a system that has a lexical selection module.
The change only affects the <e> element and is displayed next.

...

A.2. DTD FOR THE TAGGER FILE 177

<!ATTLIST e
r (LR|RL) #IMPLIED
lm CDATA #IMPLIED
a CDATA #IMPLIED
c CDATA #IMPLIED>
i CDATA #IMPLIED
slr CDATA #IMPLIED
srl CDATA #IMPLIED>

<!-- r: restriction LR: left-to-right,
RL: right-to-left -->

<!-- lm: lemma -->
<!-- a: author -->
<!-- c: comment -->
<!-- i: ignore (’yes’) means ignore, otherwise it is not ignored) -->
<!-- slr: translation sense when translating from left to right -->
<!-- srl: translation sense when translating from right to left -->

...

A.2 DTD for the format of the tagger file

DTD that defines the format of the tagger specification file. This defini-
tion is provided with the apertium package (last version) which can be
downloaded from http://www.sourceforge.net.

The description of its elements can be found in Section 3.2.2.2.

<!ELEMENT tagger (tagset,forbid?,enforce-rules?,preferences?)>
<!ATTLIST tagger name CDATA #REQUIRED>

<!ELEMENT tagset (def-label+,def-mult*)>

<!ELEMENT def-label (tags-item+)>
<!ATTLIST def-label name CDATA #REQUIRED

closed CDATA #IMPLIED>

<!ELEMENT tags-item #EMPTY>
<!ATTLIST tags-item tags CDATA #REQUIRED

lemma CDATA #IMPLIED>

<!ELEMENT def-mult (sequence+)>
<!ATTLIST def-mult name CDATA #REQUIRED

178 APPENDIX A. XML DTDS

closed CDATA #IMPLIED>

<!ELEMENT sequence ((tags-item|label-item)+)>

<!ELEMENT label-item #EMPTY>
<!ATTLIST label-item label CDATA #REQUIRED>

<!ELEMENT forbid (label-sequence+)>

<!ELEMENT label-sequence (label-item+)>

<!ELEMENT enforce-rules (enforce-after+)>

<!ELEMENT enforce-after (label-set)>
<!ATTLIST enforce-after label CDATA #REQUIRED>

<!ELEMENT label-set (label-item+)>

<!ELEMENT preferences (prefer+)>

<!ELEMENT prefer EMPTY>
<!ATTLIST prefer tags CDATA #REQUIRED>

A.3 DTD of the structural transfer module (chun-
ker)

DTD for the format of the structural transfer rules in the chunker mod-
ule. This definition is provided with the apertium package (version 2.0)
which can be downloaded from http://www.sourceforge.net.

Its elements are described in Section 3.5.4.

<!ENTITY % condition "(and|or|not|equal|begins-with|
ends-with|contains-substring|in)">

<!ENTITY % container "(var|clip)">
<!ENTITY % sentence "(let|out|choose|modify-case|

call-macro|append)">
<!ENTITY % value "(b|clip|lit|lit-tag|var|get-case-from|

case-of|concat)">
<!ENTITY % stringvalue "(clip|lit|var|get-case-from|

case-of)">

A.3. DTD OF THE CHUNKER MODULE 179

<!ELEMENT transfer (section-def-cats,
section-def-attrs,
section-def-vars,
section-def-lists?,
section-def-macros?,
section-rules)>

<!ATTLIST transfer default (lu|chunk) #IMPLIED>

<!ELEMENT section-def-cats (def-cat+)>

<!ELEMENT def-cat (cat-item+)>
<!ATTLIST def-cat n ID #REQUIRED>

<!ELEMENT cat-item EMPTY>
<!ATTLIST cat-item lemma CDATA #IMPLIED

tags CDATA #REQUIRED >

<!ELEMENT section-def-attrs (def-attr+)>

<!ELEMENT def-attr (attr-item+)>
<!ATTLIST def-attr n ID #REQUIRED>

<!ELEMENT attr-item EMPTY>
<!ATTLIST attr-item tags CDATA #IMPLIED>

<!ELEMENT section-def-vars (def-var+)>

<!ELEMENT def-var EMPTY>
<!ATTLIST def-var n ID #REQUIRED>

<!ELEMENT section-def-lists (def-list)+>

<!ELEMENT def-list (list-item+)>
<!ATTLIST def-list n ID #REQUIRED>

<!ELEMENT list-item EMPTY>
<!ATTLIST list-item v CDATA #REQUIRED>

<!ELEMENT section-def-macros (def-macro)+>

<!ELEMENT def-macro (%sentence;)+>
<!ATTLIST def-macro n ID #REQUIRED>

180 APPENDIX A. XML DTDS

<!ATTLIST def-macro npar CDATA #REQUIRED>

<!ELEMENT section-rules (rule+)>

<!ELEMENT rule (pattern, action)>
<!ATTLIST rule comment CDATA #IMPLIED>

<!ELEMENT pattern (pattern-item+)>

<!ELEMENT pattern-item EMPTY>
<!ATTLIST pattern-item n IDREF #REQUIRED>

<!ELEMENT action (%sentence;)*>

<!ELEMENT choose (when+,otherwise?)>

<!ELEMENT when (test,(%sentence;)*)>

<!ELEMENT otherwise (%sentence;)+>

<!ELEMENT test (%condition;)+>

<!ELEMENT and ((%condition;),(%condition;)+)>

<!ELEMENT or ((%condition;),(%condition;)+)>

<!ELEMENT not (%condition;)>

<!ELEMENT equal (%value;,%value;)>
<!ATTLIST equal caseless (no|yes) #IMPLIED>

<!ELEMENT begins-with (%value;,%value;)>
<!ATTLIST begins-with caseless (no|yes) #IMPLIED>

