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Abstract
In this paper we study the word-reordering
problem in the decoding part of statisti-
cal machine translation, but independently
from the target language generating pro-
cess. In this model, a permuted sentence is
given and the goal is to recover the correct
order. We introduce a greedy algorithm
called Local-(k, l)-Step, and show that it
performs better than the DP-based algo-
rithm. Our word-reordering algorithm can
be used in the statistical machine transla-
tion process for improving the quality of
the translation. Furthermore, motivated by
the rank evaluation method, we introduce
a novel way for evaluating the results of
word-reordering by calculating the inver-
sion pair cardinality.

1 Introduction

Statistical machine translation is a machine trans-
lation method based on statistical models, which
is in contrast with rule-based machine translation
as well as with example-based machine transla-
tion. The most commonly used model in statistical
machine translation is the source-channel model
built by Brown et. al. (1993). In their pro-
posal of translation between English and French,
English strings are generated according to some
stochastic process and then transformed stochas-
tically into French strings. Therefore, to trans-
late French to English, it is needed to search for
an English source string that is most likely ac-
cording to the English language model (Ponte and
Croft, 1998) and the channel model. This process
of translation is called decoding. Usually, a de-
coding process in statistical machine translation
is combined with two sub-processes (Chang and
Toutanova, 2007; Koehn, Och and Marcu, 2003):
generating the words or phrases of the target lan-
guage, and deciding the correct order of the words

or phrases to get a desired target language sen-
tence. For some language pairs, such as English
and Chinese, the word-reordering problem is re-
ally hard to solve, as the target word order differs
a lot from the source word order and little informa-
tion about the target word order is obtainable from
the source sentence. This is because the grammars
of English and Chinese differ from one another
significantly.

Language model has been successfully applied
in the word-reordering process of statistical ma-
chine translation. Generally speaking, a language
model assigns a probability to a sequence of words
according to some probability distribution. A
sentence then gets a score under the language
model by means of standard conditional proba-
bility. Knight (1999) studied this abstract prob-
lem and proved that the word-reordering (also
called word-replacement) problem under bigram
language model is NP-hard.

In this article, we study the word-reordering
problem under trigram language model in the de-
coding part of statistical machine translation, but
independently from the target language generat-
ing process. More precisely, suppose we want
to translate a sentence from one language to an-
other, and some methods have been applied to
generate all the target words, whereas the words
need reordering because two languages may have
totally different grammars (like English and Chi-
nese). Thus, our goal is to recover the correct, or
reasonable, word order of the target sentence.

We reduce this problem to the traveling sales-
man problem (TSP) in 3-uniform hypergraphs. We
show that by some modification, the dynamic-
programming (DP) based algorithm for TSP (Held
and Karp, 1962) can be used in solving this gen-
eralized problem. Nevertheless, the time com-
plexity of this DP-based algorithm is exponential
in the number of words in the sentence, and is
thus unreasonable in practice. We design a class
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of greedy algorithms called Local-(k, l)-Step, pa-
rameterized by k and l. Roughly speaking, the
Local-(k, l)-Step algorithm finds, in each step, k
words which maximize the language model score,
and then add the first l words to the partial sen-
tence. For small k, say k < 5, this algorithm runs
much faster then the DP-based algorithm.

We also propose a novel way to evaluate the
results of word-reordering, motivated by the rank
(ordering) evaluation measures in information re-
trieval. Standard retrieval evaluation measures,
such as Mean Average Precision (MAP), are used
for evaluating the results of retrieval systems. The
reordering or ranking of items is an important task
in many real-world applications, and it is needed
to compare two different orderings of the same
item list. One commonly-used measure is the
Kendall’s tau coefficient (Kendall, 1938) which
uses the notion of inversion pairs.

