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Abstract

We identify problems with the Penn Tree-
bank that render it imperfect for syntax-
based machine translation and propose
methods of relabeling the syntax trees to
improve translation quality. We develop a
system incorporating a handful of relabel-
ing strategies that yields a statistically sig-
nificant improvement of 2.3 BLEU points
over a baseline syntax-based system.

1 Introduction

Recent work in statistical machine translation (MT)
has sought to overcome the limitations of phrase-
based models (Marcu and Wong, 2002; Koehn et
al., 2003; Och and Ney, 2004) by making use
of syntactic information. Syntax-based MT of-
fers the potential advantages of enforcing syntax-
motivated constraints in translation and capturing
long-distance/non-contiguous dependencies. Some
approaches have used syntax at the core (Wu, 1997;
Alshawi et al., 2000; Yamada and Knight, 2001;
Gildea, 2003; Eisner, 2003; Hearne and Way, 2003;
Melamed, 2004) while others have integrated syn-
tax into existing phrase-based frameworks (Xia and
McCord, 2004; Chiang, 2005; Collins et al., 2005;
Quirk et al., 2005).

In this work, we employ a syntax-based model
that applies a series of tree/string (xRS) rules (Gal-
ley et al., 2004; Graehl and Knight, 2004) to a source
language string to produce a target language phrase
structure tree. Figure 1 exemplifies the translation

process, which is called a derivation, from Chinese
into English. The source string to translate (

� � ���� �

� � �������� �	�� ��



.) is shown at the top left. Rule 1©

replaces the Chinese word
� � �����

(shaded) with the
English NP-C police. Rule 2© then builds a VP over
the
� � �

NP-C
� � ��

 


sequence. Next,
� � ���� �

is translated
as the NP-C the gunman by rule 3©. Finally, rule 4©
combines the sequence of NP-C VP . into an S, denot-
ing a complete tree. The yield of this tree gives the
target translation: the gunman was killed by police .

The Penn English Treebank (PTB) (Marcus et al.,
1993) is our source of syntactic information, largely
due to the availability of reliable parsers. It is not
clear, however, whether this resource is suitable, as
is, for the task of MT. In this paper, we argue that the
overly-general tagset of the PTB is problematic for
MT because it fails to capture important grammati-
cal distinctions that are critical in translation. As a
solution, we propose methods of relabeling the syn-
tax trees that effectively improve translation quality.

Consider the derivation in Figure 2. The output
translation has two salient errors: determiner/noun
number disagreement (*this Turkish positions) and
auxiliary/verb tense disagreement (*has demon-
strate). The first problem arises because the DT

tag, which does not distinguish between singular and
plural determiners, allows singular this to be used
with plural NNS positions. In the second problem,
the VP-C tag fails to communicate that it is headed by
the base verb (VB) demonstrate, which should pre-
vent it from being used with the auxiliary VBZ has.
Information-poor tags like DT and VP-C can be rela-
beled to encourage more fluent translations, which
is the thrust of this paper.

240



Figure 1: A derivation from a Chinese sentence to
an English tree.

Section 2 describes our data and experimental
procedure. Section 3 explores different relabeling
approaches and their impact on translation qual-
ity. Section 4 reports a substantial improvement in
BLEU achieved by combining the most effective re-
labeling methods. Section 5 concludes.

2 Experimental Framework

Our training data consists of 164M+167M words of
parallel Chinese/English text. The English half was
parsed with a reimplementation of Collins’ Model
2 (Collins, 1999) and the two halves were word-
aligned using GIZA++ (Och and Ney, 2000). These
three components — Chinese strings, English parse
trees, and their word alignments — were inputs
to our experimental procedure, which involved five
steps: (1) tree relabeling, (2) rule extraction, (3) de-
coding, (4) n-best reranking, (5) evaluation.

This paper focuses on step 1, in which the orig-
inal English parse trees are transformed by one or
more relabeling strategies. Step 2 involves extract-
ing minimal xRS rules (Galley et al., 2004) from
the set of string/tree/alignments triplets. These rules
are then used in a CKY-type parser-decoder to trans-
late the 878-sentence 2002 NIST MT evaluation test
set (step 3). In step 4, the output 2,500-sentence n-
best list is reranked using an n-gram language model
trained on 800M words of English news text. In
the final step, we score our translations with 4-gram
BLEU (Papineni et al., 2002).

Separately for each relabeling method, we ran
these five steps and compared the resulting BLEU
score with that of a baseline system with no re-
labeling. To determine if a BLEU score increase
or decrease is meaningful, we calculate statistical
significance at 95% using paired bootstrap resam-
pling (Koehn, 2004; Zhang et al., 2004) on 1,000
samples.

