
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 81–88, Vancouver, October 2005. c©2005 Association for Computational Linguistics

A Discriminative Framework for Bilingual Word Alignment

Robert C. Moore
Microsoft Research
One Microsoft Way

Redmond, WA 98052
bobmoore@microsoft.com

Abstract

Bilingual word alignment forms the foun-
dation of most approaches to statistical
machine translation. Current word align-
ment methods are predominantly based
on generative models. In this paper,
we demonstrate a discriminative approach
to training simple word alignment mod-
els that are comparable in accuracy to
the more complex generative models nor-
mally used. These models have the the
advantages that they are easy to add fea-
tures to and they allow fast optimization
of model parameters using small amounts
of annotated data.

1 Motivation

Bilingual word alignment is the first step of most
current approaches to statistical machine translation.
Although the best performing systems are “phrase-
based” (e.g, Och and Ney, 2004), possible phrase
translations are normally first extracted from word-
aligned bilingual text segments. The standard ap-
proach to word alignment makes use of various com-
binations of five generative models developed at
IBM by Brown et al. (1993), sometimes augmented
by an HMM-based model or Och and Ney’s “Model
6” (Och and Ney, 2003). The best combinations of
these models can produce high accuracy alignments,
at least when trained on a large corpus of fairly di-
rect translations in related languages.

These standard models are less than ideal, how-
ever, in a number of ways, two of which we address

in this paper. First, although the standard models can
theoretically be trained without supervision, in prac-
tice various parameters are introduced that should
be optimized using annotated data. For, example,
Och and Ney (2003) suggest supervised optimiza-
tion of a number of parameters, including the prob-
ablity of jumping to the empty word in the HMM
model, as well as smoothing parameters for the dis-
tortion probabilities and fertility probabilities of the
more complex models. Since the values of these pa-
rameters affect the values of the translation, align-
ment, and fertility probabilities trained by EM, there
is no effective way to optimize them other than to
run the training procedure with a particular combi-
nation of values and evaluate the accuracy of the re-
sulting alignments. Since evaluating each combina-
tion of parameter values in this way can take hours to
days on a large training corpus, it seems safe to say
that these parameters are rarely if ever truly jointly
optimized for a particular alignment task.

The second problem we address is the difficulty
of adding features to the standard generative models.
Generative models require a generative “story” as to
how the observed data is generated by an interrelated
set of stochastic processes. For example, the gener-
ative story for IBM Models 1 and 2 and the HMM
alignment model is that a target language translation
of a given source language sentence is generated by
first choosing a length for the target language sen-
tence, then for each target sentence position choos-
ing a source sentence word, and then choosing the
corresponding target language word. When Brown
et al. (1993) wanted to add a fertility component to
create Models 3, 4, and 5, however, this generative

81

story didn’t fit any longer, because it does not in-
clude how many target language words to align to
each source language word as a separate decision.
To model this explicitly, they had to come up with a
different generative story.

In this paper, we take a different approach to
word alignment, based on discriminative training of
a weighted linear combination of a small number
of features. For a given parallel sentence pair, for
each possible word alignment considered, we sim-
ply multiply the values of each of these features by a
corresponding weight to give a score for that feature,
and sum the features scores to give an overall score
for the alignment. The possible alignment having
the best overall score is selected as the word align-
ment for that sentence pair. Thus, for a sentence pair
(e, f) we seek the alignment â such that

â = argmaxa

n∑

i=1

λifi(a, e, f)

where the fi are features and the λi are weights.
We optimize the model weights using a modified

version of averaged perceptron learning as described
by Collins (2002). This is fast to train, because se-
lecting the feature weights is the last step in build-
ing the model and the “online” nature of perceptron
learning allows the parameter optimization to con-
verge quickly. Furthermore, no generative story has
to be invented to explain how the features generate
the data, so new features can be easily added without
having to change the overall structure of the model.

