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Abstract

This paper presents a phrase-based statis-
tical machine translation method, based
on non-contiguous phrases, i.e. phrases
with gaps. A method for producing such
phrases from a word-aligned corpora is
proposed. A statistical translation model
is also presented that deals such phrases,
as well as a training method based on the
maximization of translation accuracy, as
measured with the NIST evaluation met-
ric. Translations are produced by means of
a beam-search decoder. Experimental re-
sults are presented, that demonstrate how
the proposed method allows to better gen-
eralize from the training data.

1 Introduction

Possibly the most remarkable evolution of recent
years in statistical machine translation is the step
from word-based models to phrase-based models
(Och et al., 1999; Marcu and Wong, 2002; Yamada
and Knight, 2002; Tillmann and Xia, 2003). While
in traditional word-based statistical models (Brown
et al., 1993) the atomic unit that translation operates
on is the word, phrase-based methods acknowledge
the significant role played in language by multi-
word expressions, thus incorporating in a statistical
framework the insight behind Example-Based Ma-
chine Translation (Somers, 1999).

However, Phrase-based models proposed so far
only deal with multi-word units that are sequences

of contiguous words on both the source and the tar-
get side. We propose here a model designed to deal
with multi-word expressions that need not be con-
tiguous in either or both the source and the target
side.

The rest of this paper is organised as follows. Sec-
tion 2 provides motivations, definition and extrac-
tion procedure for non-contiguous phrases. The log-
linear conditional translation model we adopted is
the object of Section 3; the method used to train
its parameters is described in Section 4. Section 5
briefly describes the decoder. The experiments we
conducted to asses the effectiveness of using non-
contiguous phrases are presented in Section 6.

2 Non-contiguous phrases

Why should it be a good thing to use phrases
composed of possibly non-contiguous sequences of
words? In doing so we expect to improve trans-
lation quality by better accounting for additional
linguistic phenomena as well as by extending the
effect of contextual semantic disambiguation and
example-based translation inherent in phrase-based
MT. An example of a phenomenon best described
using non-contiguous units is provided by English
phrasal verbs. Consider the sentence “Maryswitches
her table lampoff”. Word-based statistical mod-
els would be at odds when selecting the appropri-
ate translation of the verb. If French were the target
language, for instance, corpus evidence would come
from both examples in which “switch” is translated
as “allumer” (to switch on) and as “éteindre” (to
switch off). If many-to-one word alignments are not
allowed from English to French, as it is usually the
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2 31

Pierre

Pierre

ne mange pas

does not eat

Figure 1: An example of a complex alignment asso-
ciated with different syntax for negation in English
and French.

case, then the best thing a word-based model could
do in this case would be to align “off” to the empty
word and hope to select the correct translation from
“switch” only, basically a 50-50 bet. While han-
dling inseparable phrasal verbs such as “to run out”
correctly, previously proposed phrase-based models
would be helpless in this case. A comparable behav-
ior is displayed by German separable verbs. More-
over, non-contiguous linguistic units are not limited
to verbs. Negation is formed, in French, by inserting
the words “ne” and “pas” before and after a verb re-
spectively. So, the sentence “Pierre ne mange pas”
and its English translation display a complex word-
level alignment (Figure 1) current models cannot ac-
count for.

Flexible idioms, allowing for the insertion of lin-
guistic material, are other phenomena best modeled
with non-contiguous units.

2.1 Definition and library construction

We define abi-phraseas a pair comprising asource
phraseand atarget phrase: b = 〈s̃, t̃〉. Each of the
source and target phrases is a sequence of words and
gaps (indicated by the symbol�); each gap acts as
a placeholder for exactly one unspecified word. For
example,w̃ = w1w2�w3�� w4 is a phrase of length
7, made up of two contiguous wordsw1 andw2, a
first gap, a third wordw3, two consecutive gaps and
a final wordw4. To avoid redundancy, phrases may
not begin or end with a gap. If a phrase does not
contain any gaps, we say it iscontiguous; otherwise
it is non-contiguous. Likewise, a bi-phrase is said to
becontiguousif both its phrases are contiguous.

