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Abstract

In statistical machine translation, the currently
best performing systems are based in some way
on phrases or word groups. We describe the
baseline phrase-based translation system and
various refinements. We describe a highly ef-
ficient monotone search algorithm with a com-
plexity linear in the input sentence length. We
present translation results for three tasks: Verb-
mobil, Xerox and the Canadian Hansards. For
the Xerox task, it takes less than 7 seconds to
translate the whole test set consisting of more
than 10K words. The translation results for
the Xerox and Canadian Hansards task are very
promising. The system even outperforms the
alignment template system.

1 Introduction

In statistical machine translation, we are given a source
language (‘French’) sentencefJ

1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language (‘English’)
sentenceeI

1 = e1 . . . ei . . . eI . Among all possible target
language sentences, we will choose the sentence with the
highest probability:

êI
1 = argmax

eI
1

{
Pr(eI

1|fJ
1 )

}
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Pr(eI

1) · Pr(fJ
1 |eI
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}

(2)

The decomposition into two knowledge sources in Equa-
tion 2 is known as the source-channel approach to statisti-
cal machine translation (Brown et al., 1990). It allows an
independent modeling of target language modelPr(eI

1)
and translation modelPr(fJ

1 |eI
1)

1. The target language

1The notational convention will be as follows: we use the
symbolPr(·) to denote general probability distributions with
(nearly) no specific assumptions. In contrast, for model-based
probability distributions, we use the generic symbolp(·).

model describes the well-formedness of the target lan-
guage sentence. The translation model links the source
language sentence to the target language sentence. It can
be further decomposed into alignment and lexicon model.
The argmax operation denotes the search problem, i.e.
the generation of the output sentence in the target lan-
guage. We have to maximize over all possible target lan-
guage sentences.

An alternative to the classical source-channel ap-
proach is the direct modeling of the posterior probabil-
ity Pr(eI

1|fJ
1 ). Using a log-linear model (Och and Ney,

2002), we obtain:
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Here,Z(fJ
1 ) denotes the appropriate normalization con-

stant. As a decision rule, we obtain:

êI
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J
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}

This approach is a generalization of the source-channel
approach. It has the advantage that additional models or
feature functions can be easily integrated into the overall
system. The model scaling factorsλM

1 are trained accord-
ing to the maximum entropy principle, e.g. using the GIS
algorithm. Alternatively, one can train them with respect
to the final translation quality measured by some error
criterion (Och, 2003).

The remaining part of this work is structured as fol-
lows: in the next section, we will describe the base-
line phrase-based translation model and the extraction of
bilingual phrases. Then, we will describe refinements
of the baseline model. In Section 4, we will describe a
monotone search algorithm. Its complexity is linear in
the sentence length. The next section contains the statis-
tics of the corpora that were used. Then, we will inves-
tigate the degree of monotonicity and present the transla-
tion results for three tasks: Verbmobil, Xerox and Cana-
dian Hansards.



2 Phrase-Based Translation

2.1 Motivation

One major disadvantage of single-word based approaches
is that contextual information is not taken into account.
The lexicon probabilities are based only on single words.
For many words, the translation depends heavily on the
surrounding words. In the single-word based translation
approach, this disambiguation is addressed by the lan-
guage model only, which is often not capable of doing
this.

One way to incorporate the context into the translation
model is to learn translations for whole phrases instead
of single words. Here, a phrase is simply a sequence of
words. So, the basic idea of phrase-based translation is
to segment the given source sentence into phrases, then
translate each phrase and finally compose the target sen-
tence from these phrase translations.

2.2 Phrase Extraction

The system somehow has to learn which phrases are
translations of each other. Therefore, we use the follow-
ing approach: first, we train statistical alignment models
using GIZA++ and compute the Viterbi word alignment of
the training corpus. This is done for both translation di-
rections. We take the union of both alignments to obtain a
symmetrized word alignment matrix. This alignment ma-
trix is the starting point for the phrase extraction. The fol-
lowing criterion defines the set of bilingual phrasesBP
of the sentence pair(fJ

1 ; eI
1) and the alignment matrix

A ⊆ J × I that is used in the translation system.