In theory, a disadvantage of a discrimintative ap-
proach compared to a generative approach is that
it requires annotated data for training. In practice,
however, effective discriminative models for word
alignment require only a few parameters, which can
be optimized on a set of annotated sentence pairs
comparable in size to what is needed to tune the free
parameters used in the generative approach. As we
will show, a simple sequence of two such models
can achieve alignment accuracy comparable to that
of a combination of more complex standard models.

2 Discriminative Alignment Models

We develop two word alignment models, incorpo-
rating different word association features intended
to indicate how likely two words or groups of words

are to be mutual translations, plus additional features
measuring how much word reordering is required by
the alignment1, and how many words are left un-
linked. One of the models also includes a feature
measuring how often one word is linked to several
words.

Each of our feature scores have analogs in the
IBM and HMM models. The association scores cor-
responds to word translation probabilities; the re-
ordering scores correspond to distortion probabili-
ties; the scores for words left unlinked corresponds
to probabilities of words being linked to the null
word; and the scores for one-to-many links corre-
spond to fertility probabilities.

2.1 The Log-Likelihood-Based Model

In our first model, we use a log-likelihood-ratio
(LLR) statistic as our measure of word association.
We chose this statistic because it has previously been
found to be effective for automatically construct-
ing translation lexicons (e.g., Melamed, 2000). We
compute LLR scores using the following formula
presented by Moore (2004):

LLR(f, e) =
∑

f?∈{f,¬f}

∑

e?∈{e,¬e}
C(f?, e?) log

p(f?|e?)
p(f?)

In this formula f and e mean that the words whose
degree of association is being measured occur in the
respective target and source sentences of an aligned
sentence pair, ¬f and ¬e mean that the correspond-
ing words do not occur in the respective sentences,
f? and e? are variables ranging over these values,
and C(f?, e?) is the observed joint count for the val-
ues of f? and e?. All the probabilities in the for-
mula refer to maximum likelihood estimates. The
LLR score for a pair of words is high if the words
have either a strong positive association or a strong
negative association. Since we expect translation
pairs to be positively associated, we discard any
negatively associated word pairs by requiring that
p(f, e) > p(f) · p(e). To reduce the memory re-
quirements of our algorithms we discard any word
pairs whose LLR score is less than 1.0.

1We will use the term “alignment” to mean an overall word
alignment of a sentence pair, and the term “link” to mean the
alignment of a particular pair of words or small group of words.

82

In our first model, the value of the word associa-
tion feature for an alignment is simply the sum of all
the individual LLR scores for the word pairs linked
by the alignment. The LLR-based model also in-
cludes the following features:

nonmonotonicity features It may be observed
that in closely related languages, word alignments
of sentences that are mutual translations tend to be
approximately monotonic (i.e., corresponding words
tend to be in nearly corresponding sentence posi-
tions). Even for distantly related languages, the
number of crossing links is far less than chance,
since phrases tend to be translated as contiguous
chunks. To model these tendencies, we introduce
two nonmonotonicity features.

To find the points of nonmonotonicity of a word
alignment, we arbitrarily designate one of the lan-
guages as the source and the other as the target. We
sort the word pairs in the alignment, first by source
word position, and then by target word position. We
then iterate through the sorted alignment, looking
only at the target word positions. The points of
nonmonotonicity in the alignment will be the places
where there are backward jumps in this sequence
of target word positions. For example, suppose we
have the sorted alignment ((1,1)(2,4)(2,5)(3,2)(5,6)).
The sequence of target word positions in this sorted
alignment is (1,4,5,2,6); hence, there is one point of
nonmonotonicity where target word position 2 fol-
lows target word position 5.

