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Abstract

Complex Language Models cannot be eas-
ily integrated in the first pass decoding of
a Statistical Machine Translation system –
the decoder queries the LM a very large
number of times; the search process in the
decoding builds the hypotheses incremen-
tally and cannot make use of LMs that
analyze the whole sentence. We present
in this paper the Language Computer’s
system for WMT06 that employs LM-
powered reranking on hypotheses gener-
ated by phrase-based SMT systems

1 Introduction

Statistical machine translation (SMT) systems com-
bine a number of translation models with one or
more language models. Adding complex language
models in the incremental process of decoding is a
very challenging task. Some language models can
only score sentences as a whole. Also, SMT de-
coders generate during the search process a very
large number of partial hypotheses and query the
language model/models1.

The solution to these problems is either to use
multiple iterations for decoding, to make use of the
complex LMs only for complete hypotheses in the
search space or to generate n-best lists and to rescore
the hypotheses using also the additional LMs. For

1During the translation of the first 10 sentences of thede-
vtest2006.de dataset using Phramer and the configuration de-
scribed in Section 3, the 3-gram LM was queried 27 million
times (3 million distinct queries).

the WMT 2006 shared task we opted for the rerank-
ing solution. This paper describes our solution and
results.

2 System Description

We developed for the WMT 2006 shared task a sys-
tem that is trained on a (a) word-aligned bilingual
corpus, (b) a large monolingual (English) corpus and
(c) an English treebank and it is capable of translat-
ing from a source language (German, Spanish and
French) into English.

Our system embedsPhramer2 (used for mini-
mum error rate training, decoding, decoding tools),
Pharaoh (Koehn, 2004) (decoding),Carmel 3

(helper forPharaoh in n-best generation), Char-
niak’s parser (Charniak, 2001) (language model) and
SRILM4 (n-gram LM construction).

2.1 Translation table construction

We developed a component that builds a translation
table from a word-aligned parallel corpus. The com-
ponent generates the translation table according to
the process described in the Pharaoh training man-
ual5. It generates a vector of 5 numeric values for
each phrase pair:

• phrase translation probability:

φ(f̄ |ē) =
count(f̄ , ē)

count(ē)
, φ(ē|f̄) =

count(f̄ , ē)

count(f̄)

2http://www.phramer.org/ – Java-based open-source phrase
based SMT system

3http://www.isi.edu/licensed-sw/carmel/
4http://www.speech.sri.com/projects/srilm/
5http://www.iccs.inf.ed.ac.uk/∼pkoehn/training.tgz
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• lexical weighting (Koehn et al., 2003):

lex(f̄ |ē, a) =

n∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(fi|ej)

lex(ē|f̄ , a) =

m∏

j=1

1

|{i|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ej |fi)

• phrase penalty:τ(f̄ |ē) = e; log(τ(f̄ |ē)) = 1

2.2 Decoding

We used thePharaoh decoder for both the Min-
imum Error Rate Training (Och, 2003) and test
dataset decoding. AlthoughPhramer provides de-
coding functionality equivalent toPharaoh’s, we
preferred to usePharaoh for this task because it
is much faster thanPhramer – between 2 and 15
times faster, depending on the configuration – and
preliminary tests showed that there is no noticeable
difference between the output of these two in terms
of BLEU (Papineni et al., 2002) score.

The log-linear model uses 8 features: one distor-
tion feature, one basic LM feature, 5 features from
the translation table and one sentence length feature.

2.3 Minimum Error Rate Training

To determine the best coefficients of the log-linear
model (λ) for both the initial stage decoding and
the second stage reranking, we used theunsmoothed
Minimum Error Rate Training (MERT) component
present in thePhramer package. The MERT com-
ponent is highly efficient; the time required to search
a set of 200,000 hypotheses is less than 30 seconds
per iteration (search from a previous/randomλ to
a local maximum) on a 3GHz P4 machine. We
also used thedistributed decoding component from
Phramer to speed up the search process.

We generated the n-best lists required for MERT
using theCarmel toolkit. Pharaoh outputs a lat-
tice for each input sentence, from whichCarmel
extracts a specific number of hypotheses. We used
the europarl.en.srilm language model for decoding
the n-best lists.