<!ELEMENT ends-with (%value;,%value;)>
<!ATTLIST ends-with caseless (no|yes) #IMPLIED>

<!ELEMENT contains-substring (%value;,%value;)>
<!ATTLIST contains-substring caseless (no|yes) #IMPLIED>

<!ELEMENT in (%value;, list)>
<!ATTLIST in caseless (no|yes) #IMPLIED>

A.3. DTD OF THE CHUNKER MODULE 181

<!ELEMENT list EMPTY>
<!ATTLIST list n IDREF #REQUIRED>

<!ELEMENT let (%container;, %value;)>

<!ELEMENT append (%value;)+>
<!ATTLIST append n IDREF #REQUIRED>

<!ELEMENT out (mlu|lu|b|chunk)+>

<!ELEMENT modify-case (%container;, %stringvalue;)>

<!ELEMENT call-macro (with-param)*>
<!ATTLIST call-macro n IDREF #REQUIRED>

<!ELEMENT with-param EMPTY>
<!ATTLIST with-param pos CDATA #REQUIRED>

<!ELEMENT clip EMPTY>
<!ATTLIST clip pos CDATA #REQUIRED

side (sl|tl) #REQUIRED
part CDATA #REQUIRED
queue CDATA #IMPLIED
link-to CDATA #IMPLIED>

<!ELEMENT lit EMPTY>
<!ATTLIST lit v CDATA #REQUIRED>

<!ELEMENT lit-tag EMPTY>
<!ATTLIST lit-tag v CDATA #REQUIRED>

<!ELEMENT var EMPTY>
<!ATTLIST var n IDREF #REQUIRED>

<!ELEMENT get-case-from (clip|lit|var)>
<!ATTLIST get-case-from pos CDATA #REQUIRED>

<!ELEMENT case-of EMPTY>
<!ATTLIST case-of pos CDATA #REQUIRED

side (sl|tl) #REQUIRED
part CDATA #REQUIRED>

<!ELEMENT concat (%value;)+>

182 APPENDIX A. XML DTDS

<!ELEMENT mlu (lu+)>

<!ELEMENT lu (%value;)+>

<!ELEMENT chunk (tags,(mlu|lu|b)+)>
<!ATTLIST chunk name CDATA #IMPLIED

namefrom CDATA #IMPLIED
case CDATA #IMPLIED>

<!ELEMENT tags (tag+)>
<!ELEMENT tag (%value;)>

<!ELEMENT b EMPTY>
<!ATTLIST b pos CDATA #IMPLIED>

A.4. DTD OF THE INTERCHUNK MODULE 183

A.4 DTD of the interchunk module

DTD for the format of the structural transfer rules in the interchunk
module. This definition is provided with the apertium package (version
2.0) which can be downloaded from http://www.sourceforge.net.

Its elements are described in Section 3.5.4.

<!ENTITY % condition "(and|or|not|equal|begins-with|
ends-with|contains-substring|in)">

<!ENTITY % container "(var|clip)">
<!ENTITY % sentence "(let|out|choose|modify-case|

call-macro|append)">
<!ENTITY % value "(b|clip|lit|lit-tag|var|get-case-from|

case-of|concat)">
<!ENTITY % stringvalue "(clip|lit|var|get-case-from|

case-of)">

<!ELEMENT interchunk (section-def-cats,
section-def-attrs,
section-def-vars,
section-def-lists?,
section-def-macros?,
section-rules)>

<!ELEMENT section-def-cats (def-cat+)>

<!ELEMENT def-cat (cat-item+)>
<!ATTLIST def-cat n ID #REQUIRED>

<!ELEMENT cat-item EMPTY>
<!ATTLIST cat-item lemma CDATA #IMPLIED

tags CDATA #REQUIRED >

<!ELEMENT section-def-attrs (def-attr+)>

<!ELEMENT def-attr (attr-item+)>
<!ATTLIST def-attr n ID #REQUIRED>

<!ELEMENT attr-item EMPTY>
<!ATTLIST attr-item tags CDATA #IMPLIED>

<!ELEMENT section-def-vars (def-var+)>

184 APPENDIX A. XML DTDS

<!ELEMENT def-var EMPTY>
<!ATTLIST def-var n ID #REQUIRED>

<!ELEMENT section-def-lists (def-list)+>

<!ELEMENT def-list (list-item+)>
<!ATTLIST def-list n ID #REQUIRED>

<!ELEMENT list-item EMPTY>
<!ATTLIST list-item v CDATA #REQUIRED>

<!ELEMENT section-def-macros (def-macro)+>

<!ELEMENT def-macro (%sentence;)+>
<!ATTLIST def-macro n ID #REQUIRED>
<!ATTLIST def-macro npar CDATA #REQUIRED>