Motivated by these existing methods, we de-
sign the following evaluation process for word-
reordering: Given a sentence outputted by the al-
gorithm, we regard it as a permutation of the cor-
rect sentence, and count the the number of in-
version pairs in it, which can be seen as the dis-
tance between the result sentence and the cor-
rect one. The notion of inversion pairs is often
used to measure the distance between permuta-
tions. Due to the special structure of our model,
it is also a proper measurement of the quality of
word-reordering results. Note that to calculate
the number of inversion pairs, the correct sen-
tence, or a “standard answer”, should be given as
well. This can be done by the following design of
experiments: We choose 1500 English sentences
from http://www.nlp.org.cn, and randomly per-
mute each sentence. Then, the permuted sentences
are given as the input to the word-reordering prob-
lem, while the original sentences are just “standard
answers” which will be used in the evaluation.

We implement both the DP-based algorithm and
the Local-(k, l)-Step algorithm, and evaluate their
results according to their performance on the cho-
sen sentences. From the comparison, it is shown
that for well chosen parameters k and l, the Local-
(k, l)-Step algorithm performs even better than
the DP-based algorithm. This seems to contradict
with the fact that the latter solves the problem ex-
actly while the former only obtains an “approxi-
mate” solution. This, however, is not a real prob-
lem since the score under the language model is

not always compatible with that under the evalua-
tion using inversion pairs. In fact, neither of the
two evaluation methods can accurately measure
the “quality” or “correctness” of sentences, be-
cause the human language itself comprises many
other perspectives that cannot be qualified or char-
acterized exactly by current techniques. It is pos-
sible that a sentence that makes no sense obtains a
higher language model score than that of a normal
sentence in real world.

Finally let us mention that, although through-
out the paper we talk about the word-based re-
ordering model, our algorithms can be easily mod-
ified to be applicable in the re-ordering process of
statistical machine translation whose working unit
is phrase (Koehn, Och and Marcu, 2003).

This paper is organized as follows: Section 2
defines the word-reordering model rigorously, and
introduces the dynamic programming algorithm
and the greedy Local-(k, l)-step algorithm. In
Section 3 we show the experimental results as well
as the evaluation based on the inversion pair cardi-
nality. The last section concludes the whole article
with some remarks and future work.

2 The Word-reordering Model

In the word-reordering model, a disordered En-
glish sentence is given and the goal is to find the
most reasonable order. For example, given the
sentence “overrate to is importance their it easy”,
the best answer should be “It is easy to overrate
their importance.”

It is hard to establish a standard criterion for
evaluating the “quality” of a sentence. In practice,
language model is used as a statistical tool to help
people find approximate solutions. For our pur-
pose, we adopt the commonly-used trigram source
model, given by lm(w0|w1, w2) for all possible
English words w0, w1 and w2. Given a disordered
sentence, we want to rearrange its words in order
to get a maximum score according to the trigram
source model. This can be theoretically formal-
ized as the following search problem.

Word-reordering Problem
Input:
1. A dictionary D = {di | 1 ≤ i ≤ m};
2. A trigram source model {lm(wi | wj , wk) :

1 ≤ i, j, k ≤ m};
3. A set of words S = {s1, s2, . . . , sn} ⊆ D.
Output: A sentence si1si2 . . . sin , where

(i1, i2, . . . , in) is a permutation of {1, 2, . . . , n},
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such that
∏n

j=3 lm(sij | sij−1 , sij−2) is maxi-
mized.

A similar problem with bigram source model
{lm(wi|wj)} is proved to be NP-hard by Knight
(1999) using a reduction from the famous HAMIL-
TONIAN PATH problem. The NP-hardness of this
problem with trigram source model can be proved
analogously.

Despite the hardness result, we can still cope
with many instances in practice, since a sentence
is usually not so long. The trivial way is to enu-
merate all n! permutations and find the one achiev-
ing maximum score, which takes O(n · n!) time.
We will describe better ways for solving it.

