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Abstract

ProAlign combines several different ap-
proaches in order to produce high quality word
word alignments. Like competitive linking,
ProAlign uses a constrained search to find high
scoring alignments. Like EM-based methods,
a probability model is used to rank possible
alignments. The goal of this paper is to give
a bird’s eye view of the ProAlign system to
encourage discussion and comparison.

1 Alignment Algorithm at a Glance

We have submitted the ProAlign alignment system to
the WPT’03 shared task. It received a 5.71% AER on
the English-French task and 29.36% on the Romanian-
English task. These results are with the no-null data; our
output was not formatted to work with explicit nulls.

ProAlign works by iteratively improving an align-
ment. The algorithm creates an initial alignment us-
ing search, constraints, and summedφ2 correlation-based
scores (Gale and Church, 1991). This is similar to the
competitive linking process (Melamed, 2000). It then
learns a probability model from the current alignment,
and conducts a constrained search again, this time scor-
ing alignments according to the probability model. The
process continues until results on a validation set begin to
indicate over-fitting.

For the purposes of our algorithm, we view an align-
ment as a set of links between the words in a sen-
tence pair. Before describing the algorithm, we will de-
fine the following notation. LetE be an English sen-
tence e1, e2, . . . , em and let F be a French sentence
f1, f2, . . . , fn. We define alink l(ei, fj) to exist ifei and
fj are a translation (or part of a translation) of one an-
other. We define thenull link l(ei, f0) to exist if ei does
not correspond to a translation for any French word inF .
The null link l(e0, fj) is defined similarly. Analignment

A for two sentencesE andF is a set of links such that ev-
ery word inE andF participates in at least one link, and
a word linked toe0 or f0 participates in no other links. If
e occurs inE x times andf occurs inF y times, we say
thate andf co-occurxy times in this sentence pair.

ProAlign conducts a best-first search (with constant
beam and agenda size) to search a constrained space of
possible alignments. A state in this space is a partial
alignment, and a transition is defined as the addition of
a single link to the current state. Any link which would
create a state that does not violate any constraint is con-
sidered to be a valid transition. Our start state is the empty
alignment, where all words inE and F are implicitly
linked to null. A terminal state is a state in which no more
links can be added without violating a constraint. Our
goal is to find the terminal state with the highest proba-
bility.

To complete this algorithm, one requires a set of con-
straints and a method for determining which alignment is
most likely. These are presented in the next two sections.
The algorithm takes as input a set of English-French sen-
tence pairs, along with dependency trees for the English
sentences. The presence of the English dependency tree
allows us to incorporate linguistic features into our model
and linguistic intuitions into our constraints.

2 Constraints

The model used for scoring alignments has no mecha-
nism to prevent certain types of undesirable alignments,
such as having all French words align to the same En-
glish word. To guide the search to correct alignments, we
employ two constraints to limit our search for the most
probable alignment. The first constraint is theone-to-one
constraint (Melamed, 2000): every word (except the null
wordse0 andf0) participates in exactly one link.

The second constraint, known as thecohesion con-
straint (Fox, 2002), uses the dependency tree (Mel’čuk,
1987) of the English sentence to restrict possible link
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combinations. Given the dependency treeTE and a (par-
tial) alignmentA, the cohesion constraint requires that
phrasal cohesion is maintained in the French sentence. If
two phrases are disjoint in the English sentence, the align-
ment must not map them to overlapping intervals in the
French sentence. This notion of phrasal constraints on
alignments need not be restricted to phrases determined
from a dependency structure. However, the experiments
conducted in (Fox, 2002) indicate that dependency trees
demonstrate a higher degree of phrasal cohesion during
translation than other structures.

Consider the partial alignment in Figure 1. The most
probable lexical match for the English wordto is the
French word̀a. When the system attempts to linkto and
à, the distinct English phrases [the reboot] and [the host
to discover all the devices] will be mapped to intervals
in the French sentence, creating the induced phrasal in-
tervals [̀a . . . [réinitialisation] . . . périphériques]. Re-
gardless of what these French phrases will be after the
alignment is completed, we know now that their intervals
will overlap. Therefore, this link will not be added to the
partial alignment.