<!ELEMENT section-rules (rule+)>

<!ELEMENT rule (pattern, action)>
<!ATTLIST rule comment CDATA #IMPLIED>

<!ELEMENT pattern (pattern-item+)>

<!ELEMENT pattern-item EMPTY>
<!ATTLIST pattern-item n IDREF #REQUIRED>

<!ELEMENT action (%sentence;)*>

<!ELEMENT choose (when+,otherwise?)>

<!ELEMENT when (test,(%sentence;)*)>

<!ELEMENT otherwise (%sentence;)+>

<!ELEMENT test (%condition;)+>

<!ELEMENT and ((%condition;),(%condition;)+)>

<!ELEMENT or ((%condition;),(%condition;)+)>

<!ELEMENT not (%condition;)>

A.4. DTD OF THE INTERCHUNK MODULE 185

<!ELEMENT equal (%value;,%value;)>
<!ATTLIST equal caseless (no|yes) #IMPLIED>

<!ELEMENT begins-with (%value;,%value;)>
<!ATTLIST begins-with caseless (no|yes) #IMPLIED>

<!ELEMENT ends-with (%value;,%value;)>
<!ATTLIST ends-with caseless (no|yes) #IMPLIED>

<!ELEMENT contains-substring (%value;,%value;)>
<!ATTLIST contains-substring caseless (no|yes) #IMPLIED>

<!ELEMENT in (%value;, list)>
<!ATTLIST in caseless (no|yes) #IMPLIED>

<!ELEMENT list EMPTY>
<!ATTLIST list n IDREF #REQUIRED>

<!ELEMENT let (%container;, %value;)>

<!ELEMENT append (%value;)+>
<!ATTLIST append n IDREF #REQUIRED>

<!ELEMENT out (b|chunk)+>

<!ELEMENT modify-case (%container;, %stringvalue;)>

<!ELEMENT call-macro (with-param)*>
<!ATTLIST call-macro n IDREF #REQUIRED>

<!ELEMENT with-param EMPTY>
<!ATTLIST with-param pos CDATA #REQUIRED>

<!ELEMENT clip EMPTY>
<!ATTLIST clip pos CDATA #REQUIRED

part CDATA #REQUIRED>

<!ELEMENT lit EMPTY>
<!ATTLIST lit v CDATA #REQUIRED>

<!ELEMENT lit-tag EMPTY>
<!ATTLIST lit-tag v CDATA #REQUIRED>

186 APPENDIX A. XML DTDS

<!ELEMENT var EMPTY>
<!ATTLIST var n IDREF #REQUIRED>

<!ELEMENT get-case-from (clip|lit|var)>
<!ATTLIST get-case-from pos CDATA #REQUIRED>

<!ELEMENT case-of EMPTY>
<!ATTLIST case-of pos CDATA #REQUIRED

part CDATA #REQUIRED>

<!ELEMENT concat (%value;)+>

<!ELEMENT chunk (%value;)+>

<!ELEMENT pseudolemma (%value;)>

<!ELEMENT b EMPTY>
<!ATTLIST b pos CDATA #IMPLIED>

A.5. DTD OF THE POSTCHUNK MODULE 187

A.5 DTD of the postchunk module

DTD for the format of the structural transfer rules in the postchunkmod-
ule. This definition is provided with the apertium package (version 2.0)
which can be downloaded from http://www.sourceforge.net.

Its elements are described in Section 3.5.4.

<!ENTITY % condition "(and|or|not|equal|begins-with|
ends-with|contains-substring|in)">

<!ENTITY % container "(var|clip)">
<!ENTITY % sentence "(let|out|choose|modify-case|

call-macro|append)">
<!ENTITY % value "(b|clip|lit|lit-tag|var|get-case-from|

case-of|concat)">
<!ENTITY % stringvalue "(clip|lit|var|get-case-from|

case-of)">

<!ELEMENT postchunk (section-def-cats,
section-def-attrs,
section-def-vars,
section-def-lists?,
section-def-macros?,
section-rules)>

<!ELEMENT section-def-cats (def-cat+)>

<!ELEMENT def-cat (cat-item+)>
<!ATTLIST def-cat n ID #REQUIRED>

<!ELEMENT cat-item EMPTY>
<!ATTLIST cat-item name CDATA #REQUIRED>

<!ELEMENT section-def-attrs (def-attr+)>

<!ELEMENT def-attr (attr-item+)>
<!ATTLIST def-attr n ID #REQUIRED>

<!ELEMENT attr-item EMPTY>
<!ATTLIST attr-item tags CDATA #IMPLIED>

<!ELEMENT section-def-vars (def-var+)>

<!ELEMENT def-var EMPTY>

188 APPENDIX A. XML DTDS

<!ATTLIST def-var n ID #REQUIRED>

<!ELEMENT section-def-lists (def-list)+>

<!ELEMENT def-list (list-item+)>
<!ATTLIST def-list n ID #REQUIRED>

<!ELEMENT list-item EMPTY>
<!ATTLIST list-item v CDATA #REQUIRED>

<!ELEMENT section-def-macros (def-macro)+>

<!ELEMENT def-macro (%sentence;)+>
<!ATTLIST def-macro n ID #REQUIRED>
<!ATTLIST def-macro npar CDATA #REQUIRED>

