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Abstract 

This paper discusses a new approach to 

training of transliteration model from 

unlabeled data for transliteration extraction. 

We start with an inquiry into the 

formulation of transliteration model by 

considering different transliteration 

strategies as a multi-view problem, where 

each view exploits a natural division of 

transliteration features, such as phoneme-

based, grapheme-based or hybrid features. 

Then we introduce a multi-view Co-

training algorithm, which leverages 

compatible and partially uncorrelated 

information across different views to 

effectively boost the model from unlabeled 

data. Applying this algorithm to 

transliteration extraction, the results show 

that it not only circumvents the need of data 

labeling, but also achieves performance 

close to that of supervised learning, where 

manual labeling is required for all training 

samples. 

1 Introduction 

Named entities are important content words in text 

documents. In many applications, such as cross-

language information retrieval (Meng et al., 2001; 

Virga and Khudanpur, 2003) and machine 

translation (Knight and Graehl, 1998; Chen et al., 

2006), one of the fundamental tasks is to identify 

these words. Imported foreign proper names 

constitute a good portion of such words, which are 

newly translated into Chinese by transliteration. 

Transliteration is a process of translating a foreign 

word into the native language by preserving its 

pronunciation in the original language, otherwise 

known as translation-by-sound.  

As new words emerge everyday, no lexicon is 

able to cover all transliterations. It is desirable to 

find ways to harvest transliterations from real 

world corpora. In this paper, we are interested in 

the learning of English to Chinese (E-C) 

transliteration model for transliteration extraction 

from the Web. 

A statistical transliteration model is typically 

trained on a large amount of transliteration pairs, 

also referred to a bilingual corpus. The 

correspondence between a transliteration pair may 

be described by the mapping of different basic 

pronunciation units (BPUs) such as phoneme-

based
1
, or grapheme-based one, or both. We can 

see each type of BPU mapping as a natural division 

of transliteration features, which represents a view 

to the phonetic mapping problem. By using 

different BPUs, we approach the transliteration 

modeling and extraction problems from different 

views.  

This paper is organized as follows. In Section 2, 

we briefly introduce previous work. In Section 3, 

we conduct an inquiry into the formulation of 

transliteration model or phonetic similarity model 

(PSM) and consider it as a multi-view problem. In 

Section 4, we propose a multi-view Co-training 

strategy for PSM training and transliteration 

extraction. In Section 5, we study the effectiveness 

of proposed algorithms. Finally, we conclude in 

Section 6. 

2 Related Work 

Studies on transliteration have been focused on 

transliteration modeling and transliteration 

extraction. The transliteration modeling approach 

deduces either phoneme-based or grapheme-based 

mapping rules using a generative model that is 

                                                 
1
 Both phoneme and syllable based approaches are 

referred to as phoneme-based in this paper. 
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trained from a large bilingual corpus. Most of the 

works are devoted to phoneme-based transliteration 

modeling (Knight and Graehl, 1998; Lee, 1999). 

Suppose that EW is an English word and CW is its 

Chinese transliteration. EW and CW form an E-C 

transliteration pair. The phoneme-based approach 

first converts EW into an intermediate phonemic 

representation p, and then converts p into its 

Chinese counterpart CW. The idea is to transform 

both source and target words into comparable 

phonemes so that the phonetic similarity between 

two words can be measured easily.  

Recently the grapheme-based approach has 

attracted much attention. It was proposed by Jeong 

et al. (1999), Li et al. (2004) and many others (Oh 

et al., 2006b), which is also known as direct 

orthography mapping. It treats the transliteration as 

a statistical machine translation problem under 

monotonic constraint. The idea is to obtain the 

bilingual orthographical correspondence directly to 

reduce the possible errors introduced in multiple 

conversions. However, the grapheme-based 

transliteration model has more parameters than 

phoneme-based one does, thus expects a larger 

training corpus. 

Most of the reported works have been focused 

on either phoneme- or grapheme-based approaches. 