The weighting vector is calculated individually
for each subtask (pair of source and target lan-
guages).

No. of sentences 96.7 M
No. of tokens 2.3 B
Vocabulary size 1.6 M
Distinct grams 1 B

Table 1: English Gigaword LM statistics

2.4 Language Models for reranking

We employed both syntactic language models and
n-gram based language models extracted from very
large corpora for improving the quality of the trans-
lation through reranking of the n-best list. These lan-
guage models add a total of 13 new features to the
log-linear model.

2.4.1 English Gigaword

We created large-scale n-gram language models
using English Gigaword Second Edition6 (EGW).

We split the corpus into sentences, tokenized the
corpus, lower-cased the sentences, replaced every
digit with “9” to cluster different numbers into the
same unigram entry, filtered noisy sentences and we
collected n-gram counts (up to 4-grams). Table 1
presents the statistics related to this process.

We pruned the unigrams that appeared less than
15 times in the corpus and all the n-grams that con-
tain the pruned unigrams. We also pruned 3-grams
and 4-grams that appear only once in the corpus.
Based on these counts, we calculated 4 features for
each sentence: the logarithm of the probability of
the sentence based on unigrams, on bigrams, on 3-
grams and on 4-grams. The probabilities of each
word in the analyzed translation hypotheses were
bounded by10−5 (to avoid overall zero probability
of a sentence caused by zero-counts).

Based on the unpruned counts, we calculated 8
additional features: how many of the n-grams in the
the hypothesis appear in the EGW corpus and also
how many of the n-grams in the hypotheses don’t
appear in the Gigaword corpus (n = 1..4). The
two types of counts will have different behavior only
when they are used to discriminate between two hy-
potheses with different length.

The number of n-grams in each of the two cases
is presented in Table 2.

6http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2005T12
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sentence probability n-gram hit/miss
model model

1-grams 310 K 310 K
2-grams 45 M 45 M
3-grams 123 M 283 M
4-grams 235 M 675 M

Table 2: Number of n-gram entries in the EGW LM

2.4.2 Charniak parsing

We used Charniak’s parser as an additional LM
(Charniak, 2001) in reranking. The parser pro-
vides one feature for our model – the log-grammar-
probability of the sentence.

We retrained the parser on lowercased Penn Tree-
bank II (Marcus et al., 1993), to match the lower-
cased output of the MT decoder.

Considering the huge number of hypotheses that
needed to be parsed for this task, we set it to parse
very fast (using the command-line parameter-T107).

2.5 Reranking and voting

A λ weights vector trained over the 8 basic features
(λ1) is used to decode a n-best list. Then, aλ vector
trained over all 21 features (λ2) is used to rerank
the n-best list, potentially generating a new first-best
hypothesis.

To improve the results, we generated during train-
ing a set of distinctλ2 weight vectors (4-10 different
weight vectors). Eachλ2 picks a preferred hypoth-
esis. The final hypothesis is chosen using a voting
mechanism. The computational cost of the voting
process is very low - each of theλ2 is applied on the
same set of hypotheses - generated by a singleλ1.

2.6 Preprocessing

The vocabulary of languages like English, French
and Spanish is relatively small. Most of the new
words that appear in a text and didn’t appear in a pre-
defined large text (i.e.: translation table) are abbre-
viations and proper nouns, that usually don’t change
their form when they are translated into another lan-
guage. ThusPharaoh and Phramer deal with
out-of-vocabulary (OOV) words – words that don’t
appear in the translation table – by copying them
into the output translation. German is a compound-
ing language, thus the German vocabulary is virtu-

7Time factor. Higher is better. Default: 210

ally infinite. In order to avoid OOV issues for new
text, we applied a heuristic to improve the probabil-
ity of properly translating compound words that are
not present in the translation table. We extracted the
German vocabulary from the translation table. Then,
for each word in a text to be translated (development
set or test set), we checked if it is present in the trans-
lation dictionary. If it was not present, we checked
if it can be obtained by concatenating two words in
the dictionary. If we found at least one variant of
splitting the unknown word, we altered the text by
dividing the word into the corresponding pieces. If
there are multiple ways of splitting, we randomly
took one. The minimum length for the generated
word is 3 letters.

