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Abstract

Combining different metrics into a single
measure of quality seems the most direct
and natural way to improve over the quality
of individual metrics. Recently, several ap-
proaches have been suggested (Kulesza and
Shieber, 2004; Liu and Gildea, 2007; Al-
brecht and Hwa, 2007a). Although based
on different assumptions, these approaches
share the common characteristic of being
parametric. Their models involve a num-
ber of parameters whose weight must be
adjusted. As an alternative, in this work,
we study the behaviour ofnon-parametric
schemes, in which metrics are combined
without having to adjust their relative im-
portance. Besides, rather than limiting to
the lexical dimension, we work on a wide
set of metrics operating at different linguis-
tic levels (e.g., lexical, syntactic and se-
mantic). Experimental results show that
non-parametric methods are a valid means
of putting different quality dimensions to-
gether, thus tracing a possible path towards
heterogeneous automatic MT evaluation.

1 Introduction

Automatic evaluation metrics have notably acceler-
ated the development cycle of MT systems in the
last decade. There exist a large number of metrics
based on different similarity criteria. By far, the
most widely used metric in recent literature isBLEU

(Papineni et al., 2001). Other well-known metrics
are WER (Nießen et al., 2000),NIST (Doddington,
2002), GTM (Melamed et al., 2003),ROUGE (Lin

and Och, 2004a),METEOR (Banerjee and Lavie,
2005), andTER (Snover et al., 2006), just to name
a few. All these metrics take into account informa-
tion at the lexical level1, and, therefore, their re-
liability depends very strongly on the heterogene-
ity/representativity of the set of reference transla-
tions available (Culy and Riehemann, 2003). In
order to overcome this limitation several authors
have suggested taking advantage of paraphrasing
support (Zhou et al., 2006; Kauchak and Barzilay,
2006; Owczarzak et al., 2006). Other authors have
tried to exploit information at deeper linguistic lev-
els. For instance, we may find metrics based on full
constituent parsing (Liu and Gildea, 2005), and on
dependency parsing (Liu and Gildea, 2005; Amigó
et al., 2006; Mehay and Brew, 2007; Owczarzak et
al., 2007). We may find also metrics at the level
of shallow-semantics, e.g., over semantic roles and
named entities (Giménez and Màrquez, 2007), and
at the properly semantic level, e.g., over discourse
representations (Giménez, 2007).

However, none of current metrics provides, in iso-
lation, aglobal measure of quality. Indeed, all met-
rics focus onpartial aspects of quality. The main
problem of relying on partial metrics is that we may
obtainbiased evaluations, which may lead us to de-
rive inaccurate conclusions. For instance, Callison-
Burch et al. (2006) and Koehn and Monz (2006)
have recently reported several problematic cases re-
lated to the automatic evaluation of systems ori-
ented towards maximizing different quality aspects.
Corroborating the findings by Culy and Riehemann
(2003), they showed thatBLEU overrates SMT sys-
tems with respect to other types of systems, such

1ROUGE and METEOR may consider morphological vari-
ations. METEOR may also look up for synonyms in WordNet.
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as rule-based, or human-aided. The reason is that
SMT systems are likelier to match the sublanguage
(e.g., lexical choice and order) represented by the
set of reference translations. We argue that, in order
to perform morerobust, i.e., less biased, automatic
MT evaluations, different quality dimensions should
be jointly taken into account.

A natural solution to this challenge consists in
combining the scores conferred by different metrics,
ideally covering aheterogeneous set of quality as-
pects. In the last few years, several approaches to
metric combination have been suggested (Kulesza
and Shieber, 2004; Liu and Gildea, 2007; Albrecht
and Hwa, 2007a). In spite of working on a lim-
ited set of quality aspects, mostly lexical features,
these approaches have provided effective means of
combining different metrics into a single measure of
quality. All these methods implement aparametric
combination scheme. Their models involve a num-
ber of parameters whose weight must be adjusted
(see further details in Section 2).

As an alternative path towards heterogeneous MT
evaluation, in this work, we explore the possibility
of relying onnon-parametric combination schemes,
in which metrics are combined without having to ad-
just their relative importance (see Section 3). We
have studied their ability to integrate a wide set of
metrics operating at different linguistic levels (e.g.,
lexical, syntactic and semantic) over several evalu-
ation scenarios (see Section 4). We show that non-
parametric schemes offer a valid means of putting
different quality dimensions together, effectively
yielding a significantly improved evaluation quality,
both in terms of human likeness and human accept-
ability. We have also verified that these methods port
well across test beds.