2.1 Dynamic Programming

An instance of the TSP problem consists of a di-
rected graph G = (V, E) and a cost function c :
E → R, and the goal is to find a path of minimum
cost which visits each vertex in V exactly once
(that is, a Hamiltonian path). Note that the word-
reordering problem can be reduced to TRAVELING

SALESMAN PROBLEM (TSP) with a slight modifi-
cation that each edge in the graph is a triple instead
of a pair (i.e., TSP in 3-uniform hypergraphs). The
reduction is as follows: Construct a vertex vi for
each word si ∈ S, and then add an hyperedge
(vi, vj , vk) with cost − ln(lm(wk|wi, wj)) for ev-
ery triple (vi, vj , vk). Then, finding a sentence
s with maximum score is equivalent to finding
a minimum cost Hamiltonian path in this hyper-
graph, where the cost of a path is defined to be
the sum of costs of all triples containing three
consecutive nodes in the path. We can assume
that the graph is complete (i.e., all possible edges
(vi, vj , vk) exist) by adding dummy edges with
sufficiently large costs.

Held and Karp (1962) designed a dynamic-
programming based (DP-based) algorithm for the
original TSP which runs in time O(2n · n2), n be-
ing the number of vertices in the graph. Their al-
gorithm runs iteratively on all subsets of vertices
and finds a minimum cost tour in that subset, with
the start and end points specified. We will describe
a similar algorithm for solving TSP on 3-uniform
hypergraphs, which can be directly applied to the
word-reordering problem.

DP-based algorithm for TSP in 3-uniform hy-
pergraphs (3-uni-DP)

Input: A 3-uniform hypergraph G = (V,E); a
cost function c : E → R.

Output: A minimum cost Hamiltonian path.

Algorithm:

• Return fail if |V | < 3.

• For each triple (vi, vj , vk) where all
three vertices are pairwise distinct, let
C({vi, vj , vk}, vi, vj , vk) = c(vi, vj , vk).

• For m = 4 to |V | do

– For each tuple (V ′, v1, v2, v3) where
{v1, v2, v3} ⊆ V ′ ⊂ V and |V ′| =
m, compute: C(V ′, v1, v2, v3) =
minv4∈V ′{C(V ′ \ {v3}, v1, v4, v2) +
c(v4, v2, v3)}

• Find the vertices v1, v2, v3 for which
C(V, v1, v2, v3) is minimized. Trace back to
find the corresponding path.

The algorithm 3-uni-DP runs in time O(2n ·
n4), where n = |V |. In each step it computes
C(V ′, v1, v2, v3), which stands for the minimum
cost Hamiltonian path in V ′ that starts with v1 and
ends at (v2, v3), by enumerating the third vertex
on the path from end and concatenating the shorter
path and the last edge. It is not hard to see that this
algorithm correctly computes the minimum cost
Hamiltonian path in 3-uniform hypergraphs.

2.2 Local-(k, l)-Step Algorithm
The DP-based algorithm 3-uni-DP solves the
word-reordering problem exactly but runs in ex-
ponential time, which is unaffordable for long sen-
tences. An idea for reducing the running time is to
consider the problem “locally”. In each step, we
look for a fixed number of unvisited points and try
to minimize the cost of the “local path” in which
these points are involved. More specifically, we
seek for k unvisited points v2, v3, . . . , vk+1 min-
imizing

∑k−1
i=0 c(vi, vi+1, vi+2), where v0 and v1

are the last two nodes in the current partial path.
Then, we add the first l points to our partial path,
for some l ≤ k. We give a more formal descrip-
tion as follows.

Algorithm Local-(k, l)-Step

Input: A 3-uniform hypergraph G = (V, E); a
cost function c : E → R.
Output: A minimum cost Hamiltonian path.

Algorithm:
Do the following for all vertex pairs (v0, v1) to find
the best solution:
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• V ′ ← V \ {v0, v1}.

• PartialPath← (v0, v1).

• While |V ′| ≥ k do

– Find k distinct vertices v2, v3, . . . , vk+1

in V ′ which minimizes∑k−1
i=0 c(vi, vi+1, vi+2).

– Add (v2, . . . , vl+1) to the end of
PartialPath.

– V ′ ← V ′ \ {v2, v3, . . . , vl+1}.

• In case V ′ ̸= ∅, perform an exhaustive search
to find the best order to visit the remaining
vertices in V ′, and add this to PartialPath.

Return the best PartialPath (with the minimum
cost) over all start pairs (v0, v1).