<!ELEMENT section-rules (rule+)>

<!ELEMENT rule (pattern, action)>
<!ATTLIST rule comment CDATA #IMPLIED>

<!ELEMENT pattern (pattern-item+)>

<!ELEMENT pattern-item EMPTY>
<!ATTLIST pattern-item n IDREF #REQUIRED>

<!ELEMENT action (%sentence;)*>

<!ELEMENT choose (when+,otherwise?)>

<!ELEMENT when (test,(%sentence;)*)>

<!ELEMENT otherwise (%sentence;)+>

<!ELEMENT test (%condition;)+>

<!ELEMENT and ((%condition;),(%condition;)+)>

<!ELEMENT or ((%condition;),(%condition;)+)>

<!ELEMENT not (%condition;)>

<!ELEMENT equal (%value;,%value;)>

A.5. DTD OF THE POSTCHUNK MODULE 189

<!ATTLIST equal caseless (no|yes) #IMPLIED>

<!ELEMENT begins-with (%value;,%value;)>
<!ATTLIST begins-with caseless (no|yes) #IMPLIED>

<!ELEMENT ends-with (%value;,%value;)>
<!ATTLIST ends-with caseless (no|yes) #IMPLIED>

<!ELEMENT contains-substring (%value;,%value;)>
<!ATTLIST contains-substring caseless (no|yes) #IMPLIED>

<!ELEMENT in (%value;, list)>
<!ATTLIST in caseless (no|yes) #IMPLIED>

<!ELEMENT list EMPTY>
<!ATTLIST list n IDREF #REQUIRED>

<!ELEMENT let (%container;, %value;)>

<!ELEMENT append (%value;)+>
<!ATTLIST append n IDREF #REQUIRED>

<!ELEMENT out (b|lu|mlu)+>

<!ELEMENT modify-case (%container;, %stringvalue;)>

<!ELEMENT call-macro (with-param)*>
<!ATTLIST call-macro n IDREF #REQUIRED>

<!ELEMENT with-param EMPTY>
<!ATTLIST with-param pos CDATA #REQUIRED>

<!ELEMENT clip EMPTY>
<!ATTLIST clip pos CDATA #REQUIRED

part CDATA #REQUIRED>

<!ELEMENT lit EMPTY>
<!ATTLIST lit v CDATA #REQUIRED>

<!ELEMENT lit-tag EMPTY>
<!ATTLIST lit-tag v CDATA #REQUIRED>

<!ELEMENT var EMPTY>

190 APPENDIX A. XML DTDS

<!ATTLIST var n IDREF #REQUIRED>

<!ELEMENT get-case-from (clip|lit|var)>
<!ATTLIST get-case-from pos CDATA #REQUIRED>

<!ELEMENT case-of EMPTY>
<!ATTLIST case-of pos CDATA #REQUIRED

part CDATA #REQUIRED>

<!ELEMENT concat (%value;)+>

<!ELEMENT mlu (lu+)>

<!ELEMENT lu (%value;)+>

<!ELEMENT b EMPTY>
<!ATTLIST b pos CDATA #IMPLIED>

A.6. DTD FOR THE FORMAT RULES 191

A.6 DTD for the format specification rules

DTD for the format specification rules. This definition can be downloaded
from the web page http://cvs.sourceforge.net/viewcvs.py/apertium/
apertium/apertium/format.dtd.

Its elements are described in Section 3.6.2.

<!ELEMENT format (options,rules)>
<!ATTLIST format name CDATA #REQUIRED>

<!ELEMENT options (largeblocks, input, output,
escape-chars, space-chars, case-sensitive)>

<!ELEMENT largeblocks EMPTY>
<!ATTLIST largeblocks size CDATA #REQUIRED>

<!ELEMENT input EMPTY>
<!ATTLIST input zip-path CDATA #IMPLIED

encoding CDATA #REQUIRED>

<!ELEMENT output EMPTY>
<!ATTLIST output zip-path CDATA #IMPLIED

encoding CDATA #REQUIRED>

<!ELEMENT escape-chars EMPTY>
<!ATTLIST escape-chars regexp CDATA #REQUIRED>

<!ELEMENT space-chars EMPTY>
<!ATTLIST space-chars regexp CDATA #REQUIRED>

<!ELEMENT case-sensitive EMPTY>
<!ATTLIST case-sensitive value (yes|no) #REQUIRED>

<!ELEMENT rules (format-rule|replacement-rule)+>

<!ELEMENT format-rule (begin-end|(begin,end))>
<!ATTLIST format-rule eos (yes|no) #IMPLIED

priority CDATA #REQUIRED>

<!ELEMENT begin-end EMPTY>
<!ATTLIST begin-end regexp CDATA #REQUIRED>

<!ELEMENT begin EMPTY>

192 APPENDIX A. XML DTDS

<!ATTLIST begin regexp CDATA #REQUIRED>

<!ELEMENT end EMPTY>
<!ATTLIST end regexp CDATA #REQUIRED>

<!ELEMENT replacement-rule (replace+)>
<!ATTLIST replacement-rule regexp CDATA #REQUIRED>

<!ELEMENT replace EMPTY>
<!ATTLIST replace source CDATA #REQUIRED

target CDATA #REQUIRED
prefer (yes|no) #IMPLIED>

A.7. DTD FOR THE FORM PARADIGMS 193

A.7 DTD for the form paradigms

DTD for the format of the paradigm files used in the forms. This definition
is included in the package apertium-lexical-webform.