Figure 3 shows the results from each relabel-
ing experiment. The second column indicates the
change in the number of unique rules from the base-
line number of 16.7M rules. The third column gives
the BLEU score along with an indication whether it
is a statistically significant increase (▲), a statisti-
cally significant decrease (▼), or neither (?) over
the baseline BLEU score.
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Figure 2: A bad translation fixable by relabeling.
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Relabeling Variant ∆ # Rules BLEU ∆

BASELINE — 20.06 —
LEX_PREP 1 +301.2K 20.2 ▲

2 +254.8K 20.36 ▲
3 +188.3K 20.14 ▲

LEX_DT 1 +36.1K 20.15 ▲
2 +29.6K 20.18 ▲

LEX_AUX 1 +5.1K 20.09 ▲
2 +8.0K 20.09 ?
3 +1.6K 20.11 ▲
4 +13.8K 20.07 ?

LEX_CC +3.3K 20.03 ▼
LEX_% +0.3K 20.14 ▲
TAG_VP +123.6K 20.28 ▲

SISTERHOOD 1 +1.1M 21.33 ▲
2 +935.5K 20.91 ▲
3 +433.1K 20.36 ▲
4 +407.0K 20.59 ▲

PARENT 1 +1.1M 19.77 ▼
2 +9.0K 20.01 ▼
3 +2.9M 15.63 ▼

COMP_IN +17.4K 20.36 ▲

REM_NPB –3.5K 19.93 ▼
REM_-C –143.4K 19.3 ▼
REM_SG –9.4K 20.01 ▼

Figure 3: For each relabeling method and variant,
the impact on ruleset size and BLEU score over the
baseline.

3 Relabeling

The small tagset of the PTB has the advantage of
being simple to annotate and to parse. On the other
hand, this can lead to tags that are overly generic.
Klein and Manning (2003) discuss this as a prob-
lem in parsing and demonstrate that annotating ad-
ditional information onto the PTB tags leads to im-
proved parsing performance. We similarly propose
methods of relabeling PTB trees that notably im-
prove MT quality. In the next two subsections, we
explore relabeling strategies that fall under two cate-
gories introduced by Klein and Manning — internal
annotation and external annotation.

3.1 Internal Annotation

Internal annotation reveals information about a
node and its descendants to its surrounding nodes
(ancestors, sisters, and other relatives) that is other-
wise hidden. This is paramount in MT because the
contents of a node must be understood before the
node can be reliably translated and positioned in a
sentence. Here we discuss two such strategies: lexi-

Figure 4: Rules before and after lexicalization.

calization and tag annotation.

3.1.1 Lexicalization

Many state-of-the-art statistical parsers incor-
porate lexicalization to effectively capture word-
specific behavior, which has proved helpful in our
system as well. We generalize lexicalization to al-
low a lexical item (terminal word) to be annotated
onto any ancestor label, not only its parent.

Let us revisit the determiner/noun number dis-
agreement problem in Figure 2 (*this Turkish po-
sitions). If we lexicalize all DTs in the parse trees,
the problematic DT is relabeled more specifically as
DT_this, as seen in rule 2′© in Figure 4. This also
produces rules like 4′©, where both the determiner
and the noun are plural (notice the DT_these), and
4′′©, where both are singular. With such a ruleset, 2′©

could only combine with 4′′©, not 4′©, enforcing the
grammatical output this Turkish position.

We explored five lexicalization strategies, each
targeting a different grammatical category. A com-
mon translation mistake was the improper choice of
prepositions, e.g., responsibility to attacks. Lexical-
izing prepositions proved to be the most effective
lexicalization method (LEX_PREP). We annotated
a preposition onto both its parent (IN or TO) and its
grandparent (PP) since the generic PP tag was often
at fault. We tried lexicalizing all prepositions (vari-
ant 1), the top 15 most common prepositions (variant
2), and the top 5 most common (variant 3). All gave
statistically significant BLEU improvements, espe-
cially variant 2.

The second strategy was DT lexicalization

243



(LEX_DT), which we encountered previously in Fig-
ure 4. This addresses two features of Chinese that
are problematic in translation to English: the infre-
quent use of articles and the lack of overt number in-
dicators on nouns. We lexicalized these determiners:
the, a, an, this, that, these, or those, and grouped to-
gether those with similar grammatical distributions
(a/an, this/that, and these/those). Variant 1 included
all the determiners mentioned above and variant 2
was restricted to the and a/an to focus only on arti-
cles. The second slightly improved on the first.