The translation of a source sentences is produced
by combining together bi-phrases so as to cover the
source sentence, and produce a well-formed target-
language sentence (i.e. without gaps). A complete
translation fors can be described as an ordered se-

quence of bi-phrasesb1...bK . When piecing together
the final translation, the target-language portiont̃1
of the first bi-phraseb1 is first layed down, then each
subsequent̃tk is positioned on the first “free” posi-
tion in the target language sentence, i.e. either the
leftmost gap, or the right end of the sequence. Fig-
ure 2 illustrates this process with an example.

To produce translations, our approach therefore
relies on a collection of bi-phrases, what we call a
bi-phrase library. Such a library is constructed from
a corpus of existing translations, aligned at the word
level.

Two strategies come to mind to produce non-
contiguous bi-phrases for these libraries. The first is
to align the words using a “standard” word aligne-
ment technique, such as theRefined Methodde-
scribed in (Och and Ney, 2003) (the intersection of
two IBM Viterbi alignments, forward and reverse,
enriched with alignments from the union) and then
generate bi-phrases by combining together individ-
ual alignments that co-occur in the same pair of sen-
tences. This is the strategy that is usually adopted in
other phrase-based MT approaches (Zens and Ney,
2003; Och and Ney, 2004). Here, the difference is
that we are not restricted to combinations that pro-
duce strictly contiguous bi-phrases.

The second strategy is to rely on a word-
alignment method that naturally produces many-to-
many alignments between non-contiguous words,
such as the method described in (Goutte et al.,
2004). By means of a matrix factorization, this
method produces a parallel partition of the two texts,
seen as sets of word tokens. Each token therefore
belongs to one, and only one, subset within this par-
tition, and corresponding subsets in the source and
target make up what are calledcepts. For example,
in Figure 1, these cepts are represented by the circles
numbered 1, 2 and 3; each cept thus connects word
tokens in the source and the target, regardless of po-
sition or contiguity. These cepts naturally constitute
bi-phrases, and can be used directly to produce a bi-
phrase library.

Obviously, the two strategies can be combined,
and it is always possible to produce increasingly
large and complex bi-phrases by combining together
co-occurring bi-phrases, contiguous or not. One
problem with this approach, however, is that the re-
sulting libraries can become very large. With con-
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danser le tango
to tango

I do not want to tango anymore

I do not want anymore

doI want

Je ne veux plus danser le tango

Je

I

ne plus

veux
wantdo

not anymore

I

source =

bi−phrase 1 =

bi−phrase 2 =

bi−phrase 3 =

bi−phrase 4 =

target =

Figure 2: Combining bi-phrases to produce a translation.

tiguous phrases, the number of bi-phrases that can
be extracted from a single pair of sentences typically
grows quadratically with the size of the sentences;
with non-contiguous phrases, however, this growth
is exponential. As it turns out, the number of avail-
able bi-phrases for the translation of a sentence has
a direct impact on the time required to compute the
translation; we will therefore typically rely on vari-
ous filtering techniques, aimed at keeping only those
bi-phrases that are more likely to be useful. For ex-
ample, we may retain only the most frequently ob-
served bi-phrases, or impose limits on the number of
cepts, the size of gaps, etc.

3 The Model

In statistical machine translation, we are given a
source language inputsJ

1 = s1...sJ , and seek the
target-language sentencetI1 = t1...tI that is its most
likely translation:

t̂I1 = argmaxtI1
Pr(tI1|sJ

1 ) (1)

Our approach is based on a direct approximation
of the posterior probabilityPr(tI1|sJ

1 ), using a log-
linear model:

Pr(tI1|sJ
1 ) =

1
ZsJ

1

exp

(
M∑

m=1

λmhm(tI1, s
J
1 )

)

In such a model, the contribution of eachfeature
function hm is determined by the corresponding
model parameterλm; ZsJ

1
denotes a normalization

constant. This type of model is now quite widely

used for machine translation (Tillmann and Xia,
2003; Zens and Ney, 2003)1.

Additional variables can be introduced in such a
model, so as to account for hidden characteristics,
and the feature functions can be extended accord-
ingly. For example, our model must take into ac-
count the actual set of bi-phrases that was used to
produce this translation:

Pr(tI1, b
K
1 |sJ

1 ) =
1

ZsJ
1

exp

(
M∑

m=1

λmhm(tI1, s
J
1 , bK

1 )

)

Our model currently relies on seven feature func-
tions, which we describe here.