<!ELEMENT form (entry)+>

<!ATTLIST form
lang CDATA #REQUIRED
langpair CDATA #REQUIRED>

<!ELEMENT entry (endings, paradigms)+>

<!ATTLIST entry
PoS CDATA #REQUIRED
nbr CDATA #IMPLIED
gen CDATA #IMPLIED>

<!ELEMENT endings (stem, ending+)>

<!ELEMENT stem (#PCDATA)>

<!ELEMENT ending (#PCDATA)>

<!ELEMENT paradigms (par+)>

<!ATTLIST paradigms howmany CDATA #REQUIRED>

<!ELEMENT par EMPTY>

<!ATTLIST par n CDATA #REQUIRED>

194 APPENDIX A. XML DTDS

195

196 APPENDIX B. GRAMMATICAL SYMBOLS

Appendix B

Grammatical symbols used in the
modules

B.1 Grammatical symbols used in dictionaries

B.1.1 List of symbols

aa adjective-adjective (function of relative pronoun)
acr acronym
al others (for proper nouns)
an adjective-noun (function of relative pronoun)
ant antroponym
cni conditional
cnjadv adverbial conjunction
cnjcoo co-ordinating conjunction
cnjsub subordinating conjunction
def definite
dem demonstrative
det determiner
detnt neuter determiner
enc enclitic
f feminine
fti future indicative
fts future subjunctive
ger gerund
ifi perfect preterite
ij interjection
imp imperative
ind indefinite
inf infinitive

B.1. DICTIONARY SYMBOLS 197

itg interrogative
loc locative
lpar ([
lquest ¿
m masculine
mf masculine-feminine
n noun
nn noun-noun (function of relative pronoun)
np proper noun
nt neuter
num numeral - number
p1 first person
p2 second person
p3 third person
pii imperfect preterite indicative
pis imperfect preterite subjunctive
pl plural
pos possessive
pp participle
pr preposition
preadv preadverb
predet predeterminer
pri present indicative
prn pronoun
pro proclitic
prs present subjunctive
ref reflexive
rel relative
rpar)]
sent . ? ; : !
sg singular
sp singular-plural
sup superlative
tn tonic
vaux auxiliary verb
vbhaver verb to have
vblex lexical verb
vbmod modal verb
vbser verb to be

198 APPENDIX B. GRAMMATICAL SYMBOLS

B.1.2 Specification of lexical forms

Order for the placement of grammatical symbols in the morphological dic-
tionaries of this system (from left to right in the table). The examples in
brackets are from Spanish.

Common adjectives PoS Gender Number
(difı́cil, rojo) adj m sg

f pl
mf sp

Interrogative, possessive, PoS Type Gender Number
indetermined and superlative adj itg m sg
adjectives pos f pl
(qué, tus, otra, buenı́simo) ind mf sp

sup
Adverbs PoS
(siempre, mañana) adv
Preadverbs PoS
(muy, tan) preadv
Interrogative adverbs PoS Type
(dónde) adv itg
Adverbial conjunctions PoS
(que, ası́ como) cnjadv

cnjcoo
cnjsub

Determiners PoS Type Gender Number
(el, uno, este, mi) det def m sg

ind f pl
dem mf sp
pos

Neuter determiners PoS
(lo) detnt
Predeterminers PoS Gender Number
(todos) predet m sg

f pl
nt sp

Interjections PoS
(hola) ij
Common nouns PoS Gender Number
(casa, perro) n m sg

n f pl
n mf sp

Proper nouns PoS Type
(Pedro, Londres) np ant

loc
al

B.1. DICTIONARY SYMBOLS 199

Acronyms PoS Type Gender Number
(IRPF, INEM) n acr m sg

f pl
mf sp

Numerals PoS Gender Number
(tres) num m sg

f pl
mf sp

Prepositions PoS
(de, por) pr
Interrogative pronouns PoS Type Gender Number
(quién, qué) prn itg m sg

f pl
Enclitic, proclitic and PoS Type Person Gender Number
tonic personal prn enc p1 m sg
pronouns pro p2 f pl
(yo, vosotros, ayudarte, tn p3 mf sp
te ayudo) nt