Therebootcausesthehosttodiscoverallthedevices

det subj det
subj

aux

pre
det

objmod

  à    laSuite réinitialisation  , l'  hôterepèretouslespériphériques
afterto the reboot thehost locate all the peripherals

1 2 3 4 56 7 8 9 10

1 2 3 4 567 8 910 11

Figure 1: An Example of Cohesion Constraint

To define this notion more formally, letTE(ei) be
the subtree ofTE rooted atei. The phrase spanof
ei, spanP(ei, TE , A), is the image of the English phrase
headed byei in F given a (partial) alignmentA. More
precisely,spanP(ei, TE , A) = [k1, k2], where

k1 = min{j|l(u, j) ∈ A, eu ∈ TE(ei)}
k2 = max{j|l(u, j) ∈ A, eu ∈ TE(ei)}

The head spanis the image ofei itself. We define
spanH(ei, TE , A) = [k1, k2], where

k1 = min{j|l(i, j) ∈ A}
k2 = max{j|l(i, j) ∈ A}

In Figure 1, for the nodereboot, the phrase span is
[4,4] and the head span is also [4,4]; for the nodediscover
(with the link betweento andà in place), the phrase span
is [2,11] and the head span is the empty set∅.

With these definitions of phrase and head spans, we de-
fine two notions of overlap, originally introduced in (Fox,

2002) ascrossings. Given a head nodeeh and its modi-
fier em, ahead-modifier overlapoccurs when:

spanH(eh, TE , A) ∩ spanP(em, TE , A) 6= ∅

Given two nodesem1 and em2 which both modify the
same head node, amodifier-modifier overlap occurs
when:

spanP(em1 , TE , A) ∩ spanP(em2 , TE , A) 6= ∅

Following (Fox, 2002), we say an alignment is co-
hesive with respect toTE if it does not introduce
any head-modifier or modifier-modifier overlaps. For
example, the alignmentA in Figure 1 is not cohe-
sive becausespanP (reboot, TE , A) = [4, 4] intersects
spanP (discover, TE , A) = [2, 11]. Since bothreboot
and discover modify causes, this creates a modifier-
modifier overlap. One can check for constraint viola-
tions inexpensively by incrementally updating the vari-
ous spans as new links are added to the partial alignment,
and checking for overlap after each modification. More
details on the cohesion constraint can be found in (Lin
and Cherry, 2003).

3 Probability Model

We define the word alignment problem as finding the
alignmentA that maximizesP (A|E,F ). ProAlign mod-
elsP (A|E,F ) directly, using a different decomposition
of terms than the model used by IBM (Brown et al.,
1993). In the IBM models of translation, alignments ex-
ist as artifacts of a stochastic process, where the words
in the English sentence generate the words in the French
sentence. Our model does not assume that one sentence
generates the other. Instead it takes both sentences as
given, and uses the sentences to determine an alignment.
An alignmentA consists oft links {l1, l2, . . . , lt}, where
eachlk = l(eik

, fjk
) for someik andjk. We will refer to

consecutive subsets ofA aslji = {li, li+1, . . . , lj}. Given
this notation,P (A|E,F ) can be decomposed as follows:

P (A|E,F ) = P (lt1|E,F ) =
t∏

k=1

P (lk|E,F, lk−1
1 )

At this point, we factorP (lk|E,F, lk−1
1 ) to make com-

putation feasible. LetCk = {E,F, lk−1
1 } represent the

context oflk. Note that both the contextCk and the link
lk imply the occurrence ofeik

andfjk
. We can rewrite

P (lk|Ck) as:

P (lk|Ck) =
P (lk, Ck)
P (Ck)

=
P (Ck|lk)P (lk)
P (Ck, eik

, fjk
)

= P (lk|eik
, fjk

)× P (Ck|lk)
P (Ck|eik

, fjk
)



Here P (lk|eik
, fjk

) is link probability given a co-
occurrence of the two words, which is similar in spirit to
Melamed’s explicit noise model (Melamed, 2000). This
term depends only on the words involved directly in the
link. The ratio P (Ck|lk)