Bilac and Tanaka (2004) and Oh et al. (2006a; 

2006b) recently proposed using a mix of phoneme 

and grapheme features, where both features are 

fused into a single learning process. The feature 

fusion was shown to be effective. However, their 

methods hinge on the availability of a labeled 

bilingual corpus. 

In transliteration extraction, mining translations 

or transliterations from the ever-growing 

multilingual Web has become an active research 

topic, for example, by exploring query logs (Brill et 

al., 2001) and parallel (Nie et al., 1999) or 

comparable corpora (Sproat et al., 2006). 

Transliterations in such a live corpus are typically 

unlabeled. For model-based transliteration 

extraction, recent progress in machine learning 

offers different options to exploit unlabeled data, 

that include active learning (Lewis and Catlett, 

1994) and Co-training (Nigam and Ghani, 2000; 

Tür et al. 2005). 

Taking the prior work a step forward, this paper 

explores a new way of fusing phoneme and 

grapheme features through a multi-view Co-

training algorithm (Blum and Mitchell, 1998), 

which starts with a small number of labeled data to 

bootstrap a transliteration model to automatically 

harvest transliterations from the Web. 

3 Phonetic Similarity Model with 

Multiple Views 

Machine transliteration can be formulated as a 

generative process, which takes a character string 

in source language as input and generates a 

character string in the target language as output. 

Conceptually, this process can be regarded as a 3-

step decoding: segmentation of both source and 

target strings into basic pronunciation units (BPUs), 

relating the source BPUs with target units by 

resolving different combinations of alignments and 

unit mappings in finding the most probable BPU 

pairs. A BPU can be defined as a phoneme 

sequence, a grapheme sequence, or a part of them. 

A transliteration model establishes the phonetic 

relationship between BPUs in two languages to 

measure their similarity, therefore, it is also known 

as the phonetic similarity model (PSM). 

 To introduce the multi-view concept, we 

illustrate the BPU transfers in Figure 1, where each 

transfer is represented by a direct path with 

different line style. There are altogether four 

different paths: the phoneme-based path V1 

(T1→T2→T3), the grapheme-based path V4 (T4), 

and their variants, V2(T1→T5) and V3(T6→T3). The 

last two paths make use of the intermediate BPU 

mappings between phonemes and graphemes. Each 

of the paths represents a view to the mapping 

problem. Given a labeled bilingual corpus, we are 

able to train a transliteration model for each view 

easily.   
 

 

Figure 1. Multiple views for establishing 

transliteration correspondence. 

 

The E-C transliteration has been studied 

extensively in the paradigm of noisy channel model 
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(Manning and Scheutze, 1999), with EW as the 

observation and CW as the input to be recovered. 

Applying Bayes rule, the transliteration can be 

described by Eq. (1),  

( | ) ( )
( | ) ,

( )

P EW CW P CW
P CW EW

P EW

×
=               (1) 

where we need to deal with two probability 

distributions: P(EW|CW), the probability of 

transliterating CW to EW, also known as the unit 

mapping rules, and P(CW), the probability 

distribution of CW, known as the target language 

model. 

Representing EW in English BPU 

sequence 1{ ,... ,... }= m MEP ep ep ep  and CW in 

Chinese one, 1{ ,... ,... }= n NCP cp cp cp , a typical 

transliteration probability can be expressed as, 

 

( | ) ( | ) ( | ) ( | ).P EW CW P EW EP P EP CP P CP CW≈ × ×   (2) 

 

The language model, P(CW), can be represented by 

Chinese characters n-gram statistics (Manning and 

Scheutze, 1999) and expressed in Eq. (3). In the 

case of bigram, we have, 

1 1

2

( ) ( ) ( | )

N

n n

n

P CW P c P c c −

=

≈ ∏          (3) 

We next rewrite Eq. (2) for the four different views 

depicted in Figure 1 in a systematic manner. 

3.1 Phoneme-based Approach 

The phoneme-based approach approximates the 

transliteration probability distribution by 

introducing an intermediate phonemic 

representation. In this way, we convert the words in 

the source language, say 1 2, ... KEW e e e= , into 

English syllables ES , then Chinese syllables CS  

and finally the target language, say Chinese 

1 2, ... KCW c c c=  in sequence. Eq. (2) can be 

rewritten by replacing EP and CP with ES and CS, 

respectively, and expressed by Eq. (4). 
 