2 Related Work

Approaches to metric combination require two im-
portant ingredients:

Combination Scheme,i.e., how to combine sev-
eral metric scores into a single score. As
pointed out in Section 1, we distinguish be-
tween parametric and non-parametric schemes.

Meta-Evaluation Criterion, i.e., how to evaluate
the quality of a metric combination. The two
most prominent meta-evaluation criteria are:

• Human Acceptability: Metrics are evalu-
ated in terms of their ability to capture the
degree of acceptability to humans of auto-
matic translations, i.e., their ability to em-
ulate human assessors. The underlying as-
sumption is that‘good’ translations should
be acceptable to human evaluators. Hu-
man acceptability is usually measured on
the basis ofcorrelation between automatic
metric scores and human assessments of
translation quality2.

• Human Likeness: Metrics are evaluated in
terms of their ability to capture the fea-
tures which distinguish human from au-
tomatic translations. The underlying as-
sumption is that‘good’ translations should
resemble human translations. Human
likeness is usually measured on the basis
of discriminative power (Lin and Och,
2004b; Amigó et al., 2005).

In the following, we describe the most relevant
approaches to metric combination suggested in re-
cent literature. All are parametric, and most of them
are based on machine learning techniques. We dis-
tinguish between approaches relying on human like-
ness and approaches relying on human acceptability.

2.1 Approaches based on Human Likeness

The first approach to metric combination based
on human likeness was that by Corston-Oliver et
al. (2001) who used decision trees to distinguish
between human-generated (‘good’) and machine-
generated (‘bad’) translations. They focused on
evaluating only the well-formedness of automatic
translations (i.e., subaspects of fluency), obtaining
high levels of classification accuracy.

Kulesza and Shieber (2004) extended the ap-
proach by Corston-Oliver et al. (2001) to take into
account other aspects of quality further than fluency
alone. Instead of decision trees, they trained Support
Vector Machine (SVM) classifiers. They used fea-
tures inspired by well-known metrics such asBLEU,
NIST, WER, andPER. Metric quality was evaluated
both in terms of classification accuracy and correla-
tion with human assessments at the sentence level.

2Usually adequacy, fluency, or a combination of the two.
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A significant improvement with respect to standard
individual metrics was reported.

Gamon et al. (2005) presented a similar approach
which, in addition, had the interesting property that
the set of human and automatic translations could
be independent, i.e., human translations were not re-
quired to correspond, as references, to the set of au-
tomatic translations.

2.2 Approaches based on Human Acceptability

Quirk (2004) applied supervised machine learning
algorithms (e.g., perceptrons, SVMs, decision trees,
and linear regression) to approximate human quality
judgements instead of distinguishing between hu-
man and automatic translations. Similarly to the
work by Gamon et al. (2005) their approach does
not require human references.

More recently, Albrecht and Hwa (2007a; 2007b)
re-examined the SVM classification approach by
Kulesza and Shieber (2004) and, inspired by the
work of Quirk (2004), suggested a regression-based
learning approach to metric combination, with and
without human references. The regression model
learns a continuous function that approximates hu-
man assessments in training examples.

As an alternative to methods based on machine
learning techniques, Liu and Gildea (2007) sug-
gested a simpler approach based on linear combina-
tions of metrics. They followed aMaximum Corre-
lation Training, i.e., the weight for the contribution
of each metric to the overall score was adjusted so
as to maximize the level of correlation with human
assessments at the sentence level.

As expected, all approaches based on human ac-
ceptability have been shown to outperform that of
Kulesza and Shieber (2004) in terms of human ac-
ceptability. However, no results in terms of human
likeness have been provided, thus leaving these com-
parative studies incomplete.