• The bi-phrase feature functionhbp: it rep-
resents the probability of producingtI1 using
some set of bi-phrases, under the assump-
tion that each source phrase produces a target
phrase independently of the others:

hbp(tI1, s
J
1 , bK

1 ) =
K∑

k=1

log Pr(t̃k|s̃k) (2)

Individual bi-phrase probabilitiesPr(t̃k|s̃k)
are estimated based on occurrence counts in the
word-aligned training corpus.

• The compositional bi-phrasefeature function
hcomp: this is introduced to compensate for

1Recent work from Chiang (Chiang, 2005) addresses simi-
lar concerns to those motivating our work by introducing a Syn-
chronous CFG for bi-phrases. If on one hand SCFGs allow to
better control the order of the material inserted in the gaps, on
the other gap size does not seem to be taken into account, and
phrase dovetailing such as the one involving “do�want” and
“not ���anymore” in Fig. 2 is disallowed.
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hbp’s strong tendency to overestimate the prob-
ability of rare bi-phrases; it is computed as in
equation (2), except that bi-phrase probabilities
are computed based on individual word transla-
tion probabilities, somewhat as in IBM model
1 (Brown et al., 1993):

Pr(t̃|s̃) =
1

|s̃||t̃|
∏
t∈t̃

∑
s∈s̃

Pr(t|s)

• The target languagefeature functionhtl: this
is based on aN -gram language model of the
target language. As such, it ignores the source
language sentence and the decomposition of
the target into bi-phrases, to focus on the actual
sequence of target-language words produced
by the combination of bi-phrases:

htl(tI1, s
J
1 , bK

1 ) =
I∑

i=1

log Pr(ti|ti−1
i−N+1)

• The word-count and bi-phrase countfeature
functionshwc andhbc: these control the length
of the translation and the number of bi-phrases
used to produce it:

hwc(tI1, s
J
1 , bK

1 ) = I hbc(tI1, s
J
1 , bK

1 ) = K

• The reordering feature function
hreord(tI1, s

J
1 , bK

1 ): it measures the amount of
reordering between bi-phrases of the source
and target sentences.

• the gap countfeature functionhgc: It takes as
value the total number of gaps (source and tar-
get) within the bi-phrases ofbK

1 , thus allowing
the model some control over the nature of the
bi-phrases it uses, in terms of the discontigui-
ties they contain.

4 Parameter Estimation

The values of theλ parameters of the log-linear
model can be set so as to optimize a given crite-
rion. For instance, one can maximize the likely-
hood of some set of training sentences. Instead, and
as suggested by Och (2003), we chose to maximize
directly the quality of the translations produced by
the system, as measured with a machine translation
evaluation metric.

Say we have a set of source-language sentences
S. For a given value ofλ, we can compute the set of
corresponding target-language translationsT . Given
a set ofreference(“gold-standard”) translationsR
for S and a functionE(T,R) which measures the
“error” in T relative toR, then we can formulate the
parameter estimation problem as2:

λ̂ = argminλE(T,R)

As pointed out by Och, one notable difficulty with
this approach is that, because the computation ofT
is based on an argmax operation (see eq. 1), it is not
continuous with regard toλ, and standard gradient-
descent methods cannot be used to solve the opti-
mization. Och proposes two workarounds to this
problem: the first one relies on a direct optimiza-
tion method derived from Powell’s algorithm; the
second introduces a smoothed (continuous) version
of the error functionE(T,R) and then relies on a
gradient-based optimization method.

We have opted for this last approach. Och shows
how to implement it when the error function can be
computed as the sum of errors on individual sen-
tences. Unfortunately, this is not the case for such
widely used MT evaluation metrics as BLEU (Pa-
pineni et al., 2002) and NIST (Doddington, 2002).
We show here how it can be done for NIST; a simi-
lar derivation is possible for BLEU.