We still need to decide how to measure the degree
of nonmonotonicity of an alignment. Two meth-
ods immediately suggest themselves. One is to sum
the magnitudes of the backward jumps in the target
word sequence; the other is to simply count the num-
ber of backward jumps. Rather than choose between
them, we use both features.

the one-to-many feature It has often been ob-
served that word alignment links tend to be one-to-
one. Indeed, word alignment results can often be
improved by restricting more general models to per-
mit only one-to-one links. For example, Och and
Ney (2003) found that the intersection of the align-
ments found training the IBM models in both direc-
tions always outperformed either direction alone in
their experiments. Since the IBM models allow one-
to-many links only in one direction, this intersection

can contain only one-to-one links.
To model the tendency for links to be one-to-one,

we define a one-to-many feature as the number of
links connecting two words such that exactly one
of them participates in at least one other link. We
also define a many-to-many feature as the number of
links that connect two words that both participate in
other links. We don’t use this directly in the model,
but to cut down on the number of alignments we
need to consider, we discard any alignments having
a non-zero value of the many-to-many feature.

the unlinked word feature To control the number
of words that get linked to something, we introduce
an unlinked word feature that simply counts the total
number of unlinked words in both sentences in an
aligned sentence pair.

2.2 The Conditional-Link-Probability-Based
Model

In this model we replace the LLR-based word asso-
ciation statistic with the logarithm of the estimated
conditional probability of two words (or combina-
tions of words) being linked, given that they co-
occur in a pair of aligned sentences. These estimates
are derived from the best alignments according to
some other, simpler model. For example, if for-
mer occurs 1000 times in English sentences whose
French translations contain ancien, and the simpler
alignment model links them in 600 of those sentence
pairs, we might estimate the conditional link proba-
bility (CLP) for this word pair as 0.6. We find it
better, however, to adjust these probabilities by sub-
tracting a small fixed discount from the link count:

LPd(f, e) =
links1(f, e)− d

cooc(f, e)

LPd(f, e) represents the estimated conditional link
probability for the words f and e, links1(f, e) is
the number of times they are linked by the simpler
alignment model, d is the discount, and cooc(f, e)
is the number of times they co-occur. This adjust-
ment prevents assigning high probabilities to links
between pairs of words that rarely co-occur.

An important difference between the LLR-based
model and CLP-based model is that the LLR-based
model considers each word-to-word link separately,
but allows multiple links per word, as long as they

83

lead to an alignment consisting only of one-to-one
and one-to-many links (in either direction). In the
CLP-based model, however, we allow conditional
probabilities for both one-to-one and one-to-many
clusters, but we require all clusters to be disjoint.

For example, we estimate the conditional proba-
bility of linking not to ne...pas by considering the
number of sentence pairs in which not occurs in the
English sentence and both ne and pas occur in the
French sentence, compared to the number of times
not is linked to both ne and pas in pairs of corre-
sponding sentences. However, when we make this
estimate in the CLP-based model, we do not count a
link between not and ne...pas if the same instance of
not, ne, or pas is linked to any other words.

The CLP-based model incorporates the same ad-
dtional features as the LLR-based model, except that
it omits the one-to-many feature, since we assume
that the one-to-one vs. one-to-many trade-off is al-
ready modeled in the conditional link probabilities
for particular one-to-one and one-to-many clusters.

We have developed two versions of the CLP-
based model, using two different estimates for the
conditional link probabilities. One estimate of the
conditional link probabilities comes from the LLR-
based model described above, optimized on an an-
notated development set. The other estimate comes
from a heuristic alignment model that we previously
developed (Moore, 2005).2 Space does not permit
a full description of this heuristic model here, but
in brief, it utilizes a series of greedy searches in-
spired by Melamed’s competitive linking algorithm
(2000), in which constraints limiting alignments to
being one-to-one and monotonic are applied at dif-
ferent thresholds of the LLR score, with a final cut-
off of the LLR score below which no alignments are
made.

3 Alignment Search

While the discriminative models presented above
are very simple to describe, finding the optimal
alignment according to these models is non-trivial.
Adding a link for a new pair of words can affect the
nonmonotonicity scores, the one-to-many score, and
the unlinked word score differently, depending on

2The conditional link probabilities used in the current work
are those used in Method 4 of the earlier work. Full details are
provided in the reference.

what other links are present in the alignment. Never-
theless, we have found a beam-search procedure that
seems highly effective in finding good alignments
when used with these models.