3 Non-Parametric Combination Schemes

In this section, we provide a brief description of the
QARLA framework (Amigó et al., 2005), which is,
to our knowledge, the only existing non-parametric
approach to metric combination.QARLA is non-
parametric because, rather than assigning a weight
to the contribution of each metric, the evaluation of

a given automatic outputa is addressed through a
set of independent probabilistic tests (one per met-
ric) in which the goal is to falsify the hypothesis that
a is a human reference. The input forQARLA is a
set of test casesA (i.e., automatic translations), a set
of similarity metricsX, and a set of modelsR (i.e.,
human references) for each test case. With such a
testbed,QARLA provides the two essential ingredi-
ents required for metric combination:

Combination SchemeMetrics are combined inside
the QUEEN measure. QUEEN operates under
the unanimity principle, i.e., the assumption
that a ‘good’ translation must be similar to
all human references according to all metrics.
QUEENX(a) is defined as the probability, over
R × R × R, that, for every metric inX, the
automatic translationa is more similar to a hu-
man referencer than two other references,r′

andr′′, to each other. Formally:

QUEENX,R(a) = Prob(∀x ∈ X : x(a, r) ≥ x(r′, r′′))

wherex(a, r) stands for the similarity between
a and r according to the metricx. Thus,
QUEEN allows us to combine different similar-
ity metrics into a single measure, without hav-
ing to adjust their relative importance. Besides,
QUEEN offers two other important advantages
which make it really suitable for metric com-
bination: (i) it is robust against metric redun-
dancy, i.e., metrics covering similar aspects of
quality, and (ii) it is not affected by the scale
properties of metrics. The main drawback of
the QUEEN measure is that it requires at least
three human references, when in most cases
only a single reference translation is available.

Meta-evaluation Criterion Metric quality is eval-
uated using theKING measure of human like-
ness. All human references are assumed to be
equally optimal and, while they are likely to
be different, the best similarity metric is the
one that identifies and uses the features that
are common to all human references, group-
ing them and separating them from automatic
translations. Based onQUEEN, KING repre-
sents the probability that a human reference
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does not receive a lower score than the score at-
tained byany automatic translation. Formally:

KINGA,R(X) = Prob(∀a ∈ A : QUEENX,R−{r}(r) ≥

QUEENX,R−{r}(a))

KING operates, therefore, on the basis of dis-
criminative power. The closest measure to
KING is ORANGE(Lin and Och, 2004b), which
is, however, not intended for the purpose of
metric combination.

Apart from being non-parametric,QARLA ex-
hibits another important feature which differentiates
it form other approaches; besides considering the
similarity between automatic translations and hu-
man references,QARLA also takes into account the
distribution of similarities among human references.

However,QARLA is not well suited to port from
human likeness to human acceptability. The reason
is that QUEEN is, by definition, a very restrictive
measure —a ‘good’ translation must be similar to
all human references according toall metrics. Thus,
as the number of metrics increases, it becomes eas-
ier to find a metric which does not satisfy theQUEEN

assumption. This causesQUEEN values to get close
to zero, which turns correlation with human assess-
ments into an impractical meta-evaluation measure.

We have simulated a non-parametric scheme
based on human acceptability by working on uni-
formly averaged linear combinations (ULC) of met-
rics. Our approach is similar to that of Liu and
Gildea (2007) except that in our case all the metrics
in the combination are equally important3. In other
words,ULC is indeed a particular case of a paramet-
ric scheme, in which the contribution of each metric
is not adjusted. Formally:

ULCX(a,R) =
1

|X|

∑

x∈X

x(a,R)

whereX is the metric set, andx(a,R) is the simi-
larity between the automatic translationa and the set
of referencesR, for the given test case, according to
the metricx. Since correlation with human assess-
ments at the system level is vaguely informative (it
is often estimated on very few system samples), we

3That would be assuming that all metrics operate in the same
range of values, which is not always the case.

AE04 CE04 AE05 CE05

#human references 5 5 5 4
#system outputs 5 10 7 10
#outputsassessed 5 10 6 5
#sentences 1,353 1,788 1,056 1,082
#sentencesassessed 347 447 266 272

Table 1: Description of the test beds

evaluate metric quality in terms of correlation with
human assessments at the sentence level (Rsnt). We
use the sum of adequacy and fluency to simulate a
global assessment of quality.

4 Experimental Work

In this section, we study the behavior of the two
combination schemes presented in Section 3 in the
context of four different evaluation scenarios.

4.1 Experimental Settings

We use the test beds from the 2004 and 2005
NIST MT Evaluation Campaigns (Le and Przy-
bocki, 2005)4. Both campaigns include two differ-
ent translations exercises: Arabic-to-English (‘AE’)
and Chinese-to-English (‘CE’). Human assessments
of adequacy and fluency are available for a subset
of sentences, each evaluated by two different human
judges. See, in Table 1, a brief numerical descrip-
tion including the number of human references and
system outputs available, as well as the number of
sentences per output, and the number of system out-
puts and sentences per system assessed.