P (Ck|eik
,fjk

) modifies the link probability,

providing context-sensitive information.
Ck remains too broad to deal with in practical sys-

tems. We will consider only a subsetFT k of relevant
features ofCk. We will make the Näıve Bayes-style as-
sumption that these featuresft ∈ FT k are conditionally
independent given eitherlk or (eik

, fjk
). This produces a

tractable formulation forP (A|E,F ):

t∏
k=1

P (lk|eik
, fjk

)×
∏

ft∈FTk

P (ft |lk)
P (ft |eik

, fjk
)


More details on the probability model used by ProAlign
are available in (Cherry and Lin, 2003).

3.1 Features used in the shared task

For the purposes of the shared task, we use two feature
types. Each type could have any number of instantiations
for any number of contexts. Note that each feature type
is described in terms of the context surrounding a word
pair.

The first feature typefta concerns surrounding links.
It has been observed that words close to each other in
the source language tend to remain close to each other in
the translation (S. Vogel and Tillmann, 1996). To capture
this notion, for any word pair(ei, fj), if a link l(ei′ , fj′)
exists within a window of two words (wherei−2 ≤ i′ ≤
i+2 andj−2 ≤ j′ ≤ j +2), then we say that the feature
fta(i− i′, j − j′, ei′) is active for this context. We refer
to these asadjacency features.

The second feature typeftd uses the English parse tree
to capture regularities among grammatical relations be-
tween languages. For example, when dealing with French
and English, the location of the determiner with respect
to its governor is never swapped during translation, while
the location of adjectives is swapped frequently. For any
word pair (ei, fj), let ei′ be the governor ofei, and let
rel be the relationship between them. If a linkl(ei′ , fj′)
exists, then we say that the featureftd(j − j′, rel) is ac-
tive for this context. We refer to these asdependency
features.

Take for example Figure 2 which shows a partial align-
ment with all links completed except for those involving
the. Given this sentence pair and English parse tree, we
can extract features of both types to assist in the align-
ment ofthe1. The word pair(the1, l

′) will have an active
adjacency featurefta(+1,+1, host) as well as a depen-
dency featureftd(−1, det). These two features will work
together to increase the probability of this correct link.

the host discovers all the devices

det
subj

pre

det

obj

 l'  hôte repère tous les périphériques

1 2 3 4 5

1 2 3 4 5 6

6

the host locate all the peripherals

Figure 2: Feature Extraction Example

In contrast, the incorrect link(the1, les) will have only
ftd(+3, det), which will work to lower the link probabil-
ity, since most determiners are located before their gov-
ernors.

3.2 Training the model

Since we always work from a current alignment, training
the model is a simple matter of counting events in the
current alignment. Link probability is the number of time
two words are linked, divided by the number of times
they co-occur. The various feature probabilities can be
calculated by also counting the number of times a feature
occurs in the context of a linked pair of words, and the
number of times the feature is active for co-occurrences
of the same word pair.

Considering only a single, potentially noisy alignment
for a given sentence pair can result in reinforcing errors
present in the current alignment during training. To avoid
this problem, we sample from a space of probable align-
ments, as is done in IBM models 3 and above (Brown
et al., 1993), and weight counts based on the likelihood
of each alignment sampled under the current probability
model. To further reduce the impact of rare, and poten-
tially incorrect events, we also smooth our probabilities
usingm-estimate smoothing (Mitchell, 1997).

4 Multiple Alignments

The result of the constrained alignment search is a high-
precision, word-to-word alignment. We then relax the
word-to-word constraint, and use statistics regarding col-
locations with unaligned words in order to make many-to-
one alignments. We also employ a further relaxed link-
ing process to catch some cases where the cohesion con-
straint ruled out otherwise good alignments. These auxil-
iary methods are currently not integrated into our search
or our probability model, although that is certainly a di-
rection for future work.



5 Conclusions

We have presented a brief overview of the major ideas
behind our entry to the WPT’03 Shared Task. Primary
among these ideas are the use of a cohesion constraint in
search, and our novel probability model.
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