For each sentence pair, we create a list of associa-
tion types and their corresponding scores, consisting
of the associations for which we have determined a
score and for which the words involved in the asso-
ciation type occur in the sentence pair.3 We sort the
resulting list of association types from best to worst
according to their scores.

Next, we initialize a list of possible alignments
with the empty alignment, assigning it a score equal
to the number of words in the sentence pair multi-
plied by the unlinked word weight. We then iterate
through our sorted list of association types from best
to worst, creating new alignments that add links for
all instances of the association type currently being
considered to existing alignments, potentially keep-
ing both the old and new alignments in our set of
possible alignments.

Without pruning, we would soon be overwhelmed
by a combinatorial explosion of alignments. The
set of alignments is therefore pruned in two ways.
First, we keep track at all times of the score of the
best alignment we have seen so far, and any new
alignment whose overall score is worse than the best
score so far by more than a fixed difference D is im-
mediately discarded. Second, for each instance of a
particular alignment type, when we have completed
creating modified versions of previous alignments to
include that instance, we merge the set of new align-
ments that we have created into the set of previous
alignments. When we do this merge, the resulting
set of alignments is sorted by overall score, and only
the N best alignments are kept, for a fixed N .

Some details of the search differ between the
LLR-based model and the CLP-based model. One
difference is how we add links to existing align-
ments. In both cases, if there are no existing links
involving any of the words involved in the new link,
we simply add it (keeping a copy of the original
alignment, subject to pruning).

If there are existing links involving word in-
stances also involved in the new link, the two mod-

3By association type we mean a possible link between a pair
of words, or, in the case of the CLP-based models, a possible
one-to-many or many-to-one linkage of words.

84

els are treated differently. For the CLP-based model,
each association score is for a cluster of words that
must be disjoint from any other association cluster,
so when we add links for a new cluster, we must
remove any other links involving the same word in-
stances. For the LLR-based model, we can add ad-
ditional links without removing old ones, but the re-
sulting alignment may be worse due to the degra-
dation in the one-to-many score. We therefore add
both an alignment that keeps all previous links, and
an additional set of alignments, each of which omits
one of the previous links involving one of the word
instances involved in the new link.

The other difference in how the two models are
treated is an extra pruning heuristic we use in the
LLR-based model. In generating the list of associ-
ation types to be used in aligning a given sentence
pair, we use only association types which have the
best association score for this sentence pair for one
of the word types involved in the association. We
initially explored limiting the number of associa-
tions considered for each word type simply as an ef-
ficiency heuristic, but we were surprised to discover
that the most extreme form of such pruning actually
reduced alignment error rate over any less restrictive
form or not pruning on this basis at all.

4 Parameter Optimization

We optimize the feature weights using a modified
version of averaged perceptron learning as described
by Collins (2002). Starting with an initial set of
feature weight values, perceptron learning iterates
through the annotated training data multiple times,
comparing, for each sentence pair, the best align-
ment ahyp according to the current model with the
reference alignment aref . At each sentence pair, the
weight for each feature is is incremented by the dif-
ference between the value of the feature for the best
alignment according to the model and the value of
the feature for the reference alignment:

λi ← λi + (fi(aref , e, f)− fi(ahyp, e, f))

The updated feature weights are used to compute
ahyp for the next sentence pair.

Iterating through the data continues until the
weights stop changing, because aref = ahyp for
each sentence pair, or until some other stopping con-
dition is met. In the averaged perceptron, the feature

weights for the final model are the average of the
weight values over all the data rather than simply
the values after the final sentence pair of the final
iteration.

We make a few modifications to the procedure as
described by Collins. First, we average the weight
values over each pass through the data, rather than
over all passes, as we found this led to faster con-
vergence. After each pass of perceptron learning
through the data, we make another pass through the
data with feature weights fixed to their average val-
ues for the previous learning pass, to evaluate cur-
rent performance of the model. We iterate this pro-
cedure until a local optimum is found.