For metric computation, we have used the IQMT

v2.1, which includes metrics at different linguistic
levels (lexical, shallow-syntactic, syntactic, shallow-
semantic, and semantic). A detailed description may
be found in (Giménez, 2007)5.

4.2 Evaluating Individual Metrics

Prior to studying the effects of metric combination,
we study the isolated behaviour of individual met-
rics. We have selected a set of metric representa-
tives from each linguistic level. Table 2 shows meta-
evaluation results for the test beds described in Sec-
tion 4.1, according both to human likeness (KING)

4http://www.nist.gov/speech/tests/
summaries/2005/mt05.htm

5The IQMT Framework may be freely downloaded from
http://www.lsi.upc.edu/˜nlp/IQMT .
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KING Rsnt

Level Metric AE04 CE04 AE05 CE05 AE04 CE04 AE05 CE05

1-WER 0.70 0.51 0.48 0.61 0.53 0.47 0.38 0.47
1-PER 0.64 0.43 0.45 0.58 0.50 0.51 0.29 0.40
1-TER 0.73 0.54 0.53 0.66 0.54 0.50 0.38 0.49
BLEU 0.70 0.49 0.52 0.59 0.50 0.46 0.36 0.39
NIST 0.74 0.53 0.55 0.68 0.53 0.55 0.37 0.46

Lexical GTM.e1 0.67 0.49 0.48 0.61 0.41 0.50 0.26 0.29
GTM.e2 0.69 0.52 0.51 0.64 0.49 0.54 0.43 0.48
ROUGEL 0.73 0.59 0.49 0.65 0.58 0.60 0.41 0.52
ROUGEW 0.75 0.62 0.54 0.68 0.59 0.57 0.48 0.54
METEORwnsyn 0.75 0.56 0.57 0.69 0.56 0.56 0.35 0.41
SP-Op-* 0.66 0.48 0.49 0.59 0.51 0.57 0.38 0.41
SP-Oc-* 0.65 0.44 0.46 0.59 0.55 0.58 0.42 0.41

Shallow SP-NISTl 0.73 0.51 0.55 0.66 0.53 0.54 0.38 0.44
Syntactic SP-NISTp 0.79 0.60 0.56 0.70 0.46 0.49 0.37 0.39

SP-NISTiob 0.69 0.48 0.49 0.59 0.32 0.36 0.27 0.26
SP-NISTc 0.60 0.42 0.39 0.52 0.26 0.27 0.16 0.16
DP-HWCw 0.58 0.40 0.42 0.53 0.41 0.08 0.35 0.40
DP-HWCc 0.50 0.32 0.33 0.41 0.41 0.17 0.38 0.32
DP-HWCr 0.56 0.40 0.37 0.46 0.42 0.16 0.39 0.43
DP-Ol-* 0.58 0.48 0.41 0.52 0.52 0.48 0.36 0.37

Syntactic DP-Oc-* 0.65 0.45 0.44 0.55 0.49 0.51 0.43 0.41
DP-Or-* 0.71 0.57 0.54 0.64 0.55 0.55 0.50 0.50
CP-Op-* 0.67 0.47 0.47 0.60 0.53 0.57 0.38 0.46
CP-Oc-* 0.66 0.51 0.49 0.62 0.57 0.59 0.45 0.50
CP-STM 0.64 0.42 0.43 0.58 0.39 0.13 0.34 0.30
NE-Oe-** 0.65 0.45 0.46 0.57 0.47 0.56 0.32 0.39

Shallow SR-Or-* 0.48 0.22 0.34 0.41 0.28 0.10 0.32 0.21
Semantic SR-Orv 0.36 0.13 0.24 0.27 0.27 0.12 0.25 0.24

DR-Or-* 0.62 0.47 0.50 0.55 0.47 0.46 0.43 0.37
Semantic DR-Orp-* 0.58 0.42 0.43 0.50 0.37 0.35 0.36 0.26
Optimal Combination 0.79 0.64 0.61 0.70 0.64 0.63 0.54 0.61

Table 2: Metric Meta-evaluation

and human acceptability (Rsnt), computed over the
subsets of sentences for which human assessments
are available.

