
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 35–43,
Chiang Mai, Thailand, November 8-12, 2011.

Extending a multilingual Lexical Resource by bootstrapping Named
Entity Classification using Wikipedia’s Category System

Johannes Knopp
KR & KM Research Group, Department of Computer Science

Universität Mannheim, B6 26, 68159 Mannheim, Germany
johannes@informatik.uni-mannheim.de

Abstract

Named Entity Recognition and Classi-
fication (NERC) is a well-studied NLP
task which is typically approached using
machine learning algorithms that rely on
training data whose creation usually is
expensive. The high costs result in the
lack of NERC training data for many lan-
guages. An approach to create a multi-
lingual NE corpus was presented in Went-
land et al. (2008). The resulting resource
called HeiNER describes a valuable num-
ber of NEs but does not include their types.
We present a bootstrap approach based on
Wikipedia’s category system to classify
the NEs contained in HeiNER that is able
to classify more than two million named
entities to improve the resource’s quality.

1 Introduction

For tasks in information extraction NERC is very
important and often supervised machine learning
approaches are used to solve it, e.g. Bender et
al. (2003) or Szarvas et al. (2006). In A survey of
named entity recognition and classification David
Nadeau and Satoshi Sekine conclude:

“When supervised learning is used, a
prerequisite is the availability of a large
collection of annotated data. Such col-
lections are available from the evalua-
tion forums but remain rather rare and
limited in domain and language cover-
age” (Nadeau and Sekine, 2007)

To overcome the problem of limited language
coverage, Wentland et al. (2008) started to cre-
ate the multilingual Heidelberg Named Entity Re-
source (HeiNER). In more than 250 languages,
HeiNER lists Wikipedia (WP) articles that de-
scribe a named entity (NE), in 16 of those lan-
guages it contains a collection of textual contexts a

NE was unambigiously mentioned in. Those con-
texts provide useful training material for NE clas-
sification, thus the goal of this work is to add NE
types to HeiNER’s entries.

Unlike the widely used machine learning ap-
proaches to NERC our classification method re-
lies only on WP’s category system and thus does
not need any language specific information. The
idea is to first determine sets of WP categories
to identify each NE type. After that, these sets
are used to initialize a bootstrapping algorithm
that identifies the types for unclassified NEs. NE
types follow the CoNLL definition presented by
Sang (2002): person (PER), location (LOC), or-
ganization (ORG) and miscellaneous (MISC).1

The CoNLL types were chosen because HeiNER’s
evaluation was based on the CoNLL types.

The following sections reveal details about
HeiNER (section 2), describe the bootstrap ap-
proach of NE classification with WP categories
(section 3) and show the results in the evaluation
section (section 4).

2 HeiNER

As this work builds upon the Heidelberg Named
Entity Resource (HeiNER), we will describe the
data that HeiNER provides and how they were cre-
ated to give the reader an idea about their quality
and structure.

HeiNER is a multilingual collection of named
entities along with disambiguated context excerpts
and a disambiguation dictionary that maps proper
names to a set of NEs the proper names may re-
fer to. The resource was created automatically
from Wikipedia relying on (i) the heuristic pre-
sented in Bunescu and Paşca (2006) to recognize
English Wikipedia articles that denote a NE and
(ii) Wikipedia’s link structure.

1cf. http://www.cnts.ua.ac.be/conll2003/
ner/annotation.txt

35

<transDict>
<namedEntity id=’2134’>
<an>Organizazión d’as Nazions Unitas</an>
<bs>Ujedinjeni narodi</bs>
<ga>Nisiin Aontaithe</ga>
<gl>ONU</gl>
<hu>Egyesült Nemzetek Szervezete</hu>
<lb>Vereent Natiounen</lb>
<nds>Vereente Natschonen</nds>
<tr>Birleşmiş Milletler</tr>
<en>United Nations</en>
...
</namedEntity>
</transDict>

Figure 1: Example of the entry for “United Na-
tions” in the translation dictionary

First, the NER heuristic based on uppercase let-
ters generated a list of English WP articles that
denote a NE. This method created more than 1.5
million NEs with a precision of 95% 2. With help
of WP’s interlanguage links the available transla-
tions for every NE were added to the list resulting
in the translation dictionary shown in figure 1. All
of the more than 250 languages available in WP
were considered to create the NE translations.