( | ) ( | ) ( | ) ( | )P EW CW P EW ES P ES CS PCS CW≈ × ×       (4) 

 

The three probabilities correspond to the three-step 

mapping in V1 path.  

The phoneme-based approach suffers from 

multiple step mappings. This could compromise 

overall performance because none of the three 

steps guarantees a perfect conversion.  

3.2 Grapheme-based Approach 

The grapheme-based approach is inspired by the 

transfer model (Vauqois, 1988) in machine 

translation that estimates ( | )P EW CW  directly 

without interlingua representation. This method 

aims to alleviate the imprecision introduced by the 

multiple transfers in phoneme-based approach. 

In practice, a grapheme-based approach converts 

the English graphemes to Chinese graphemes in 

one single step. Suppose that we have 

1 2, ... KEW e e e= and 1 2, ... KCW c c c= where ke  and 

kc are aligned grapheme units.  

Under the noisy channel model, we can estimate 

( | )P EW CW  based on the alignment statistics 

which is similar to the lexical mapping in statistical 

machine translation.  

1
( | ) ( | )

K

k kk
P EW CW P e c

=
≈∏     (5) 

Eq.(5) is a grapheme-based alternative to Eq.(2).  

3.3 Hybrid Approach 

A tradeoff between the phoneme- and grapheme-

based approaches is to take shortcuts to the 

mapping between phonemes and graphemes of two 

languages via V2 or V3, where only two steps of 

mapping are involved. For V3, we rewrite Eq.(2) as 

Eq. (6): 

 

( | ) ( | ) ( | ),= ×P EW CW P EW CS P CS CW         (6) 

 

where ( | )P EW CS  translates Chinese sounds into 

English words. For V2, we rewrite Eq. (2) as Eq. 

(7): 

 

( | ) ( | ) ( | ),= ×P EW CW P EW ES P ES CW         (7) 

 

where ( | )P ES CW translates Chinese words into 

English sounds. 

Eqs. (4) – (7) describe the four paths of 

transliteration. In a multi-view problem, one 

partitions the domain’s features into subsets, each 

of which is sufficient for learning the target 

concept. Here the target concept is the label of 

transliteration pair. Given a collection of E-C pair 

candidates, the transliteration extraction task can be 

formulated as a hypothesis test, which makes a 

binary decision as to whether a candidate E-C pair 

is a genuine transliteration pair or not. Given an E-

C pair X={EW,CW}, we have 0H , which 
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hypothesizes that EW  and CW  form a genuine E-

C pair, and 1H , which hypothesizes otherwise. The 

likelihood ratio is given as 0 1( | ) / ( | )P X H P X Hσ = , 

where 0( | )P X H and 0( | )P X H  are derived from 

P(EW|CW). By comparing σ  with a threshold τ , 

we make the binary decision as that in (Kuo et al., 

2007).  

As discussed, each view takes a distinct path that 

has its own advantages and disadvantages in terms 

of model expressiveness and complexity. Each 

view represents a weak learner achieving 

moderately good performance towards the target 

concept. Next, we study a multi-view Co-training 

process that leverages the data of different views 

from each other in order to boost the accuracy of a 

PSM model.  

4 Multi-View Learning Framework 

The PSM can be trained in a supervised manner 

using a manually labeled corpus. The advantage of 

supervised learning is that we can establish a model 

quickly as long as labeled data are available. 

However, this method suffers from some practical 

constraints. First, the derived model can only be as 

good as the data it sees. Second, the labeling of 

corpus is labor intensive.  

To circumvent the need of manual labeling, here 

we study three adaptive strategies cast in the 

machine learning framework, namely unsupervised 

learning, Co-training and Co-EM. 