The NIST evaluation metric computes a weighted
n-gram precision betweenT andR, multiplied by
a factorB(S, T, R) that penalizes short translations.
It can be formulated as:

B(S, T, R)×
N∑

n=1

∑
s∈S In(ts, rs)∑

s∈S Cn(ts)
(3)

whereN is the largestn-gram considered (usually
N = 4), In(ts, rs) is a weighted count of common
n-grams between the target (ts) and reference (rs)
translations of sentences, and Cn(ts) is the total
number ofn-grams ints.

To derive a version of this formula that is a con-
tinuous function ofλ, we will need multiple trans-
lationsts,1, ..., ts,K for each source sentences. The
general idea is to weight each of these translations

2For the sake of simplicity, we consider a single reference
translation per source sentence, but the argument can easily be
extended to multiple references.
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by a factor w(λ, s, k), proportional to the score
mλ(ts,k|s) that ts,k is assigned by the log-linear
model for a givenλ:

w(λ, s, k) =

[
mλ(ts,k|s)∑
k′ mλ(ts,k′ |s)

]α

where α is the smoothing factor. Thus, in
the smoothed version of the NIST function, the
term In(ts, rs) in equation (3) is replaced by∑

k w(λ, s, k)In(ts,k, rs), and the termCn(ts) is
replaced by

∑
k w(λ, s, k)Cn(ts,k). As for the

brevity penalty factorB(S, T, R), it depends on
the total length of translationT , i.e.

∑
s |ts|. In

the smoothed version, this term is replaced by∑
s

∑
k w(λ, s, k)|ts,k|. Note that, whenα → ∞,

thenw(λ, s, k) → 0 for all translations ofs, except
the one for which the model gives the highest score,
and so the smooth and normal NIST functions pro-
duce the same value. In practice, we determine some
“good” value forα by trial and error (5 works fine).

We thus obtain a scoring function for which we
can compute a derivative relative toλ, and which can
be optimized using gradient-based methods. In prac-
tice, we use theOPT++ implementation of a quasi-
Newton optimization (Meza, 1994). As observed by
Och, the smoothed error function is not convex, and
therefore this sort of minimum-error rate training is
quite sensitive to the initialization values for theλ
parameters. Our approach is to use a random set of
initializations for the parameters, perform the opti-
mization for each initialization, and select the model
which gives the overall best performance.

Globally, parameter estimation proceeds along
these steps:

1. Initialize the training set: using random pa-
rameter valuesλ0, for each source sentence of
some given set of sentencesS, we compute
multiple translations. (In practice, we use the
M -best translations produced by our decoder;
see Section 5).

2. Optimize the parameters: using the method de-
scribed above, we findλ that produces the best
smoothed NIST score on the training set.

3. Iterate: we then re-translate the sentences ofS
with this newλ, combine the resulting multiple

translations with those already in the training
set, and go back to step 2.

Steps 2 and 3 can be repeated until the smooothed
NIST score does not increase anymore3.

5 Decoder

We implemented a version of the beam-search stack
decoder described in (Koehn, 2003), extended to
cope with non-contiguous phrases. Each transla-
tion is the result of a sequence ofdecisions, each of
which involves the selection of a bi-phrase and of a
target position. The final result is obtained by com-
bining decisions, as in Figure 2.Hypotheses, cor-
responding to partial translations, are organised in a
sequence of priority stacks, one for each number of
source words covered. Hypotheses are extended by
filling the first available uncovered position in the
target sentence; each extended hypotheses is then
inserted in the stack corresponding to the updated
number of covered source words. Each hypothesis is
assigned a score which is obtained as a combination
of the actual feature function values and of admissi-
ble heuristics, adapted to deal with gaps in phrases,
estimating the future cost for completing a transla-
tion. Each stack undergoes both threshold and his-
togram pruning. Whenever two hypotheses are in-
distinguishable as far as the potential for further ex-
tension is concerned, they are merged and only the
highest-scoring is further extended. Complete trans-
lations are eventually recovered in the “last” priority
stack, i.e. the one corresponding to the total num-
ber of source words: the best translation is the one
with the highest score, and that does not have any
remaining gaps in the target.

6 Evaluation

We have conducted a number of experiments to eval-
uate the potential of our approach. We were par-
ticularly interested in assessing the impact of non-
contiguous bi-phrases on translation quality, as well
as comparing the different bi-phrase library contruc-
tion strategies evoked in Section 2.1.