The third type was auxiliary lexicalization
(LEX_AUX), in which all forms of the verb be
are annotated with _be, and similarly with do and
have. The PTB purposely eliminated such distinc-
tions; here we seek to recover them. However,
auxiliaries and verbs function very differently and
thus cannot be treated identically. Klein and Man-
ning (2003) make a similar proposal but omit do.
Variants 1, 2, and 3, lexicalize have, be, and do, re-
spectively. The third variant slightly outperformed
the other variants, including variant 4, which com-
bines all three.

The last two methods are drawn directly from
Klein and Manning (2003). In CC lexicalization
(LEX_CC), both but and & are lexicalized since
these two conjunctions are distributed very differ-
ently compared to other conjunctions. Though help-
ful in parsing, it proved detrimental in our system.
In % lexicalization (LEX_%), the percent sign (%) is
given its own PCT tag rather than its typical NN tag,
which gave a statistically significant BLEU increase.

3.1.2 Tag Annotation

In addition to propagating up a terminal word, we
can also propagate up a nonterminal, which we call
tag annotation. This partitions a grammatical cat-
egory into more specific subcategories, but not as
fine-grained as lexicalization. For example, a VP

headed by a VBG can be tag-annotated as VP_VBG

to represent a progressive verb phrase.
Let us once again return to Figure 2 to address

the auxiliary/verb tense disagreement error (*has
demonstrate). The auxiliary has expects a VP-C, per-
mitting the bare verb phrase demonstrate to be incor-
rectly used. However, if we tag-annotate all VP-Cs,
rule 6© would be relabeled as VP-C_VB in rule 6′©

and rule 7© as 7′© in Figure 5. Rule 6′© can no longer

Figure 5: Rules before and after tag annotation.

join with 7′©, while the variant rule 6′′© can, which
produces the grammatical result has demonstrated.

We noticed many wrong verb tense choices, e.g.,
gerunds and participles used as main sentence verbs.
We resolved this by tag-annotating every VP and VP-

C with its head verb (TAG_VP). Note that we group
VBZ and VBP together since they have very similar
grammatical distributions and differ only by number.
This strategy gave a healthy BLEU improvement.

3.2 External Annotation

In addition to passing information from inside a
node to the outside, we can pass information from
the external environment into the node through ex-
ternal annotation. This allows us to make transla-
tion decisions based on the context in which a word
or phrase is found. In this subsection, we look at
three such methods: sisterhood annotation, parent
annotation, and complement annotation.

3.2.1 Sisterhood Annotation

The single most effective relabeling scheme we
tried was sisterhood annotation. We annotate each
nonterminal with #L if it has any sisters to the left,
#R if any to the right, #LR if on both sides, and noth-
ing if it has no sisters. This distinguishes between
words that tend to fall on the left or right border of
a constituent (often head words, like NN#L in an NP

or IN#R in a PP), in the middle of a constituent (of-
ten modifiers, like JJ#LR in an NP), or by themselves
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Figure 6: A bad translation fixable by sisterhood or
parent annotation.

(often particles and pronouns, like RP and PRP). In
our outputs, we frequently find words used in posi-
tions where they should be disallowed or disfavored.

Figure 6 presents a derivation that leads to the
ungrammatical output *deeply love she. The sub-
ject pronoun she is incorrectly preferred over the ob-
ject form her because the most popular NP-C trans-
lation for � � � is she. We can sidestep this mistake
through sisterhood-annotation, which yields the re-
labeled rules 3′© and 4′© in Figure 7. Rule 4′© ex-
pects an NP-C on the right border of the constituent
(NP-C#L). Since she never occurs in this position in
the PTB, it should never be sisterhood-annotated as
an NP-C#L. It does occur with sisters to the right,
which gives the NP-C#R rule 3′©. The object NP-C

her, on the other hand, is frequently rightmost in a
constituent, which is reflected in the NP-C#L rule 3′′©.
Using this rule with rule 4′© gives the desired result
deeply love her.

We experimented with four sisterhood annotation
(SISTERHOOD) variants of decreasing complexity.
The first was described above, which includes right-
most (#L), leftmost (#R), middle (#LR), and alone (no
annotation). Variant 2 omitted #LR, variant 3 kept
only #LR, and variant 4 only annotated nodes with-
out sisters. Variants 1 and 2 produced the largest
gains from relabeling: 1.27 and 0.85 BLEU points,
respectively.

Figure 7: Rules before and after sisterhood annota-
tion.

Figure 8: Rules before and after parent annotation.

3.2.2 Parent Annotation

Another common relabeling method in parsing is
parent annotation (Johnson, 1998), in which a node
is annotated with its parent’s label. Typically, this
is done only to nonterminals, but Klein and Man-
ning (2003) found that annotating preterminals as
well was highly effective. It seemed likely that such
contextual information could also benefit MT.