Procl. reflexive pron. (se): prn pro ref p3 mf sp
Tonic reflex. pron. (si): prn tn ref p3 mf sp
Tonic possessive pron. PoS Type Subtype Gender Number
(mı́o, suyo) prn tn pos m sg

f pl
Other tonic pronouns PoS Type Gender Number
(aquella, nadie, otro) prn tn m sg

f pl
mf sp
nt

Pronominal and adjectival PoS Type Gender Number
relatives rel nn m sg
(que, cuyo) an f pl

aa f pl
Adverbial relatives PoS Type
(como, donde) rel adv
Verbs Type Tense Person Number
(personal forms) and mode
(subo, vamos) vblex cni p1 sg

vbser fti p2 pl
vbhaver fts p3
vbmod ifi

imp
pii
pis
pri
prs

Verbs Type Form
(infinitive and gerund) vblex inf
(cantar, buscando) vbser ger

vbhaver
vbmod

Verbs Type Form Gender Number
(participle) vblex pp m sg
(dormido, cansadas) vbser f pl

vbhaver
vbmod

200 APPENDIX B. GRAMMATICAL SYMBOLS

B.2 Categories used in the part-of-speech tagger

B.2.1 Spanish tagger

These are the categories or coarse tags used by the Spanish part-of-speech
tagger.

Tag Description Closed Examples
Simple tags

PARAPR Lexicalization of para as a preposition Yes
PARAVBPRI Lexicalization of para as a lexical verb

in present indicative Yes
PARAVBIMP Lexicalization of para as a lexical verb

in imperative Yes
QUECNJ Lexicalization of que as a conjunction Yes
QUEREL Lexicalization of que as a relative pronoun Yes
COMOPR1 Lexicalization of como as a preposition Yes
COMOREL Lexicalization of como as a relative pronoun Yes
COMOVB Lexicalization of como as a lexical verb

in present indicative Yes
MASADV Lexicalization of más/menos as an adverb Yes
MASADJ Lexicalization of más/menos as an adjective Yes
MASNP Lexicalization of Más as a proper noun Yes
ALGOADV Lexicalization of algo as an adverb Yes
ACRONIMOM Acronym No BCH
ACRONIMOF Acronym No ONU
ACRONIMOMF Acronym No ATS
INTNOM Interrogative pronoun Yes quién, cuál
ADJINT Interrogative adjective Yes cuánto, qué
INTADV Interrogative adverb Yes cuándo, dónde
PREADV Adverb that can precede another

adverb or an adjective Yes muy, bien, mal
ADV Adverb No nunca, ahı́
CNJSUBS Subordinating conjunction Yes que
CNJCOORD Co-ordinating conjunction Yes y, pero
CNJADV Adverbial conjunction No si
DETNT Neuter determiner Yes lo
DETM Determiner Yes el, un
DETF Determiner Yes la, una
DETMF Determiner Yes cada
INTERJ Interjection No ojalá, hola
NOM Noun No casa, coche
ANTROPONIM Proper noun for person No Fernando
TOPONIM Proper noun for place No Alicante

1The morphological analyser considers that como can be a preposition since it can be
replaced with en calidad de in some contexts (e.g.- ’Os hablo como director de la pelı́cula’).

B.2. CATEGORIES USED IN THE PART-OF-SPEECH TAGGER 201

Tag Description Closed Examples
NPALTRES Other proper nouns No Linux, Seat
NUM Numeral Yes tres, cuatro
PREDETNT Neuter predeterminer Yes todo
PREDET Predeterminer Yes toda
PREP Preposition Yes ante, desde
PRNTNNT Neuter tonic pronoun Yes algo, esto
PRNTN Tonic pronoun Yes ambos, nadie
PRNENCREF Reflexive enclitic pronoun Yes se
PRNPROREF Reflexive proclitic pronoun Yes se
PRNENC Enclitic pronoun Yes me, nos
PRNPRO Proclitic pronoun Yes le, te
VLEXINF Lexical verb in infinitive No cantar, reı́r
VLEXGER Lexical verb in gerund No hablando
VLEXPARTPI Lexical verb in participle No dicho, cantado
VLEXPFCI Lexical verb in present, future or

conditional indicative No digo, diré, dirı́a
VLEXIPI Lexical verb in imperfect preferite or

perfect preterite indicative No cantaba, dijo
VLEXSUBJ Lexical verb in subjunctive No hablase, dijeramos
VLEXIMP Lexical verb in imperative No canta, comed
VSERINF Verb to be in infinitive Yes ser
VSERGER Verb to be in gerund Yes siendo
VSERPARTPI Verb to be in participle Yes sido
VSERPFCI Verb to be in present, future or

conditional indicative Yes soy, seré, serı́a
VSERIPI Verb to be in imperfect preterite or

perfect preterite indicative Yes era, fui
VSERSUBJ Verb to be in subjunctive Yes fueras
VSERIMP Verb to be in imperative Yes sé
VHABERINF Verb to have in infinitive Yes haber
VHABERGER Verb to have in gerund Yes habiendo
VHABERPARTPI Verb to have in participle Yes habido
VHABERPFCI Verb to have in present, future or

conditional indicative Yes hay, habrán, habrı́a
VHABERIPI Verb to have in imperfect preterite or

perfect preterite indicative Yes habı́a, hubo
VHABERSUBJ Verb to have in subjunctive Yes hubieran
VMODALINF Modal verb in infinitive Yes deber, poder
VMODALGER Modal verb in gerund Yes debiendo
VMODALPARTPI Modal verb in participle Yes podido
VMODALPFCI Modal verb in present, future or

conditional indicative Yes puede, deberá, podrı́a
VMODALIPI Modal verb in imperfect preterite or

perfect preterite indicative Yes podı́a, debió
VMODALSUBJ Modal verb in subjunctive Yes pudiese, debiéramos
VMODALIMP Modal verb in imperative Yes poded, debed