3It can be seen that, as the set of possible translations for
S stabilizes, we eventually reach a point where the procedure
converges to a maximum. In practice, however, we can usually
stop much earlier.
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6.1 Experimental Setting

All our experiments focused exclusively on French
to English translation, and were conducted using the
Aligned Hansards of the 36th Parliament of Canada,
provided by the Natural Language Group of the USC
Information Sciences Institute, and edited by Ulrich
Germann. From this data, we extracted three dis-
tinct subcorpora, which we refer to as thebi-phrase-
building set, the training setand thetest set. These
were extracted from the so-calledtraining, test-1
andtest-2portions of the Aligned Hansard, respec-
tively. Because of efficiency issues, we limited our-
selves to source-language sentences of 30 words or
less. More details on the evaluation data is presented
in Table 14.

6.2 Bi-phrase Libraries

From the bi-phrase-building set, we built a number
of libraries. A first family of libraries was based on
a word alignment “A”, produced using theRefined
methoddescribed in (Och and Ney, 2003) (com-
bination of two IBM-Viterbi alignments): we call
these theA libraries. A second family of libraries
was built using alignments “B” produced with the
method in (Goutte et al., 2004): these are theB li-
braries. The most notable difference between these
two alignments is thatB contains “native” non-
contiguous bi-phrases, whileA doesn’t.

Some libraries were built by simply extracting the
cepts from the alignments of the bi-phrase-building
corpus: these are theA1 andB1 libraries, and vari-
ants. Other libraries were obtained by combining
cepts that co-occur within the same pair of sen-
tences, to produce “composite” bi-phrases. For in-
stance, theA2 libraries contain combinations of 1
or 2 cepts from alignmentA; B3 contains combina-
tions of 1, 2 or 3 cepts, etc.

Some libraries were built using a “gap-size” filter.
For instance libraryA2-g3 contains those bi-phrases
obtained by combining 1 or 2 cepts from alignment
A, and in which neither the source nor the target
phrase contains more than 3 gaps. In particular, li-
brary B1-g0 does not contain any non-contiguous
bi-phrases.

4Preliminary experiments on different data sets allowed us
to establish that 800 sentences constituted an acceptable size
for estimating model parameters. With such a corpus, the esti-
mation procedure converges after just 2 or 3 iterations.

Finally, all libraries were subjected to the same
two filtering procedures: the first excludes all bi-
phrases that occur only once in the training corpus;
the second, for any given source-language phrase,
retains only the 20 most frequent target-language
equivalents. While the first of these filters typically
eliminates a large number of entries, the second only
affects the most frequent source phrases, as most
phrases have less than 20 translations.

6.3 Experiments

The parameters of the model were optimized inde-
pendantly for each bi-phrase library. In all cases,
we performed only 2 iterations of the training proce-
dure, then measured the performance of the system
on the test set in terms of the NIST and BLEU scores
against one reference translation. As a point of com-
parison, we also trained an IBM-4 translation model
with theGIZA++ toolkit (Och and Ney, 2000), using
the combinedbi-phrase buildingand training sets,
and translated the test set using theReWritedecoder
(Germann et al., 2001)5.

Table 2 describes the various libraries that were
used for our experiments, and the results obtained
for each.

System/library bi-phrases NIST BLEU
ReWrite 6.6838 0.3324
A1 238 K 6.6695 0.3310
A2-g0 642 K 6.7675 0.3363
A2-g3 4.1 M 6.7068 0.3283
B1-g0 193 K 6.7898 0.3369
B1 267 K 6.9172 0.3407
B2-g0 499 K 6.7290 0.3391
B2-g3 3.3 M 6.9707 0.3552
B1-g1 206 K 6.8979 0.3441
B1-g2 213 K 6.9406 0.3454
B1-g3 218 K 6.9546 0.3518
B1-g4 222 K 6.9527 0.3423

Table 2: Bi-phrase libraries and results

The top part of the table presents the results for
theA libraries. As can be seen, libraryA1 achieves
approximately the same score as the baseline sys-
tem; this is expected, since this library is essentially

5Both theReWriteand our own system relied on a trigram
language model trained on the English half of the bi-phrase
building set.
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Subset sentences source words target words
bi-phrase-building set 931,000 17.2M 15.2M
training set 800 11,667 10,601
test set 500 6726 6041

Table 1: Data sets.

made up of one-to-one alignments computed using
IBM-4 translation models. Adding contiguous bi-
phrases obtained by combining pairs of alignments
does gain us some mileage (+0.1 NIST)6. Again, this
is consistent with results observed with other sys-
tems (Tillmann and Xia, 2003). However, the addi-
tion of non-contiguous bi-phrases (A2-g3) does not
seem to help.