The first observation is that the two meta-
evaluation criteria provide very similar metric qual-
ity rankings for a same test bed. This seems to in-
dicate that there is a relationship between the two
meta-evaluation criteria employed. We have con-
firmed this intuition by computing the Pearson cor-
relation coefficient between values in columns 1 to
4 and their counterparts in columns 5 to 8. There
exists a high correlation (R = 0.79).

A second observation is that metric quality varies
significantly from task to task. This is due to the sig-
nificant differences among the test beds employed.
These are related to three main aspects: language
pair, translation domain, and system typology. For
instance, notice that most metrics exhibit a lower
quality in the case of the ‘AE05’ test bed. The reason
is that, while in the rest of test beds all systems are

statistical, the ‘AE05’ test bed presents the particu-
larity of providing automatic translations produced
by heterogeneous MT systems (i.e., systems belong-
ing to different paradigms)6. The fact that most sys-
tems are statistical also explains why, in general,
lexical metrics exhibit a higher quality. However,
highest levels of quality are not in all cases attained
by metrics at the lexical level (see highlighted val-
ues). In fact, there is only one metric,‘ROUGEW ’

(based on lexical matching), which is consistently
among the top-scoring in all test beds according to
both meta-evaluation criteria. The underlying cause
is simple: current metrics do not provide a global
measure of quality, but account only for partial as-
pects of it. Apart from evincing the importance of
the meta-evaluation process, these results strongly
suggest the need for conducting heterogeneous MT
evaluations.

6Specifically, all systems are statistical except one which is
human-aided.
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Opt.K(AE.04) = {SP-NISTp}
Opt.K(CE.04) = {ROUGEW , SP-NISTp, ROUGEL}
Opt.K(AE.05) = {METEORwnsyn, SP-NISTp, DP-Or-*}
Opt.K(CE.05) = {SP-NISTp}
Opt.R(AE.04) = {ROUGEW , ROUGEL, CP-Oc-*, METEORwnsyn, DP-Or-*, DP-Ol-*, GTM.e2, DR-Or-*, CP-STM}
Opt.R(CE.04) = {ROUGEL, CP-Oc-*, ROUGEW , SP-Op-*, METEORwnsyn, DP-Or-*, GTM.e2, 1-WER, DR-Or-*}
Opt.R(AE.05) = {DP-Or-*, ROUGEW }
Opt.R(CE.05) = {ROUGEW , ROUGEL, DP-Or-*, CP-Oc-*, 1-TER, GTM.e2, DP-HWCr, CP-STM}

Table 3: Optimal metric sets

4.3 Finding Optimal Metric Combinations

In that respect, we study the applicability of the two
combination strategies presented. Optimal metric
sets are determined by maximizing over the corre-
sponding meta-evaluation measure (KING or Rsnt).
However, because exploring all possible combina-
tions was not viable, we have used a simple algo-
rithm which performs anapproximate search. First,
individual metrics are ranked according to their
quality. Then, following that order, metrics are
added to the optimal set only if in doing so the global
quality increases. Since no training is required it has
not been necessary to keep a held-out portion of the
data for test (see Section 4.4 for further discussion).

Optimal metric sets are displayed in Table 3. In-
side each set, metrics are sorted in decreasing quality
order. The‘Optimal Combination’ line in Table 2
shows the quality attained by these sets, combined
underQUEEN in the case ofKING optimization, and
underULC in the case of optimizing overRsnt. In
most cases optimal sets consist of metrics operat-
ing at different linguistic levels, mostly at the lexical
and syntactic levels. This is coherent with the find-
ings in Section 4.2. Metrics at the semantic level
are selected only in two cases, corresponding to the
Rsnt optimization in ‘AE04’ and ‘CE04’ test beds.
Also in two cases, corresponding to theKING opti-
mization in ‘AE04’ and ‘CE05’ test beds, it has not
been possible to find any metric combination which
outperforms the best individual metric. This is not
a discouraging result. After all, in these cases, the
best metric alone achieves already a very high qual-
ity (0.79 and 0.70, respectively). The fact that a sin-
gle feature suffices to discern between manual and
automatic translations indicates that MT systems are
easily distinguishable, possibly because of their low
quality and/or because they are all based on the same
translation paradigm.