As the NE articles in WP are known from the
first step, the disambiguation dictionary is built af-
terwards using disambiguation and redirect links
to map proper names to NEs. Finally the con-
text dataset is created for every NE by storing the
paragraphs they are unambiguously mentioned in.
This was done for 16 languages. An excerpt of the
context dataset is shown in Figure 2 below.

<dataset neID=’2134’ lang=’en’
neStr=’United Nations’>

<context id=’0’>
<surfaceForm>United Nations</surfaceForm>
<leftContext>
The World Health Organization (WHO) is a
specialized agency of the
</leftContext>
<rightContext>
(UN) that acts as a coordinating
authority on international public health.
</rightContext>

</context>
</dataset>

Figure 2: Excerpt from the English context dataset
for the NE “United Nations”

The NEs together with disambiguated contexts
in different languages can be considered use-
ful data for NE disambiguation, classification or

2Read Wentland et al. (2008) for more details.

machine translation (e.g. Federmann and Hun-
sicker (2011)).3 For this paper the heuristics to
create the list of English NEs were run on the
more recent WP dump of November 3rd 2009 and
resulted in a total of 2,225,193 found NEs com-
pared to 1,547,586 NEs reported in the original pa-
per. The difference is solely caused by the natural
growth of Wikipedia.

3 A Bootstrap Approach to NE
Classification with WP Categories

As described in Section 2 HeiNER presents a lot
of context information of NEs. To release the full
potential of the multilingual data the NEs need to
be annotated with their respective type.

Instead of using a classical NER system this
work concentrates on a language agnostic ap-
proach that is based on WP’s category structure
which is not only suited for NER but can be used
for other classifications based on WP categories
as well. In short, the idea is to identify WP cate-
gories that correspond to a NE type and then use
those categories to classify NEs that are placed in
those typed categories. The categories can be in-
terpreted as a signature or footprint of a NE type.
The method outline is as follows: First, for every
NE type a list of seed categories is created man-
ually. It is enhanced by taking two levels of sub-
categories into account. The resulting lists of type
specific categories are used to classify the articles
in HeiNER by looking up if they are placed in one
of the seed categories and assigning the respective
type. The steps are illustrated in figure 3.

Seed
Categories
for Persons

PER

Initial
Classified
Articles

enhance
seeds

lookup in
HeiNER

Figure 3: The manually chosen and enhanced seed
categories generate the initial list of classified ar-
ticles. The illustration shows the method for PER,
it works in the same way for the other categories.

This leaves most of the NEs in HeiNER unclas-
sified, but the initially classified NEs can be used
for the bootstrapping solution that is visualized in
figure 4: For every NE type, a NE type vector

3HeiNER is available for the scientific community at
http://heiner.cl.uni-heidelberg.de/

36

MISC

PER

ORG

LOC

NE 1:
 0.96 (PER)
 0.05 (LOC)
 0.02 (ORG)
 0.30 (MISC)
NE 2: …

Ranked
unclassified Articles

Classified
Articles

Type Vectors

compute
type vectors

from
categories

compute
similarities
to uncl.
articles

add best 10%
to classified

articles

PER

LOC

ORG

MISC

Figure 4: Bootstrapping loop to classify articles.

based on categories is built by looking up all cat-
egories of the now classified articles and count-
ing them for each type. The articles are then clas-
sified by computing the similarity between their
category vector and the four NE type vectors and
choosing the most similar one. This is done in ten
iterations where each step updates the type vectors
with the new classified articles. The only man-
ual work needed is collecting the seed categories.
This can be applied in any language that is avail-
able in WP. We use the English version because
it is by far the largest edition. Also note that the
seeds define the result of the classification. More
fine grained types like politician or entertainer (cf.
(Fleischman and Hovy, 2002)) could be easily im-
plemented by choosing other seeds.