BP(fJ
1 , eI

1, A) =
{(

f j2
j1

, ei2
i1

)
:

∀(j, i) ∈ A : j1 ≤ j ≤ j2 ↔ i1 ≤ i ≤ i2

∧∃(j, i) ∈ A : j1 ≤ j ≤ j2 ∧ i1 ≤ i ≤ i2

}

This criterion is identical to the alignment template cri-
terion described in (Och et al., 1999). It means that two
phrases are considered to be translations of each other, if
the words are aligned only within the phrase pair and not
to words outside. The phrases have to be contiguous.

2.3 Translation Model

To use phrases in the translation model, we introduce the
hidden variableS. This is a segmentation of the sentence
pair (fJ

1 ; eI
1) into K phrases(f̃K

1 ; ẽK
1 ). We use a one-to-

one phrase alignment, i.e. one source phrase is translated
by exactly one target phrase. Thus, we obtain:
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In the preceding step, we used the maximum approxima-
tion for the sum over all segmentations. Next, we allow
only translations that are monotone at the phrase level.
So, the phrasẽf1 is produced bỹe1, the phrasef̃2 is
produced bỹe2, and so on. Within the phrases, the re-
ordering is learned during training. Therefore, there is no
constraint on the reordering within the phrases.

Pr(f̃K
1 |ẽK

1 ) =
K∏

k=1

Pr(f̃k|f̃k−1
1 , ẽK

1 ) (6)

=
K∏

k=1

p(f̃k|ẽk) (7)

Here, we have assumed a zero-order model at the phrase
level. Finally, we have to estimate the phrase translation
probabilitiesp(f̃ |ẽ). This is done via relative frequencies:

p(f̃ |ẽ) =
N(f̃ , ẽ)∑
f̃ ′ N(f̃ ′, ẽ)

(8)

Here,N(f̃ , ẽ) denotes the count of the event thatf̃ has
been seen as a translation ofẽ. If one occurrence of̃e has
N > 1 possible translations, each of them contributes to
N(f̃ , ẽ) with 1/N . These counts are calculated from the
training corpus.

Using a bigram language model and assuming Bayes
decision rule, Equation (2), we obtain the following
search criterion:
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For the preceding equation, we assumed the segmentation
probabilityp(S|eI

1) to be constant. The result is a simple
translation model. If we interpret this model as a feature
function in the direct approach, we obtain:

hphr(f
J
1 , eI

1, S,K) = log
K∏

k=1

p(f̃k|ẽk)

We use the maximum approximation for the hidden vari-
ableS. Therefore, the feature functions are dependent on
S. Although the number of phrasesK is implicitly given
by the segmentationS, we used bothS andK to make
this dependency more obvious.



3 Refinements

In this section, we will describe refinements of the
phrase-based translation model. First, we will describe
two heuristics: word penalty and phrase penalty. Sec-
ond, we will describe a single-word based lexicon model.
This will be used to smooth the phrase translation proba-
bilities.

3.1 Simple Heuristics

In addition to the baseline model, we use two simple
heuristics, namely word penalty and phrase penalty:

hwp(fJ
1 , eI

1, S, K) = I (12)

hpp(fJ
1 , eI

1, S, K) = K (13)

The word penalty feature is simply the target sentence
length. In combination with the scaling factor this re-
sults in a constant cost per produced target language
word. With this feature, we are able to adjust the sentence
length. If we set a negative scaling factor, longer sen-
tences are more penalized than shorter ones, and the sys-
tem will favor shorter translations. Alternatively, by us-
ing a positive scaling factors, the system will favor longer
translations.

Similar to the word penalty, the phrase penalty feature
results in a constant cost per produced phrase. The phrase
penalty is used to adjust the average length of the phrases.
A negative weight, meaning real costs per phrase, results
in a preference for longer phrases. A positive weight,
meaning a bonus per phrase, results in a preference for
shorter phrases.