4.4 Portability

It can be argued that metric set optimization is itself
a training process; each metric would have an asso-
ciated binary parameter controlling whether it is se-
lected or not. For that reason, in Table 4, we have
analyzed the portability of optimal metric sets (i)
across test beds and (ii) across combination strate-
gies. As to portability across test beds (i.e., across
language pairs and years), the reader must focus
on the cells for which the meta-evaluation criterion
guiding the metric set optimization matches the cri-
terion used in the evaluation, i.e., the top-left and
bottom-right 16-cell quadrangles. The fact that the
4 values in each subcolumn are in a very similar
range confirms that optimal metric sets port well
across test beds. We have also studied the portabil-
ity of optimal metric sets across combination strate-
gies. In other words, althoughQUEEN and ULC

are thought to operate on metric combinations re-
spectively optimized on the basis of human likeness
and human acceptability, we have studied the effects
of applying either measure over metric combina-
tions optimized on the basis of the alternative meta-
evaluation criterion. In this case, the reader must
compare top-left vs. bottom-left (KING) and top-
right vs. bottom-right (Rsnt) 16-cell quadrangles. It
can be clearly seen that optimal metric sets, in gen-
eral, do not port well across meta-evaluation criteria,
particularly from human likeness to human accept-
ability. However, interestingly, in the case of ‘AE05’
(i.e., heterogeneous systems), the optimal metric set
ports well from human acceptability to human like-
ness. We speculate that system heterogeneity has
contributed positively for the sake of robustness.

5 Conclusions

As an alternative to current parametric combination
techniques, we have presented two different meth-
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Metric KING Rsnt

Set AE04 CE04 AE05 CE05 AE04 CE04 AE05 CE05

Opt.K(AE.04) 0.79 0.60 0.56 0.70 0.46 0.49 0.37 0.39
Opt.K(CE.04) 0.78 0.64 0.57 0.67 0.49 0.51 0.39 0.43
Opt.K(AE.05) 0.74 0.63 0.61 0.66 0.48 0.51 0.39 0.42
Opt.K(CE.05) 0.79 0.60 0.56 0.70 0.46 0.49 0.37 0.39
Opt.R(AE.04) 0.62 0.56 0.52 0.49 0.64 0.61 0.53 0.58
Opt.R(CE.04) 0.68 0.59 0.55 0.56 0.63 0.63 0.51 0.57
Opt.R(AE.05) 0.75 0.64 0.59 0.69 0.62 0.60 0.54 0.57
Opt.R(CE.05) 0.64 0.56 0.51 0.52 0.63 0.57 0.53 0.61

Table 4: Portability of combination strategies

ods: a genuine non-parametric method based on hu-
man likeness, and a parametric method based human
acceptability in which the parameter weights are set
equiprobable. We have shown that both strategies
may yield a significantly improved quality by com-
bining metrics at different linguistic levels. Besides,
we have shown that these methods generalize well
across test beds. Thus, a valid path towards hetero-
geneous automatic MT evaluation has been traced.
We strongly believe that future MT evaluation cam-
paigns should benefit from these results specially for
the purpose of comparing systems based on different
paradigms. These techniques could also be used to
build better MT systems by allowing system devel-
opers to perform more accurate error analyses and
less biased adjustments of system parameters.

As an additional result, we have found that there
is a tight relationship between human acceptability
and human likeness. This result, coherent with the
findings by Amigó et al. (2006), suggests that the
two criteria are interchangeable. This would be a
point in favour of combination schemes based on hu-
man likeness, since human assessments —which are
expensive to acquire, subjective and not reusable—
are not required. We also interpret this result as an
indication that human assessors probably behave in
many cases in a discriminative manner. For each test
case, assessors would inspect the source sentence
and the set of human references trying to identify
the features which ‘good’ translations should com-
ply with, for instance regarding adequacy and flu-
ency. Then, they would evaluate automatic transla-
tions roughly according to the number and relevance
of the features they share and the ones they do not.

For future work, we plan to study the inte-
gration of finer features as well as to conduct a
rigorous comparison between parametric and non-

parametric combination schemes. This may involve
reproducing the works by Kulesza and Shieber
(2004) and Albrecht and Hwa (2007a). This would
also allow us to evaluate their approaches in terms of
both human likeness and human acceptability, and
not only on the latter criterion as they have been
evaluated so far.
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