Next, we used a fixed weight of 1.0 for the word-
association feature, which we expect to be most im-
portant feature in the model. Allowing all weights to
vary allows many equivalent sets of weights that dif-
fer only by a constant scale factor. Fixing one weight
eliminates a spurious apparent degree of freedom.
This necessitates, however, employing a version of
perceptron learning that uses a learning rate param-
eter. As described by Collins, the perceptron up-
date rule involves incrementing each weight by the
difference in the feature values being compared. If
the feature values are discrete, however, the mini-
mum difference may be too large compared to the
unweighted association score. We therefore multi-
ply the feature value difference by a learning rate pa-
rameter η to allow smaller increments when needed:

λi ← λi + η(fi(aref , e, f)− fi(ahyp, e, f))

For the CLP-based model, based on the typical
feature values we expected to see, we guessed that
0.01 might be a good value for the learning rate pa-
rameter. That seemed to produce good results, so we
did not attempt to further optimize the learning rate
parameter for this model.

The situation with the LLR-based model was
more complicated. Our previous experience using
LLR scores in statistical NLP applications indicated
that with large data sets, LLR values can get very
high (upwards of 100000 for our 500000 sentence
pair corpus), but small difference could be signifi-
cant, which led us to believe that the same would
be true of the weight values we were trying to learn.
That meant that a learning rate small enough to let

85

us converge on the desired weight values might take
a very large number of iterations through the data
to reach those values. We addressed this problem,
by using a progression of learning rates, starting at
1000, reducing each successive weight by an order
of magnitude, until we ended with a learning rate of
1.0. At each transition between learning rates, we re-
initialized the weights to the optimum values found
with the previous learning rate.

We experimented with one other idea for opti-
mizing the weight values. Perceptron learning does
not directly optimize error rate, but we have only
a small number of parameters that we need to op-
timize. We therefore thought it might be helpful
to apply a general optimization procedure directly
to the error rate, starting from the best parame-
ter values found by perceptron learning, using the
N -best alignments found with these parameter val-
ues. We experimented with both the downhill sim-
plex method (Press et al., 2002, Section 10.4) and
Powell’s method (Press et al., 2002, Section 10.5),
but we obtained slightly better results with a more
heuristic method designed to look past minor local
minima. We found that using this approach on top of
perceptron learning led to slightly lower error rates
on the development set with the CLP-based model,
but not with the LLR-base model, so we used it only
with the former in our final evaluations.

5 Data and Methodology for Evaluation

We evaluated our models using data from the bilin-
gual word alignment workshop held at HLT-NAACL
2003 (Mihalcea and Pedersen, 2003). We used
a subset of the Canadian Hansards bilingual cor-
pus supplied for the workshop, comprising 500,000
English-French sentences pairs, including 447 man-
ually word-aligned sentence pairs designated as test
data. The test data annotates particular pairs of
words either as “sure” or “possible” links. Auto-
matic sentence alignment of the training data was
provided by Ulrich Germann, and the hand align-
ments of the words in the test data were created by
Franz Och and Hermann Ney (Och and Ney, 2003).

Since our discriminative training approach re-
quires a small amount of annotated data for parame-
ter optimization, we split the test data set into two
virtually equal subsets, by randomly ordering the

test data pairs, and assigning alternate pairs from the
random order to the two subsets. We used one of
these subsets as a development set for parameter op-
timization, and held out the other for a final test set.

We report the performance of our alignment mod-
els in terms of precision, recall, and alignment error
rate (AER) as defined by Och and Ney (2003):

recall =
|A ∩ S|
|S|

precision =
|A ∩ P |
|A|

AER = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S|

In these definitions, S denotes the set of alignments
annotated as sure, P denotes the set of alignments
annotated possible or sure, and A denotes the set of
alignments produced by the method under test. Fol-
lowing standard practice in the field, we take AER,
which is derived from F-measure, as the primary
evaluation metric that we are attempting to optimize.