The algorithm Local-(k, l)-Step runs in time
O(n2·nk ·nl ) = O(nk+3/l), where n is the number
of vertices in the graph. This is efficient in practice
if we choose a small k, say, k < 5. It should be
noticed that this algorithm cannot be a constant-
factor approximation algorithm for TSP, since for
any constant k it runs in polynomial time, and thus
cannot approximate TSP within any constant ratio
unless P = NP. However, it may perform well on
real-world instances of the word-reordering prob-
lem.

In fact we will show that, for some well cho-
sen parameters k and l, the algorithm Local-
(k, l)-Step performs even better than the algo-
rithm 3-uni-DP. This seems to contradict with
the fact that the latter solves the problem optimally
while the former only looks for a reasonable solu-
tion. However, this is not a problem because our
word-reordering model itself cannot catch accu-
rately the quality of a sentence. Thus, when eval-
uating the outcomes of our algorithms, it is more
proper to use some other measurements, like the
inversion pair which will be introduced later. The
reason why this measurement cannot be adopted
in the design of our algorithms is that it can only
be calculated if a standard answer to the problem
is given.

3 Experiments

3.1 The trigram language model training

In order to build a reasonable trigram language
model for the experiment, we download the third
version of the Europarl corpus (Koehn, 2005)

which is extracted from the proceedings of the Eu-
ropean Parliament. This data set is usually used as
a base material in statistical machine translation
contest or other research projects involving Euro-
pean languages, and the English part can be used
for training a trigram English language model.
There are about 0.307 million English sentences
in the material. Thus, the trigram language model
built by SRILM (Stolcke, 2002) can reflect the
properties of the English language.

3.2 The reordering experiment

How to evaluate the results of our algorithms is a
key problem in our research, as there is no stan-
dard for testing the accuracy of word-reordering.
Usually, the reordering of words in sentences
serves as a subprocess in statistical machine trans-
lation, especially in the decoding step. All the ex-
isting methods and standards are designed to test
the accuracy of the translation results, but not the
single process of word-reordering. Therefore, we
designed an experiment model and a testing prin-
ciple for our own purpose, shown as follows.

First, we choose 1500 English-Chinese sen-
tence pairs (from http://www.nlp.org.cn) as the
collection of standard answers. We then choose
from them all sentences of length less than 10 as
our data set. For every sentence in this data set,
we generate a disordered sentence by performing
a random permutation on the set of words in the
original sentence. For example, if the original sen-
tences is “sometimes you are overly frank”, one
possible disordered sentence could be “overly are
sometimes frank you”. The original sentence is
used as a standard answer for later evaluation. We
run the Local-(k, l)-Step algorithm on all the per-
muted sentences for all pair of parameters (k, l)
such that 1 ≤ l ≤ k ≤ 4. We also run the
3-uni-DP algorithm on these sentences for the
sake of contrast.

There is another issue considering the start of a
sentence. Since the language model includes the
possibility of a word being the first word of a sen-
tence, we may add a special “start symbol” to ev-
ery disordered sentence and force it to be the first
word in the output sentence. This is easy to im-
plement in practice, and will make the result more
reasonable. In all the experiments we adopt this
setting.

Now comes the evaluation part. How to mea-
sure the quality of our results, or, the distances
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between the output sentences and the standard an-
swers? It turns out that any method for determin-
ing the distance between permutations also works
in our model. The concept of inversion pairs is
usually used to measure the distance between two
permutations, and is thus brought into our exper-
iments. Let σ be a permutation of {1, 2, . . . , n}.
A pair of indices (i, j), where 1 ≤ i < j ≤ n, is
called an inversion pair of σ if σ(i) > σ(j). The
total number of inversion pairs of σ, also called in-
version pair cardinality of σ, is a proper measure-
ment of the distance between σ and the identity
permutation (1, 2, . . . , n). Although distances be-
tween two arbitrary permutations can be similarly
defined, this measurement already suffices for our
purpose since we only need to calculate the dis-
tance between a permuted sentence and the stan-
dard answer.