The middle part of Table 2 presents analogous re-
sults for the correspondingB libraries, plus theB1-
g0 library, which contains only those cepts from the
B alignment that are contiguous. Interestingly, in
the experiments reported in (Goutte et al., 2004),
alignment methodB did not compare favorably toA
under the widely usedAlignment Error Rate(AER)
metric. Yet, theB1-g0 library performs better than
the analogousA1 library on the translation task.
This suggests that AER may not be an appropriate
metric to measure the potential of an alignment for
phrase-based translation.

Adding non-contiguous bi-phrases allows another
small gain. Again, this is interesting, as it sug-
gests that “native” non-contiguous bi-phrases are in-
deed useful for the translation task, i.e. those non-
contiguous bi-phrases obtained directly as cepts in
theB alignment.

Surprisingly, however, combining cepts from the
B alignment to produce contiguous bi-phrases (B2-
G0) does not turn out to be fruitful. Why this
is so is not obvious and, certainly, more experi-
ments would be required to establish whether this
tendency continues with larger combinations (B3-
g0,B4-g0...). Composite non-contiguous bi-phrases
produced with theB alignments (B2-g3) seem
to bring improvements with regard to “basic” bi-
phrases (B1), but it is not clear whether these are
significant.

6While the differences in scores in these and other experi-
ments are relatively small, we believe them to be significant, as
they have been confirmed systematically in other experiments
and, in our experience, by visual inspection of the translations.

Visual examination of theB1 library reveals
that many non-contiguous bi-phrases contain long-
spanning phrases (i.e. phrases containing long se-
quences of gaps). To verify whether or not these
were really useful, we tested a series ofB1 libraries
with different gap-size filters. It must be noted that,
because of the final histogram filtering we apply on
libraries (retain only the 20 most frequent transla-
tions of any source phrase), libraryB1-g1 is not
a strict subset ofB1-g2. Therefore, filtering on
gap-size usually represents a tradeoff between more
frequent long-spanning bi-phrases and less frequent
short-spanning ones.

The results of these experiments appear in the
lower part of Table 2. While the differences in score
are small, it seems that concentrating on bi-phrases
with 3 gaps or less affords the best compromise.
For small libraries such as those under consideration
here, this sort of filtering may not be very important.
However, for higher-order libraries (B2, B3, etc.) it
becomes crucial, because it allows to control the ex-
ponential growth of the libraries.

7 Conclusions

In this paper, we have proposed a phrase-based sta-
tistical machine translation method based on non-
contiguous phrases. We have also presented a esti-
mation procedure for the parameters of a log-linear
translation model, that maximizes a smooth version
of the NIST scoring function, and therefore lends
itself to standard gradient-based optimization tech-
niques.

From our experiments with these new methods,
we essentially draw two conclusions. The first and
most obvious is that non-contiguous bi-phrases can
indeed be fruitful in phrase-based statistical machine
translation. While we are not yet able to character-
ize which bi-phrases are most helpful, some of those
that we are currently capable of extracting are well
suited to cover some short-distance phenomena.
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The second conclusion is that alignment quality is
crucial in producing good translations with phrase-
based methods. While this may sound obvious, our
experiments shed some light on two specific aspects
of this question. The first is that the alignment
method that produces the most useful bi-phrases
need not be the one with the bestalignment error
rate (AER). The second is that, depending on the
alignments one starts with, constructing increasingly
large bi-phrases does not necessarily lead to better
translations. Some of our best results were obtained
with relatively small libraries (just over 200,000 en-
tries) of short bi-phrases. In other words, it’s not
how many bi-phrases you have, it’s how good they
are. This is the line of research that we intend to
pursue in the near future.
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