202 APPENDIX B. GRAMMATICAL SYMBOLS

Tag Description Closed Examples
ADJM Adjective No gracioso
ADJF Adjective No graciosa
ADJMF Adjective No inteligente
ADJPOS Possessive adjective Yes mı́o
REL Relative pronoun Yes quien, cuya
RELADV Adverbial relative Yes cuando, donde

Compound tags
PREPDET Contraction of preposition and determiner Yes del, al
PRCNJ Multiword made of preposition and

conjunction Yes a que
PRREL Multiword made of preposition and

relative Yes en que
INFLEXPRNENC Lexical verb in infinitive with enclitics No dármelo, cantarlo
GERLEXPRNENC Lexical verb in gerund with enclitics No cantándosela
IMPLEXPRNENC Lexical verb in imperative with enclitics No dı́melo
INFSERPRNENC Verb to be in infinitive with enclitics Yes serlo
GERSERPRNENC Verb to be in gerund with enclitics Yes siéndolo
IMPSERPRNENC Verb to be in imperative with enclitics Yes sedlo
INFHABPRNENC Verb to have in infinitive with enclitics Yes habérsela
GERHABPRNENC Verb to have in gerund with enclitics Yes habiéndole
INFMODPRNENC Modal verb in infinitive with enclitics Yes poderla, deberlo
GERMODPRNENC Modal verb in gerund with enclitics Yes debiéndosela
IMPMODPRNENC Modal verb in imperative with enclitics Sı́ debédmela

Other tags
LQUEST Opening question mark ¿
LPAR Opening parenthesis or square bracket (, [
RPAR Closing parenthesis or square bracket),]
CM Comma ,
SENT Sentence end character ., :, ;, ?, !

B.2.2 Catalan tagger

Due to the similarity of the Catalan tagger categories and the Spanish ones,
we list here only the tags that are new or different in the Catalan tagger.

Tag Description Closed Examples
Simple tags

MOLTADV Lexicalization of molt/gaire as an adverb Yes
MOTLPREADV Lexicalization of molt/gaire as an adverb Yes
VOLERMOD Lexicalization of voler as a modal verb Yes
VOLERLEX Lexicalization of voler as a lexical verb Yes
VA Lexicalization of va as a form of the verb anar Yes

B.2. CATEGORIES USED IN THE PART-OF-SPEECH TAGGER 203

B.2.3 Galician tagger

Due to the similarity of the Galician tagger categories and the Spanish
ones, we list here only the tags that are new or different in the Galician
tagger.

Tag Description Closed Examples
Simple tags

VBIRNPS Lexicalization of to go in infinitive
and gerund Yes

VBIRPARTPI Lexicalization of to go in participle Yes
VBIRPS Lexicalization of to go in the personal forms

of indicative
and subjunctive Yes

VBIRIMP Lexicalization of to go in imperative Yes
VHABERNPS Lexicalization of to have in infinitive

and gerund Yes
VHABERPARTPI Lexicalization of to have in participle Yes
VHABERPS Lexicalization of to have in the personal forms

of indicative
and subjunctive Yes

VHABERIMP Lexicalization of to have in imperative Yes
APREP Lexicalization of a as a preposition Yes
VLEXNPS Lexical verb: infinitive and gerund No achegar, achegándomos
VLEXPS Lexical verb: personal forms

in indicative No achegue, achegaré
VSERNPS Verb to be: infinitive and gerund Yes ser, seres
VSERPS Verb to be: personal forms

in indicative Yes fosen, es
Compound tags

PREPDETM Contraction of preposition and
masculine determiner Yes do, ao

PREPDETF Contraction of preposition and
feminine determiner Yes da, ás

PREPDETN Contraction of preposition and
neuter determiner Yes do

PREPDETDET Contraction of preposition and
two determiners Yes destoutro

PREPPRTNNT Contraction of preposition and
neuter tonic pronoun Yes daquilo

PREPPRNTN Contraction of preposition and
tonic pronoun Yes daqueloutra

PREPTNTN Contraction of preposition and
two tonic pronouns Yes nestoutra

PREPNUM Contraction of preposition and
numeral Yes dunha

PREDETDET Contraction of predeterminer and

204 APPENDIX B. GRAMMATICAL SYMBOLS

Tag Description Closed Examples
determiner Yes tódalas

INTADVDET Contraction of adverbial interrogative and
determiner Yes u-la

DETDETM Contraction of two masculine determiners Yes ámbolos
DETDETF Contraction of two feminine determiners Yes ámbalas
PRNPRN Contraction of two tonic pronouns Yes esoutra
PRNPRN Contraction of two proclitic pronouns Yes chas
CNJCDET Contraction of co-ordinating conjunction and

determiner Yes maila
CNJSUB Contraction of subordinating conjunction and

determiner Yes cás

Appendix C

Abbreviations used in the text

ANSI American National Standards Institute; when used informally in
the expression ANSI text, it refers to a text encoded in any of the
encodings of one byte per character defined in the standard ISO-8859
[1].