4.1 Unsupervised Learning 

Unsupervised learning minimizes human 

supervision by probabilistically labeling data 

through an Expectation and Maximization (EM) 

(Dempster et al., 1977) process. The unsupervised 

learning strategy can be depicted in Figure 2 by 

taking the dotted path, where the extraction process 

accumulates all the acquired transliteration pairs in 

a repository for training a new PSM. A new PSM is 

in turn used to extract new transliteration pairs. The 

unsupervised learning approach only needs a few 

labeled samples to bootstrap the initial model for 

further extraction. Note that the training samples 

are noisy and hence the quality of initial PSM 

therefore has a direct impact on the final 

performance.  

4.2 Co-training and Co-EM  

The multi-view setting (Muslea et al., 2002) 

applies to learning problems that have a natural 

way to divide their features into different views, 

each of which is sufficient to learn the target 

concept. Blum and Mitchell (1998) proved that for 

a problem with two views, the target concept can 

be learned based on a few labeled and many 

unlabeled examples, provided that the views are 

compatible and uncorrelated. Intuitively, the 

transliteration problem has compatible views. If an 

E-C pair forms a transliteration, then this is true 

across all different views. However, it is arguable 

that the four views in Figure 1 are uncorrelated. 

Studies (Nigam and Ghani, 2000; Muslea et al., 

2002) shown that the views do not have to be 

entirely uncorrelated for Co-training to take effect. 

This motivates our attempt to explore multi-view 

Co-training for learning models in transliteration 

extraction. 

 

  
Figure 2. Diagram of unsupervised/multi-view Co-

training for transliteration extraction. 

 

To simplify the discussion, here we take a two-

view (V1 and V2) example to show how Co-

training can potentially help. To start with, one can 

learn a weak hypothesis PSM1 using V1 based on a 

few labeled examples and then apply PSM1 to all 

unlabeled examples. If the views are uncorrelated, 

or at least partially uncorrelated, these newly 

labeled examples seen from V1 augment the 

training set for V2. These newly labeled examples 
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present new information from the V2 point of view, 

from which one can in turn update the PSM2. As 

the views are compatible, both V1 and V2 label the 

samples consistently according to the same 

probabilistic transliteration criteria. In this way, 

PSMs are boosted each other through such an 

iterative process between two different views.  

 

 

Table 1. Co-training with two learners. 

Extending the two-view to multi-view, one can 

develop multiple learners from several subsets of 

features, each of which approaches the problem 

from a unique perspective, called a view when 

taking the Co-training path in Figure 2. Finally, we 

use outputs from multi-view learners to 

approximate the manual labeling. The multi-view 

learning is similar to unsupervised learning in the 

sense that the learning alleviates the need of 

labeling and starts with very few labeled data. 

However, it is also different from the unsupervised 

learning because the latter does not leverage the 

natural split of compatible and uncorrelated 

features. Two variants of two-view learning 

strategy can be summarized in Table 1 and Table 2, 

where the algorithm in Table 1 is referred to as Co-

training and the one in Table 2 as Co-EM (Nigam 

and Ghani. 2000; Muslea et al., 2002). 

In Co-training, Learners A and B are trained on 

the same training data and updated simultaneously. 

In Co-EM, Learners A and B are trained on labeled 

set predicted by each other’s view, with their 

models being updated in sequence. In other words, 

the Co-EM algorithm interchanges the probabilistic 

labels generated in the view of each other before a 

new EM iteration. In both cases, the unsupervised, 

multi-view algorithms use the hypotheses learned 

to probabilistically label the examples.  

 

 

Table 2. Co-EM with two learners. 

The extension of algorithms in Table 1 and 2 to 

the multi-view transliteration problem is 

straightforward. After an ensemble of learners are 

trained, the overall PSM can be expressed as a 

linear combination of the learners,  

1
( | ) ( | ),

n

i ii
P EW CW w P EW CW

=
=∑             (8) 

where iw is the weight of i
th
 learner ( | )iP EW CW , 

which can be learnt by using a development corpus.  