In order to minimize the risk of inserting words
that are not in the reference translation into the out-
put translation, we applied a OOV pruning algorithm
(Koehn et al., 2005) – we removed every word in the
text to be translated that we know we cannot trans-
late (doesn’t appear either in the foreign part of the
parallel corpus used for training) or in what we ex-
pect to be present in an English text (doesn’t appear
in the English Gigaword corpus). This method was
applied to all the input text that was automatically
translated – development and test; German, French
and Spanish.

For the German-to-English translation, the com-
pound word splitting algorithm was applied before
the unknown word removal process.

3 Experimental Setup

We generated the translation tables for each pair
of languages using the alignment provided for this
shared task.

We split thedev2006 files into two halves. The
first half was used to determineλ1. Using λ1, we
created a 500-best list for each sentence in the sec-
ond half. We calculated the value of the enhanced
features (EGW and Charniak) for each of these hy-
potheses. Over this set of almost 500 K hypothe-
ses, we computed 10 differentλ2 using MERT. The
search process was seeded usingλ1 padded with 0
for the new 13 features. We sorted theλ2s by the
BLEU score estimated by the MERT algorithm. We
pruned manually theλ2s that diverge too much from
the overall set ofλ2s (based on the observation that
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500-best best voting WPT05
oracle λ1 λ2 λ2 best

DE-EN
– no split 25.70
– split 33.63 25.81 26.29 26.28 24.77
FR-EN 37.33 30.90 31.21 31.21 30.27
ES-EN 38.06 31.13 31.15 31.22 30.95

Table 3: BLEU scores on thedevtest2006 datasets.
Comparison with WPT05 results

500-best oracle λ1 votingλ2

DE-EN (split) 30.93 23.03 23.55
FR-EN 34.71 27.83 28.00
ES-EN 37.68 29.97 30.12

Table 4: BLEU scores on thetest2006 datasets. Sub-
mitted results are bolded.

these weights are overfitting). We picked from the
remaining set the bestλ2 and a preferred subset of
λ2s to be used in voting.

Theλ1 was also used to decode a 500-best list for
each sentence in thedevtest2006 and test2006 sets.
After computing value of the enhanced features for
each of these hypotheses, we applied the reranking
algorithm to pick a new first-best hypothesis – the
output of our system.

We used the following parameters for decoding:
-dl 5 -b 0.0001 -ttable-limit 30 -s 200 for French and
Spanish and-dl 9 -b 0.00001 -ttable-limit 30 -s 200
for German.

4 Results

Table 3 presents the detailed results of our system on
thedevtest2006 datasets and comparison with WMT
2006 best results8. The final results, on the test set
of the shared task, are reported in Table 4.

5 Conclusions

By analyzing the results, we observe that a very
powerful component of our system is the MERT
component ofPhramer. It provided a very high
baseline for thedevtest2006 sets (WPT05 test sets).

The additional language models seem to consis-
tently improve the results, although the increase is
not very significant on FR-EN and ES-EN subtasks.
The cause might be the specifics of the data involved

8http://www.statmt.org/wpt05/mt-shared-task/

in this shared task – mostly European Parliament
proceedings, which is different than the domain of
both Treebank and English Gigaword – newswire.
The enhanced LMs compete with the default LM
(which is also part of the model) that is trained on
European Parliament data.

The word splitting heuristics offers also a small
improvement for the performance on DE-EN sub-
task.

Voting seems to slightly improve the results in
some cases (ES-EN subtask). We believe that the
voting implementation reducesλ weights overfit-
ting, by combining the output of multiple local max-
ima of the development set. The size of the de-
velopment set used to generateλ1 and λ2 (1000
sentences) compensates the tendency of the un-
smoothed MERT algorithm to overfit (Och, 2003)
by providing a high ratio between number of vari-
ables and number of parameters to be estimated.
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