ca ISO 639 two-letter code1 for Catalan

DTD Document type definition in XML

es ISO 639 two-letter code for Spanish

eu ISO 639 two-letter code for Basque

LF Lexical form (see page 7)

TLLF Target language lexical form

SLLF Source language lexical form

SF Surface form (see page 7)

gl ISO 639 two-letter code for Galician

pt ISO 639 two-letter code for Portuguese

HTML Hypertext markup language

TL Target language

SL Source language

1See http://www.w3.org/WAI/ER/IG/ert/iso639.htm

205

206 APPENDIX C. ABBREVIATIONS USED IN THE TEXT

RTF Rich text format

MT Machine translation

XML Extensible markup language

POS Part of speech

Bibliography

[1] Unicode. http://www.unicode.org.

[2] R. Canals-Marote, A. Esteve-Guillén, A. Garrido-Alenda,
M. Guardiola-Savall, A. Iturraspe-Bellver, S. Monserrat-Buendia,
S. Ortiz-Rojas, H. Pastor-Pina, P.M. Perez-Antón, and M.L. Forcada.
El sistema de traducción automática castellano-catalán interNOS-
TRUM. Procesamiento del Lenguaje Natural, 27:151–156, 2001. XVII
Congreso de la Sociedad Española de Procesamiento del Lenguaje
Natural, Jaén, Spain, 12-14.09.2001.

[3] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-
speech tagger. In Third Conference on Applied Natural Language Process-
ing. Association for Computational Linguistics. Proceedings of the Confer-
ence., pages 133–140, Trento, Italia, 31 marzo–3 abril 1992.

[4] A. Garrido, A. Iturraspe, S. Montserrat, H. Pastor, and M. L. For-
cada. A compiler for morphological analysers and generators based
on finite-state transducers. Procesamiento del Lenguaje Natural, (25):93–
98, 1999.

[5] Alicia Garrido-Alenda and Mikel L. Forcada. Morphtrans: un
lenguaje y un compilador para especificar y generar módulos de
transferencia morfológica para sistemas de traducción automática.
Procesamiento del Lenguaje Natural, 27:157–164, 2001.

[6] Alicia Garrido-Alenda, Mikel L. Forcada, and Rafael C. Carrasco.
Incremental construction and maintenance of morphological analy-
sers based on augmented letter transducers. In Proceedings of TMI
2002 (Theoretical and Methodological Issues in Machine Translation, Kei-
hanna/Kyoto, Japan, March 2002), pages 53–62, 2002.

[7] Alicia Garrido-Alenda, Patrı́cia Gilabert Zarco, Juan Antonio Pérez-
Ortiz, Antonio Pertusa-Ibáñez, Gema Ramı́rez-Sánchez, Felipe

207

208 BIBLIOGRAPHY

Sánchez-Martı́nez, Miriam A. Scalco, and Mikel L. Forcada. Shallow
parsing for portuguese-spanish machine translation. In A. Branco,
A. Mendes, and R. Ribeiro, editors, TASHA 2003: Workshop on Tagging
and Shallow Processing of Portuguese, pages 21–24, October 2003.

[8] N. Ide. The XML Framework and Its Implications for the Development of
Natural Language Processing Tools. Luxembourg, 2000.

[9] M.E. Lesk. Lex — a lexical analyzer generator. Technical Report Tech-
nical Report 39, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[10] Mehryar Mohri. Finite-state transducers in language and speech pro-
cessing. Computational Linguistics, 23(2):269–311, 1997.

[11] Sergio Ortiz-Rojas, Mikel L. Forcada, and Gema Ramı́rez-Sánchez.
Construcción y minimización eficiente de transductores de letras a
partir de diccionarios con paradigmas. Procesamiento del Lenguaje Nat-
ural, (25):51–57, 2005.

[12] Ferran Pla and Antonio Molina. Improving part-of-speech tagging
using lexicalized HMMs. Journal of Natural Language Engineering,
10(2):167–189, June 2004.

[13] L. R. Rabiner. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

[14] E. Roche and Y. Schabes. Introduction. MIT Press, Cambridge, Mas-
sachusetts, 1997.

[15] E. Roche and Y. Schabes. Introduction. In E. Roche and Y. Schabes,
editors, Finite-State Language Processing, pages 1–65. MIT Press, Cam-
bridge, Mass., 1997.

[16] J. L. A. van de Snepscheut. What computing is all about. Springer-
Verlag, New York, 1993.

[17] Patrı́cia Gilabert Zarco, Javier Herrero-Vicente, Sergio Ortiz-Rojas,
Antonio Pertusa-Ibáñez, Gema Ramı́rez-Sánchez, Felipe Sánchez-
Martı́nez, Marcial Samper-Asensio, Mı́riam A. Scalco, and Mikel L.
Forcada. Construcción rápida de un sistema de traducción au-
tomática español-portugués partiendo de un sistema español–
catalán. Procesamiento del Lenguaje Natural, (32):279–285, 2003. (Ac-
tas del XIX congreso de la Sociedad Española de Procesamiento del
Lenguaje Natural).