Take again the sentence “sometimes you are
overly frank” as an illustration. We mark this
sentence as the identity permutation (1, 2, 3, 4, 5).
If the disordered sentence is “sometimes are you
frank overly”, it should be associated with the per-
mutation (1, 3, 2, 5, 4), and thus has 2 inversion
pairs in total (3 comes before 2, and 5 appears be-
fore 4).

In this way we can calculate the number of
inversion pairs to measure the degree of disor-
dering. For every pair of parameters (k, l) used
in the Local-(k, l)-Step algorithm, we count the
number of output sentences which have smaller
inversion pair cardinality than the corresponding
randomly permuted sentences. Call this number
Better(k, l). We then choose the pair (k, l) which
maximizes Better(k, l), denoted by (k0, l0), and
adopt it as the proper parameter for our algorithm.
We also calculate Better(DP ), which is the num-
ber of sentences outputted by the 3-uni-DP al-
gorithm having smaller inversion pair cardinality
than the corresponding disordered ones.

All the experiments are conducted repeatedly
for 5 times, each time generating different ran-
domly disordered sentences. The final result
Better(DP ) and Better(k, l) are the average of
the results of 5 independent experiments. These
results are shown in Tables 1 and 2.

3.3 Analysis

The experimental result shows that setting (k, l) =
(4, 3) gives the best outcome among all chosen pa-
rameters. Thus we let k0 = 4 and l0 = 3. It

1 2 3 4 5 average
(1,1) 347 354 329 360 349 347.8
(2,1) 376 389 370 386 388 381.8
(2,2) 383 390 369 395 388 385
(3,1) 392 396 386 399 399 394.4
(3,2) 392 397 383 388 388 389.6
(3,3) 396 406 380 401 387 394
(4,1) 399 413 390 405 407 402.8
(4,2) 400 406 398 407 403 402.8
(4,3) 412 414 401 421 416 412.8
(4,4) 406 412 404 421 420 412.6
DP 362 370 364 372 353 364.2

Table 1: Better(DP ) and Better(k, l) under all
chosen parameters

average number percentage
Better(k0, l0) 412.8 62.55%

Better(DP ) 364.2 55.18%

All sentences 660 100%

Table 2: The comparison between DP-based and
greedy algorithms

is a little surprising that Better(DP ) is less than
Better(k0, l0), which indicates that the exact al-
gorithm performs worse than the “approximate”
algorithm. As explained before, this is due to our
lack of modeling the “quality” or “correctness”
of sentences. It is possible that a sentence with
high score under trigram language model makes
little sense, and a normal sentence appearing in
real word obtains a low score under this language
model. The algorithm Local-(k, l)-Step, on the
other hand, makes use of the locality of English
sentences, and thus it should be expected to per-
form well.

4 Conclusions

In this paper, we study the word-reordering prob-
lem in the decoding process of statistical machine
translation. We adopt the commonly-used trigram
language model, and abstract the word-reordering
problem as instances of Traveling Salesman Prob-
lem in 3-uniform hypergraphs. We show that
Held and Karp’s dynamic-programming based al-
gorithm for solving TSP (in normal graphs) can
be adapted to solve this problem. We also design a
greedy algorithm called Local-(k, l)-Step, param-
eterized by k and l, which has a faster running time
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but gets a non-optimal solution, where by optimal
we mean achieving maximum score under the tri-
gram language model.

We implement both algorithms and conduct
some experiments. To evaluate the results, we
adopt the concept of inversion pairs to measure the
distances between the standard answers and the
sentences outputted by the algorithms. From the
experimental results, we find that setting k = 4
and l = 3 makes the Local-(k, l)-Step algorithm
perform best. Moreover, the result obtained by
the greedy algorithm is even better than that of
the dynamic-programming based algorithm. This
is because we are not able to model the quality
and correctness of sentences accurately, and thus a
sentence with maximum score under trigram lan-
guage model is not necessarily a best answer to the
reordering problem.

Since we study the word-reordering problem in-
dependently from the target language generating
process, one future direction for our research is to
combine the two parts, namely, predicting the col-
lection of words and deciding the correct order of
the target sentences, together to design better de-
coding algorithms.
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