3.2 Word-based Lexicon

We are using relative frequencies to estimate the phrase
translation probabilities. Most of the longer phrases are
seen only once in the training corpus. Therefore, pure
relative frequencies overestimate the probability of those
phrases. To overcome this problem, we use a word-based
lexicon model to smooth the phrase translation probabili-
ties. For a source wordf and a target phrasẽe = ei2

i1
, we

use the following approximation:

p(f |ei2
i1

) ≈ 1−
i2∏

i=i1

(1− p(f |ei))

This models a disjunctive interaction, also called noisy-
OR gate (Pearl, 1988). The idea is that there are multiple
independent causesei2

i1
that can generate an eventf . It

can be easily integrated into the search algorithm. The
corresponding feature function is:

hlex(fJ
1 , eI

1, S, K) = log
K∏

k=1

jk∏

j=jk−1+1

p(fj |ẽk)

Here,jk andik denote the final position of phrase number
k in the source and the target sentence, respectively, and
we definej0 := 0 andi0 := 0.

To estimate the single-word based translation probabil-
ities p(f |e), we use smoothed relative frequencies. The
smoothing method we apply is absolute discounting with
interpolation:

p(f |e) =
max {N(f, e)− d, 0}

N(e)
+ α(e) · β(f)

This method is well known from language modeling (Ney
et al., 1997). Here,d is the nonnegative discounting pa-
rameter,α(e) is a normalization constant andβ is the nor-
malized backing-off distribution. To compute the counts,
we use the same word alignment matrix as for the ex-
traction of the bilingual phrases. The symbolN(e) de-
notes the unigram count of a worde andN(f, e) denotes
the count of the event that the target language worde is
aligned to the source language wordf . If one occurrence
of e hasN > 1 aligned source words, each of them con-
tributes with a count of1/N . The formula forα(e) is:

α(e) =
1

N(e)


 ∑

f :N(f,e)>d

d +
∑

f :N(f,e)≤d

N(f, e)




=
1

N(e)

∑

f

min{d,N(f, e)}

This formula is a generalization of the one typically used
in publications on language modeling. This generaliza-
tion is necessary, because the lexicon counts may be frac-
tional whereas in language modeling typically integer
counts are used. Additionally, we want to allow discount-
ing valuesd greater than one. One effect of the discount-
ing parameterd is that all lexicon entries with a count
less thand are discarded and the freed probability mass
is redistributed among the other entries.

As backing-off distributionβ(f), we consider two al-
ternatives. The first one is a uniform distribution and the
second one is the unigram distribution:

β1(f) =
1
Vf

(14)

β2(f) =
N(f)∑
f ′ N(f ′)

(15)

Here,Vf denotes the vocabulary size of the source lan-
guage andN(f) denotes the unigram count of a source
wordf .

4 Monotone Search

The monotone search can be efficiently computed with
dynamic programming. The resulting complexity is lin-
ear in the sentence length. We present the formulae for a



bigram language model. This is only for notational con-
venience. The generalization to a higher order language
model is straightforward. For the maximization problem
in (11), we define the quantityQ(j, e) as the maximum
probability of a phrase sequence that ends with the lan-
guage worde and covers positions1 to j of the source
sentence. Q(J + 1, $) is the probability of the opti-
mum translation. The$ symbol is the sentence boundary
marker. We obtain the following dynamic programming
recursion.

Q(0, $) = 1

Q(j, e) = max
e′,ẽ,

j−M≤j′<j

{
p(f j

j′+1|ẽ) · p(ẽ|e′) ·Q(j′, e′)
}

Q(J + 1, $) = max
e′

{Q(J, e′) · p($|e′)}

Here, M denotes the maximum phrase length in the
source language. During the search, we store back-
pointers to the maximizing arguments. After perform-
ing the search, we can generate the optimum translation.
The resulting algorithm has a worst-case complexity of
O(J ·M · Ve · E). Here,Ve denotes the vocabulary size
of the target language andE denotes the maximum num-
ber of phrase translation candidates for a source language
phrase. Using efficient data structures and taking into ac-
count that not all possible target language phrases can oc-
cur in translating a specific source language sentence, we
can perform a very efficient search.

This monotone algorithm is especially useful for lan-
guage pairs that have a similar word order, e.g. Spanish-
English or French-English.