6 Experimental Results

We first trained the LLR-based model by perceptron
learning, using an N -best value of 20 and an un-
bounded allowable score difference in the alignment
search, using the development set as annotated train-
ing data. We then aligned all the sentences of length
100 or less in our 500,000 sentence pair corpus, us-
ing an N -best value of 20 and a maximum allowable
score difference of 125000. We collected link counts
and co-occurrence counts from these alignments for
estimating conditional link probabilities. We trained
CLP-based models from these counts for a range of
values for the discount used in the conditional link
probability estimation, finding a value of 0.4 to be a
roughly optimal value of the discount parameter for
the development set. We also trained a CLP-based
model using the conditional link probabilities from
the heuristic alignment model mentioned previously.
In training both CLP-based models, we also used
an N -best value of 20 and an unbounded allowable
score difference in the alignment search.

We evaluated three models on the final test data:
the LLR-based model (LLR) and the two CLP-based
models, one with conditional link probabilities from

86

Alignment Recall Precision AER
LLR 0.829 0.848 0.160
CLP1 0.889 0.934 0.086
CLP2 0.898 0.947 0.075

Table 1: Discriminative Model Results.

Alignment Recall Precision AER
E→ F 0.870 0.890 0.118
F→ E 0.876 0.907 0.106
Union 0.929 0.845 0.124
Intersection 0.817 0.981 0.097
Refined 0.908 0.929 0.079

Table 2: IBM Model 4 Results.

the LLR-based model (CLP1), and one with condi-
tional link probabilities from the heuristic alignment
model (CLP2). All parameters were optimized on
the development set. Recall, precision, and align-
ment error rates on the test set are shown in Table 1.

For comparison, we aligned our parallel corpus
with IBM Model 4 using Och’s Giza++ software
package (Och and Ney, 2003).4 We used the de-
fault configuration file included with the version of
Giza++ that we used, which resulted in five itera-
tions of Model 1, followed by five iterations of the
HMM model, followed by five iterations of Model 4.
We trained the models in both directions, English-
to-French and French-to-English, and computed the
union, intersection, and what Och and Ney (2003)
call the “refined” combination of the two align-
ments. We evaluated the resulting alignments of the
final test set, with the results shown in Table 2.

As these tables show, our discriminatively trained
CLP-based models compare favorably to IBM
Model 4 on this data set. The one with condi-
tional link probabilities from the heuristic alignment
model, CLP2, performs slightly better than the best
of the Model 4 combinations, and the one with
conditional link probabilities from the LLR-based
model, CLP1, performs only slightly worse.

An interesting question is why CLP2 outper-
formed CLP1. CLP1 is the more “principled” model,
so one might have expected it to perform better. We
believe the most likely explanation is the fact that

4Thanks to Chris Quirk for carrying out this alignment.

CLP2 received 403,195 link probabilities from the
heuristic model, while CLP1 received only 144,051
link probabilities from the LLR-based model. Hence
CLP2 was able to consider more possible links.

In light of our claims about the ease of optimiz-
ing the models, we should make some comments
on the time need to train the parameters. Our cur-
rent implementation of the alignment search is writ-
ten in Perl, and is therefore quite slow. Alignment
of our 500,000 sentence pair corpus with the LLR-
based mode took over a day on a 2.8 GHz Pentium
IV workstation. Nevertheless, the parameter opti-
mization was still quite fast, since it took only a few
iterations over our 224 sentence pair development
set. With either the LLR-based or CLP-based mod-
els, one combined learning/evaluation pass of per-
ceptron training always took less than two minutes,
and it never took more that six passes to reach the
local optimum we took to indicate convergence. To-
tal training time was greater since we used multiple
runs of perceptron learning with different learning
rates for the LLR-based model and different condi-
tional link probability discounts for CLP1, but total
training time for each model was around an hour.

7 Related Work

When the first version of this paper was submitted
for review, we could honestly state, “We are not
aware of any previous work on discriminative word
alignment models.” Callison-Burch et al. (2004) had
investigated the use of small amounts of annotated
data to help train the IBM and HMM models, but the
models were still generative and were trained using
maximum-likelihood methods.