5 Experiments 

To validate the effectiveness of the learning 

framework, we conduct a series of experiments in 

transliteration extraction on a development corpus 

described later. First, we repeat the experiment in 

(Kuo et al., 2006) to train a PSM using PSA and 

GSA feature fusion in a supervised manner, which 

serves as the upper bound of Co-training or Co-EM 

system performance. We then train the PSMs with 

single view V1, V2, V3 and V4 alone in an 

unsupervised manner. The performance achieved 

by each view alone can be considered as the 

baseline for multi-view benchmarking. Then, we 

run two-view Co-training for different 

combinations of views on the same development 

corpus. We expect to see positive effects with the 

multi-view training. Finally, we run the 

experiments using two-view Co-training and Co-

EM and compare the results. 

A 500 MB development corpus is constructed by 

crawling pages from the Web for the experiments. 

We first establish a gold standard for performance 

evaluation by manually labeling the corpus based 

on the following criteria: (i) if an EW is partly 

Given  

a). A small set of labeled samples and a set of 

unlabeled samples. 

b). Learner A is trained on a labeled set to 

predict the labels of the unlabeled data. 

 

1) Loop for k iterations 

a). Learner B is trained on data labeled by 

Learner A to predict the labels of the 

unlabeled data; 

b). Learner A is trained on data labeled  by 

Learner B to predict the labels of the 

unlabeled data;   

2) Combine models from Learners A and B. 

Given: 

a). A small set of labeled samples and a set 

of unlabeled samples. 

b). Two learners A and B are trained on the 

labeled set. 

 

1) Loop for k iterations: 

a). Learners A and B predict the labels of 

the unlabeled data to augment the labeled 

set; 

b). Learners A and B are trained on the 

augmented labeled set.    

2) Combine models from Learners A and B. 
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translated phonetically and partly translated 

semantically, only the phonetic transliteration 

constituent is extracted to form a transliteration 

pair; (ii) multiple E-C pairs can appear in one 

sentence; (iii) an EW can have multiple valid 

Chinese transliterations and vice versa.  

We first derive 80,094 E-C pair candidates from 

the 500 MB corpus by spotting the co-occurrence 

of English and Chinese words in the same 

sentences. This can be done automatically without 

human intervention. Then, the manual labeling 

process results in 8,898 qualified E-C pairs, also 

referred to as Distinct Qualified Transliteration 

Pairs (DQTPs).  

 To establish comparison, we first train a PSM 

using all 8,898 DQTPs in a supervised manner and 

conduct a closed test as reported in Table 3. We 

further implement three PSM learning strategies 

and conduct a systematic series of experiments by 

following the recognition followed by validation 

strategy proposed in (Kuo et al., 2007). 

 

 Precision Recall F-measure 

Closed test 0.834 0.663 0.739 

Table 3. Performance with PSM trained in the 

supervised manner. 

For performance benchmarking, we define the 

precision as the ratio of extracted number of 

DQTPs over that of total extracted pairs, recall as 

the ratio of extracted number of DQTPs over that 

of total DQTPs, and F-measure as in Eq. (9). They 

are collectively referred to as extraction 

performance. 

2 recall precision
F measure

recall precision

× ×
− =

+
            (9) 

5.1 Unsupervised Learning 

As formulated in Section 4.1, first, we derive an 

initial PSM using randomly selected 100 seed 

DQTPs for each learner and simulate the Web-

based learning process: (i) extract E-C pairs using 

the PSM; (ii) add all of the extracted E-C pairs to 

the DQTP pool; (iii) re-estimate the PSM for each 

view by using the updated DQTP pool. This 

process is also known as semi-supervised EM 

(Muslea et al., 2002). 

As shown in Figure 3, the unsupervised learning 

algorithm consistently improves the initial PSM 

using in all four views. To appreciate the 

effectiveness of each view, we report the F-

measures on each individual view V1, V2, V3 and 

V4, as 0.680, 0.620, 0.541 and 0.520, respectively at 

the 6
th
 iteration. We observe that V1, the phoneme-

based path, achieves the best result. 
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Figure 3. F-measure over iterations using 

unsupervised learning with individual view. 

5.2 Co-training (CT) 

We report three typical combinations of two co-

working learners or two-view Co-training. Like in 

unsupervised learning, we start with the same 100 

seed DQTPs and an initial PSM model by 

following the algorithm in Table 1 over 6 iterations. 