5 Corpus Statistics

In the following sections, we will present results on three
tasks: Verbmobil, Xerox and Canadian Hansards. There-
fore, we will show the corpus statistics for each of these
tasks in this section. The training corpus (Train) of each
task is used to train a word alignment and then extract the
bilingual phrases and the word-based lexicon. The re-
maining free parameters, e.g. the model scaling factors,
are optimized on the development corpus (Dev). The re-
sulting system is then evaluated on the test corpus (Test).

Verbmobil Task. The first task we will present re-
sults on is the German–English Verbmobil task (Wahlster,
2000). The domain of this corpus is appointment schedul-
ing, travel planning, and hotel reservation. It consists of
transcriptions of spontaneous speech. Table 1 shows the
corpus statistics of this task.

Xerox task. Additionally, we carried out experiments
on the Spanish–English Xerox task. The corpus consists
of technical manuals. This is a rather limited domain task.
Table 2 shows the training, development and test corpus
statistics.

Canadian Hansards task.Further experiments were
carried out on the French–English Canadian Hansards

Table 1: Statistics of training and test corpus for the Verb-
mobil task (PP=perplexity).

German English

Train Sentences 58 073
Words 519 523 549 921
Vocabulary 7 939 4 672

Dev Sentences 276
Words 3 159 3 438
Trigram PP - 28.1

Test Sentences 251
Words 2 628 2 871
Trigram PP - 30.5

Table 2: Statistics of training and test corpus for the Xe-
rox task (PP=perplexity).

Spanish English

Train Sentences 55 761
Words 752 606 665 399
Vocabulary 11 050 7 956

Dev Sentences 1012
Words 15 957 14 278
Trigram PP – 28.1

Test Sentences 1125
Words 10 106 8 370
Trigram PP – 48.3

task. This task contains the proceedings of the Cana-
dian parliament. About 3 million parallel sentences of
this bilingual data have been made available by the Lin-
guistic Data Consortium (LDC). Here, we use a subset
of the data containing only sentences with a maximum
length of 30 words. This task covers a large variety of
topics, so this is an open-domain corpus. This is also re-
flected by the large vocabulary size. Table 3 shows the
training and test corpus statistics.

6 Degree of Monotonicity

In this section, we will investigate the effect of the mono-
tonicity constraint. Therefore, we compute how many of
the training corpus sentence pairs can be produced with
the monotone phrase-based search. We compare this to
the number of sentence pairs that can be produced with a
nonmonotone phrase-based search. To make these num-
bers more realistic, we use leaving-one-out. Thus phrases
that are extracted from a specific sentence pair are not
used to check its monotonicity. With leaving-one-out it is
possible that even the nonmonotone search cannot gen-
erate a sentence pair. This happens if a sentence pair
contains a word that occurs only once in the training cor-
pus. All phrases that might produce this singleton are
excluded because of the leaving-one-out principle. Note



Table 3: Statistics of training and test corpus for the
Canadian Hansards task (PP=perplexity).

French English

Train Sentences 1.5M
Words 24M 22M
Vocabulary 100 269 78 332

Dev Sentences 500
Words 9 043 8 195
Trigram PP – 57.7

Test Sentences 5432
Words 97 646 88 773
Trigram PP – 56.7

that all these monotonicity consideration are done at the
phrase level. Within the phrases arbitrary reorderings are
allowed. The only restriction is that they occur in the
training corpus.

Table 4 shows the percentage of the training corpus
that can be generated with monotone and nonmonotone
phrase-based search. The number of sentence pairs that
can be produced with the nonmonotone search gives an
estimate of the upper bound for the sentence error rate of
the phrase-based system that is trained on the given data.
The same considerations hold for the monotone search.
The maximum source phrase length for the Verbmobil
task and the Xerox task is 12, whereas for the Canadian
Hansards task we use a maximum of 4, because of the
large corpus size. This explains the rather low coverage
on the Canadian Hansards task for both the nonmonotone
and the monotone search.