Recently, however, three efforts nearly simultane-
ous with ours have made use of discriminative meth-
ods to train alignment models. Fraser and Marcu
(2005) modify Model 4 to be a log-linear combina-
tion of 11 submodels (5 based on standard Model 4
parameters, and 6 based on additional features) and
discriminatively optimize the submodel weights on
each iteration of a Viterbi approximation to EM.

Liu et al. (2005) also develop a log-linear model,
based on IBM Model 3. They train Model 3 us-
ing Giza++, and then use the Model 3 score of a
possible alignment as a feature value in a discrim-
inatively trained log-linear model, along with fea-

87

tures incorporating part-of-speech information, and
whether the aligned words are given as translations
in a bilingual dictionary. The log-linear model is
trained by standard maximum-entropy methods.

Klein and Taskar (2005), in a tutorial on maxi-
mum margin methods for natural-language process-
ing, described a weighted linear model incorporat-
ing association, position, and orthography features,
with its parameters trained by a structured-support-
vector-machine method. This model is in some re-
spects very similar to our LLR-based model, us-
ing Dice coefficient association scores where we use
LLR scores, and absolute position differences where
we use nonmonotonicity measures.

8 Conclusions

The results of our work and other recent efforts
on discriminatively trained alignment models show
that results comparable to or better than those ob-
tained with the IBM models are possible within a
framework that makes it easy to add arbitrary ad-
ditional features. After many years using the same
small set of alignment models, we now have an easy
way to experiment with a wide variety of knowledge
sources to improve word-alignment accuracy.

References

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguis-
tics, 19(2):263–311.

Chris Callison-Burch, David Talbot, and Miles Os-
borne. 2005. Statistical Marchine Translation
with Word- and Sentences-Aligned Parallel Cor-
pora. In Proceedings of the 42nd Annual Meeting
of the ACL, pp. 176–183, Barcelona, Spain.

Michael Collins. 2002. Discriminative Training
Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In Pro-
ceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1–8,
Philadelphia, Pennsylvania.

Alexander Fraser and Daniel Marcu. 2005. ISI’s
Participation in the Romanian-English Alignment

Task. In Proceedings of the ACL Workshop on
Building and Using Parallel Texts, pp. 91–94,
Ann Arbor, Michigan.

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-
linear Models for Word Alignment. In Proceed-
ings of the 43rd Annual Meeting of the ACL,
pp. 459–466, Ann Arbor, Michigan.

Dan Klein and Ben Taskar. 2005. Max-Margin
Methods for NLP: Estimation, Structure, and Ap-
plications. Tutorial presented at ACL 2005, Ann
Arbor, Michigan.

I. Dan Melamed. 2000. Models of Transla-
tional Equivalence. Computational Linguistics,
26(2):221–249.

Rada Mihalcea and Ted Pedersen. 2003. An Evalu-
ation Exercise for Word Alignment. In Proceed-
ings of the HLT-NAACL 2003 Workshop, Building
and Using Parallel Texts: Data Driven Machine
Translation and Beyond, pp. 1–6, Edmonton, Al-
berta, Canada.

Robert C. Moore. 2004. On Log-Likelihood-Ratios
and the Significance of Rare Events. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 333–
340, Barcelona, Spain.

Robert C. Moore. 2005. Association-Based Bilin-
gual Word Alignment. In Proceedings of the ACL
Workshop on Building and Using Parallel Texts,
pp. 1–8, Ann Arbor, Michigan.

Franz Joseph Och and Hermann Ney. 2003.
A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics,
29(1):19–51.

Franz Joseph Och and Hermann Ney. 2004. The
Alignment Template Approach to Statistical Ma-
chine Translation. Computational Linguistics,
30(4):417–449.

William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. 1992. Numer-
ical Recipies in C: The Art of Scientific Comput-
ing, Second Edition. Cambridge University Press,
Cambridge, England.

88