With two-view Co-training, we obtain 0.726, 

0.705, 0.590 and 0.716 in terms of F-measures for 

V1+V2, V2+V3, V3+V4 and V1+V4 at the 6
th
 

iteration, as shown in Figure 4. Comparing Figure 

3 and 4, we find that Co-training consistently 

outperforms unsupervised learning by exploiting 

compatible information across different views. The 

V1+V2 Co-training outperforms other Co-training 

combinations, and surprisingly achieves close 

performance to that of supervised learning.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

#Iteration

F
-
m
e
a
s
u
r
e

Supervised
V1

V1+V2
V2+V3

V3+V4
V1+V4

 

Figure 4. F-measure over iterations using Co-

training algorithm 
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5.3 Co-EM (CE) 

Next we start with the same 100 seed DQTPs by 

initializing the training pool and carry out Co-EM 

on the same corpus. We build PSM1 for Learner A 

and PSM2 for Learner B. To start with, PSM1 is 

learnt from the initial labeled set. We then follow 

the algorithm in Table 2 by looping in the 

following two steps over 6 iterations: (i) estimate 

the PSM2 from the samples labeled by Learner A 

(V1) to extract the high confident E-C pairs and 

augment the DQTP pool with the probabilistically 

labeled E-C pairs; (ii) estimate the PSM1 from the 

samples labeled by Learner B (V2) to extract the 

high confident E-C pairs and augment the DQTP 

pool with the probabilistically labeled E-C pairs. 

We report the results in Figure 5. 
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Figure 5. Comparing F-measure over iterations 

between Co-training (CT) and Co-EM (CE). 

 

To summarize, we compare the performance of 

six learning methods studied in this paper in Table 

4. The Co-training and Co-EM learning approaches 

have alleviated the need of manual labeling, yet 

achieving performance close to supervised learning. 

The multi-view learning effectively leverages 

multiple compatible and partially uncorrelated 

views. It reduces the need of labeled samples from 

80,094 to just 100.  

We also compare the multi-view learning 

algorithm with active learning on the same 

development corpus using same features. We 

include the results from previously reported work 

(Kuo et al., 2006) into Table 4 (see Exp. 2) where 

multiple features are fused in a single active 

learning process. In Exp. 2, PSA feature is the 

equivalent of V1 feature in Exp. 4; GSA feature is 

the equivalent of V4 feature in Exp. 4. In Exp. 4, 

we carry out V1+V4 two-view Co-training. It is 

interesting to find that the multi-view learning in 

this paper achieves better results than active 

learning in terms of F-measure while reducing the 

need of manual labeling from 8,191 samples to just 

100.  

 

Exp. Learning algorithm 
F-

measure 

# of 

samples 

to label 

1 Supervised 0.739 80,094 

2 Active Learning 

(Kuo et al., 2006) 
0.710 8,191 

3 Unsupervised (V1) 0.680 100 

4 Co-training (V1+V4) 0.716 100 

5 Co-training (V1+V2) 0.726 100 

6 Co-EM (V1+V2) 0.725 100 

Table 4. Comparison of six learning strategies.  

6 Conclusions 

Fusion of phoneme and grapheme features in 

transliteration modeling was studied in many 

previous works. However, it was done through the 

combination of phoneme and grapheme similarity 

scores (Bilac and Tanaka, 2004), or by pooling 

phoneme and grapheme features together into a 

single-view training process (Oh and Choi, 2006b). 

This paper presents a new approach that leverages 

the information across different views to 

effectively boost the learning from unlabeled data. 

We have shown that both Co-training and Co-

EM not only outperform the unsupervised learning 

of single view, but also alleviate the need of data 

labeling. This reaffirms that multi-view is a viable 

solution to the learning of transliteration model and 

hence transliteration extraction. Moving forward, 

we believe that contextual feature in documents 

presents another compatible, uncorrelated, and 

complementary view to the four views. 

We validate the effectiveness of the proposed 

algorithms by conducting experiments on 

transliteration extraction. We hope to extend the 

work further by investigating the possibility of 

applying the multi-view learning algorithms to 

machine translation.  
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