For the Xerox task, the nonmonotone search can pro-
duce 75.1% of the sentence pairs whereas the mono-
tone can produce65.3%. The ratio of the two numbers
measures how much the system deteriorates by using the
monotone search and will be called thedegree of mono-
tonicity. For the Xerox task, the degree of monotonicity
is 87.0%. This means the monotone search can produce
87.0% of the sentence pairs that can be produced with
the nonmonotone search. We see that for the Spanish-
English Xerox task and for the French-English Canadian
Hansards task, the degree of monotonicity is rather high.
For the German-English Verbmobil task it is significantly
lower. This may be caused by the rather free word order
in German and the long range reorderings that are neces-
sary to translate the verb group.

It should be pointed out that in practice the monotone
search will perform better than what the preceding esti-
mates indicate. The reason is that we assumed a perfect
nonmonotone search, which is difficult to achieve in prac-
tice. This is not only a hard search problem, but also a
complicated modeling problem. We will see in the next
section that the monotone search will perform very well
on both the Xerox task and the Canadian Hansards task.

Table 4: Degree of monotonicity in the training corpora
for all three tasks (numbers in percent).

Verbmobil Xerox Hansards

nonmonotone 76.3 75.1 59.7
monotone 55.4 65.3 51.5
deg. of mon. 72.6 87.0 86.3

7 Translation Results

7.1 Evaluation Criteria

So far, in machine translation research a single generally
accepted criterion for the evaluation of the experimental
results does not exist. Therefore, we use a variety of dif-
ferent criteria.

• WER (word error rate):
The WER is computed as the minimum number of
substitution, insertion and deletion operations that
have to be performed to convert the generated sen-
tence into the reference sentence.

• PER (position-independent word error rate):
A shortcoming of the WER is that it requires a per-
fect word order. The word order of an acceptable
sentence can be different from that of the target sen-
tence, so that the WER measure alone could be mis-
leading. The PER compares the words in the two
sentences ignoring the word order.

• BLEU score:
This score measures the precision of unigrams, bi-
grams, trigrams and fourgrams with respect to a ref-
erence translation with a penalty for too short sen-
tences (Papineni et al., 2001). BLEU measures ac-
curacy, i.e. large BLEU scores are better.

• NIST score:
This score is similar to BLEU. It is a weightedn-
gram precision in combination with a penalty for
too short sentences (Doddington, 2002). NIST mea-
sures accuracy, i.e. large NIST scores are better.

For the Verbmobil task, we have multiple references
available. Therefore on this task, we compute all the pre-
ceding criteria with respect to multiple references. To
indicate this, we will precede the acronyms with anm
(multiple) if multiple references are used. For the other
two tasks, only single references are used.

7.2 Translation Systems

In this section, we will describe the systems that were
used. On the one hand, we have three different variants
of the single-word based model IBM4. On the other hand,
we have two phrase-based systems, namely the alignment
templates and the one described in this work.



Single-Word Based Systems (SWB). First, there is a
monotone search variant (Mon) that translates each word
of the source sentence from left to right. The second vari-
ant allows reordering according to the so-called IBM con-
straints (Berger et al., 1996). Thus up to three words
may be skipped and translated later. This system will
be denoted by IBM. The third variant implements spe-
cial German-English reordering constraints. These con-
straints are represented by a finite state automaton and
optimized to handle the reorderings of the German verb
group. The abbreviation for this variant is GE. It is only
used for the German-English Verbmobil task. This is just
an extremely brief description of these systems. For de-
tails, see (Tillmann and Ney, 2003).

Phrase-Based System (PB). For the phrase-based sys-
tem, we use the following feature functions: a trigram
language model, the phrase translation model and the
word-based lexicon model. The latter two feature func-
tions are used for both directions:p(f |e) and p(e|f).
Additionally, we use the word and phrase penalty fea-
ture functions. The model scaling factors are optimized
on the development corpus with respect to mWER sim-
ilar to (Och, 2003). We use the Downhill Simplex al-
gorithm from (Press et al., 2002). We do not perform
the optimization onN -best lists but we retranslate the
whole development corpus for each iteration of the op-
timization algorithm. This is feasible because this system
is extremely fast. It takes only a few seconds to translate
the whole development corpus for the Verbmobil task and
the Xerox task; for details see Section 8. In the experi-
ments, the Downhill Simplex algorithm converged after
about 200 iterations. This method has the advantage that
it is not limited to the model scaling factors as the method
described in (Och, 2003). It is also possible to optimize
any other parameter, e.g. the discounting parameter for
the lexicon smoothing.