Let us tackle the bad output from Figure 6 with
parent annotation. In Figure 8, rule 4© is relabeled as
rule 4′© and expects an NP-CˆVP, i.e., an NP-C with a
VP parent. In the PTB, we observe that the NP-C she
never has a VP parent, while her does. In fact, the
most popular parent for the NP-C her is VP, while the
most popular parent for she is S. Rule 3© is relabeled
as the NP-CˆS rule 3′© and her is expressed as the NP-

CˆVP rule 3′′©. Only rule 3′′© can partner with rule 4′©,
which produces the correct output deeply love her.

We tested three variants of parent annota-
tion (PARENT): (1) all nonterminals are parent-
annotated, (2) only S nodes are parent-annotated,
and (3) all nonterminals are parent- and grandparent-
annotated (the annotation of a node’s parent’s par-
ent). The first and third variants yielded the largest
ruleset sizes of all relabeling methods. The second
variant was restricted only to S to capture the dif-
ference between top-level clauses (SˆTOP) and em-
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bedded clauses (like SˆS-C). Unfortunately, all three
variants turned out to be harmful in terms of BLEU.

3.2.3 Complement Annotation

In addition to a node’s parent, we can also anno-
tate a node’s complement. This captures the fact that
words have a preference of taking certain comple-
ments over others. For instance, 96% of cases where
the IN of takes one complement in the PTB, it takes
NP-C. On the other hand, although never takes NP-C

but takes S-C 99% of the time.
Consider the derivation in Figure 9 that results in

the bad output *postponed out May 6. The IN out
is incorrectly allowed despite the fact that it almost
never takes an NP-C complement (0.6% of cases in
the PTB). A way to restrict this is to annotate the
IN’s complement. Complement-annotated versions
of rules 2© and 3© are given in Figure 10. Rule
2© is relabeled as the IN/PP-C rule 2′© since PP-C

is the most common complement for out (99% of
the time). Since rule 3′′© expects an IN/NP-C, rule 2′©

is disqualified. The preposition from (rule 2′′©), on
the other hand, frequently takes NP-C as complement
(82% of the time). Combining rule 2′′© with rule 3′©

ensures the correct output postponed from May 6.
Complement-annotating all IN tags with their

complement if they had one and only one comple-
ment (COMP_IN) gave a significant BLEU improve-
ment with only a modest increase in ruleset size.

3.3 Removal of Parser Annotations

Many parsers, though trained on the PTB, do not
preserve the original tagset. They may omit func-
tion tags (like -TMP), indices, and null/gap elements
or add annotations to increase parsing accuracy and
provide useful grammatical information. It is not
obvious whether these modifications are helpful for
MT, so we explore the effects of removing them.

The statistical parser we used makes three re-
labelings: (1) base NPs are relabeled as NPB, (2)
argument nonterminals are suffixed with -C, and
(3) subjectless sentences are relabeled from S to
SG. We tried removing each annotation individually
(REM_NPB, REM_-C, and REM_SG), but doing so
significantly dropped the BLEU score. This leads us
to conclude these parser additions are helpful in MT.

Figure 9: A bad translation fixable by complement
annotation.

Figure 10: Rules before and after complement anno-
tation.

4 Evaluation

To maximize the benefit of relabeling, we incorpo-
rated five of the most promising relabeling strategies
into one additive system: LEX_%, LEX_DT variant
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∆ # Rules BLEU
Relabeling Variant Ind. Cum. Ind. Cum.
BASELINE — — 20.06 20.06
LEX_% +0.3K +0.3K 20.14 20.14
LEX_DT 2 +29.6K +29.9K 20.18 20.3
TAG_VP +123.6K +153.5K 20.28 20.43
LEX_PREP 2 +254.8K +459.0K 20.36 21.25
SISTERHOOD 1 +1.1M +1.5M 21.33 22.38

Figure 11: Relabelings in the additive system and
their individual/cumulative effects over the baseline.

2, TAG_VP, LEX_PREP variant 2, and SISTERHOOD
variant 1. These relabelings contributed to a 2.3 ab-
solute (11.6% relative) BLEU point increase over
the baseline, with a score of 22.38. Figure 11 lists
these relabelings in the order they were added.

5 Conclusion

We have demonstrated that relabeling syntax trees
for use in syntax-based machine translation can sig-
nificantly boost translation performance. It is naïve
to assume that linguistic resources can be immedi-
ately useful out of the box, in our case, the Penn
Treebank for MT. Rather, we targeted features of the
PTB tagset that impair translatability and proposed
relabeling strategies to overcome these weaknesses.
Many of our ideas effectively raised the BLEU score
over a baseline system without relabeling. Finally,
we demonstrated through an additive system that re-
labelings can be combined together to achieve an
even greater improvement in translation quality.
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