Alignment Template System (AT). The alignment
template system (Och et al., 1999) is similar to the sys-
tem described in this work. One difference is that the
alignment templates are not defined at the word level but
at a word class level. In addition to the word-based tri-
gram model, the alignment template system uses a class-
based fivegram language model. The search algorithm of
the alignment templates allows arbitrary reorderings of
the templates. It penalizes reorderings with costs that are
linear in the jump width. To make the results as compa-
rable as possible, the alignment template system and the
phrase-based system start from the same word alignment.
The alignment template system uses discriminative train-
ing of the model scaling factors as described in (Och and
Ney, 2002).

7.3 Verbmobil Task

We start with the Verbmobil results. We studied smooth-
ing the lexicon probabilities as described in Section 3.2.
The results are summarized in Table 5. We see that the

Table 5: Effect of lexicon smoothing on the translation
performance[%] for the German-English Verbmobil task.

system mWER mPER BLEU NIST

unsmoothed 37.3 21.1 46.6 7.96
uniform 37.0 20.7 47.0 7.99
unigram 38.2 22.3 45.5 7.79

uniform smoothing method improves translation quality.
There is only a minor improvement, but it is consistent
among all evaluation criteria. It is statistically signifi-
cant at the 94% level. The unigram method hurts perfor-
mance. There is a degradation of the mWER of0.9%. In
the following, all phrase-based systems use the uniform
smoothing method.

The translation results of the different systems are
shown in Table 6. Obviously, the monotone phrase-based
system outperforms the monotone single-word based sys-
tem. The result of the phrase-based system is comparable
to the nonmonotone single-word based search with the
IBM constraints. With respect to the mPER, the PB sys-
tem clearly outperforms all single-word based systems.

If we compare the monotone phrase-based system with
the nonmonotone alignment template system, we see that
the mPERs are similar. Thus the lexical choice of words
is of the same quality. Regarding the other evaluation
criteria, which take the word order into account, the non-
monotone search of the alignment templates has a clear
advantage. This was already indicated by the low degree
of monotonicity on this task. The rather free word order
in German and the long range dependencies of the verb
group make reorderings necessary.

Table 6: Translation performance[%] for the German-
English Verbmobil task (251 sentences).

system variant mWER mPER BLEU NIST

SWB Mon 42.8 29.3 38.0 7.07
IBM 37.1 25.0 47.8 7.84
GE 35.4 25.3 48.5 7.83

PB 37.0 20.7 47.0 7.99
AT 30.3 20.6 56.8 8.57

7.4 Xerox task

The translation results for the Xerox task are shown in
Table 7. Here, we see that both phrase-based systems
clearly outperform the single-word based systems. The
PB system performs best on this task. Compared to the
AT system, the BLEU score improves by 4.1% absolute.
The improvement of the PB system with respect to the
AT system is statistically significant at the 99% level.



Table 7: Translation performance[%] for the Spanish-
English Xerox task (1125 sentences).

System WER PER BLEU NIST

SWB IBM 38.8 27.6 55.3 8.00
PB 26.5 18.1 67.9 9.07
AT 28.9 20.1 63.8 8.76

7.5 Canadian Hansards task

The translation results for the Canadian Hansards task are
shown in Table 8. As on the Xerox task, the phrase-based
systems perform better than the single-word based sys-
tems. The monotone phrase-based system yields even
better results than the alignment template system. This
improvement is consistent among all evaluation criteria
and it is statistically significant at the 99% level.

Table 8: Translation performance[%] for the French-
English Canadian Hansards task (5432 sentences).

System Variant WER PER BLEU NIST

SWB Mon 65.2 53.0 19.8 5.96
IBM 64.5 51.3 20.7 6.21

PB 57.8 46.6 27.8 7.15
AT 61.1 49.1 26.0 6.71

8 Efficiency

In this section, we analyze the translation speed of the
phrase-based translation system. All experiments were
carried out on an AMD Athlon with 2.2GHz. Note that
the systems were not optimized for speed. We used the
best performing systems to measure the translation times.

The translation speed of the monotone phrase-based
system for all three tasks is shown in Table 9. For the
Xerox task, the translation process takes less than 7 sec-
onds for the whole 10K words test set. For the Verbmobil
task, the system is even slightly faster. It takes about 1.6
seconds to translate the whole test set. For the Canadian
Hansards task, the translation process is much slower, but
the average time per sentence is still less than 1 second.
We think that this slowdown can be attributed to the large
training corpus. The system loads only phrase pairs into
memory if the source phrase occurs in the test corpus.
Therefore, the large test corpus size for this task also af-
fects the translation speed.

In Fig. 1, we see the average translation time per sen-
tence as a function of the sentence length. The translation
times were measured for the translation of the 5432 test
sentences of the Canadian Hansards task. We see a clear
linear dependency. Even for sentences of thirty words,
the translation takes only about 1.5 seconds.

Table 9: Translation Speed for all tasks on a AMD Athlon
2.2GHz.

Verbmobil Xerox Hansards
avg. sentence length 10.5 13.5 18.0
seconds / sentence 0.006 0.007 0.794
words / second 1642 1448 22.8
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Figure 1: Average translation time per sentence as a func-
tion of the sentence length for the Canadian Hansards task
(5432 test sentences).

9 Related Work

Recently, phrase-based translation approaches became
more and more popular. Some examples are the align-
ment template system in (Och et al., 1999; Och and Ney,
2002) that we used for comparison. In (Zens et al., 2002),
a simple phrase-based approach is described that served
as starting point for the system in this work. (Marcu
and Wong, 2002) presents a joint probability model for
phrase-based translation. It does not use the word align-
ment for extracting the phrases, but directly generates a
phrase alignment. In (Koehn et al., 2003), various aspects
of phrase-based systems are compared, e.g. the phrase
extraction method, the underlying word alignment model,
or the maximum phrase length. (Tomas and Casacuberta,
2003) describes a linear interpolation of a phrase-based
and an alignment template-based approach.

10 Conclusions

We described a phrase-based translation approach. The
basic idea of this approach is to remember all bilingual
phrases that have been seen in the word-aligned train-
ing corpus. As refinements of the baseline model, we
described two simple heuristics: the word penalty fea-
ture and the phrase penalty feature. Additionally, we pre-
sented a single-word based lexicon with two smoothing
methods. The model scaling factors were optimized with
respect to the mWER on the development corpus.



We described a highly efficient monotone search al-
gorithm. The worst-case complexity of this algorithm is
linear in the sentence length. This leads to an impressive
translation speed of more than 1000 words per second for
the Verbmobil task and for the Xerox task. Even for the
Canadian Hansards task the translation of sentences of
length 30 takes only about 1.5 seconds.

The described search is monotone at the phrase level.
Within the phrases, there are no constraints on the re-
orderings. Therefore, this method is best suited for lan-
guage pairs that have a similar order at the level of the
phrases learned by the system. Thus, the translation pro-
cess should require only local reorderings. As the exper-
iments have shown, Spanish-English and French-English
are examples of such language pairs. For these pairs,
the monotone search was found to be sufficient. The
phrase-based approach clearly outperformed the single-
word based systems. It showed even better performance
than the alignment template system.

The experiments on the German-English Verbmobil
task outlined the limitations of the monotone search.
As the low degree of monotonicity indicated, reordering
plays an important role on this task. The rather free word
order in German as well as the verb group seems to be dif-
ficult to translate. Nevertheless, when ignoring the word
order and looking at the mPER only, the monotone search
is competitive with the best performing system.

For further improvements, we will investigate the use-
fulness of additional models, e.g. modeling the segmen-
tation probability. Also, slightly relaxing the monotonic-
ity constraint in a way that still allows an efficient search
is of high interest. In spirit of the IBM reordering con-
straints of the single-word based models, we could allow
a phrase to be skipped and to be translated later.
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