After this broad overview the subsections
present a more detailed description of the ap-
proach. For that we introduce the notation scheme
used in this paper:
The set of NE types t ∈ T consists of persons
PER, locations LOC, organizations ORG and
miscellaneous MISC.
C denotes the set of all categories in the English
Wikipedia. Single Categories that are mentioned
in the text are written in SMALL CAPS.

3.1 Generating Seed Categories

For every NE type the seed categories hold a set
of WP categories such that any NE article that is
placed in one of them is considered to be of the
type the category is associated with. Because the
classification method relies on the seeds’ quality
they have to be annotated manually. The goal is
to find categories that are broad enough to classify
as many NEs as possible but also are accurate in
order to avoid incorrect classifications.

To find the best seed categories for the NE types
person, location, organization and miscellaneous,
we started to randomly pick NE articles belong-
ing to one type, then inspect the categories it is
placed in and move up in the category tree by
following supercategories until the topic range of
a category gets too broad for unambiguous clas-
sification. The broad-but-accurate categories are
added to the seed set of the respective type. Be-
cause the subcategories can be considered to be
useful for the classification process, we add two
levels of subcategories to the initial seed list. The
restriction to two levels of subcategories is needed
to avoid adding noise, because WP’s category sys-
tem is a graph, not a tree.

An example for the manual creation of seed cat-
egories might help at this point: if we are inter-
ested in the NE type person, we start with a ran-
dom WP article about a person, e.g. Jimmy Hen-
drix. We always follow the most promising super-
categories which leads to the following chain:
1960S SINGERS ⇒ SINGERS BY TIME PERIOD

⇒ PEOPLE BY OCCUPATION AND PERIOD ⇒
PEOPLE BY OCCUPATION⇒ PEOPLE

The accuracy of each category is checked by in-
specting subcategories and articles belonging to it.
The category PEOPLE has a subcategory BIBLI-
OGRAPHY which deals with biographical books.
Thus, PEOPLE itself is not accurate enough to find
persons. Still most of the subcategories of PEO-
PLE like PEOPLE BY OCCUPATION or PEOPLE BY

RELIGION are added to the seed categories of NE
type person.

As a result there are 15 seed categories found
for the type person. The same was carried out for
the other NE types. All seed categories together
with two levels of subcategories form the set of
typed categories Ct. The results can be seen in
table 1.

The number of seed categories does not neces-
sarily correlate with the number of found subcat-
egories: The types PER and LOC have the same
count of seed categories, but CPER is almost 3.5
times bigger than CLOC and has about 1,500 cat-
egories more than CORG which started with 75
seed categories. An explanation would be that
persons are supported well and have a very fine
grained categorization while locations can be de-
scribed with a smaller set of categories. CMISC

remains in between the others with 4,747 subcate-
gories.

37

type t seed
categories

sub-
categories

typed
categories Ct

PER 15 9,625 9,640
LOC 15 2,783 2,798
ORG 75 8,033 8,108
MISC 27 4,747 4,774

Table 1: Numbers of categories found for each NE
type derived from seed categories.

3.2 Initial Named Entity Classification

Starting from the enhanced seed categories the ini-
tial list of classified NEs can be created easily. Just
iterate over every article in HeiNER and check if
it is placed in Ct. If this is the case the article can
be considered to be of type t and hence is added to
the set of classified NE articles NEt. If more than
one type was found for an article it is left unclas-
sified. The results of this initial classification are
shown in table 2.

To point out the generative power of the cate-
gories the last row shows the “productivity ratio”
NEt
Ct

of each category. The earlier assumption that
there are more articles of type PER than others is
supported by the fact that more than half million
NEs could be initially classified and also by the
number of articles found per category. This can-
not be solely based on the superior count of PER
categories because the number of ORG related cat-
egories is not that far behind, though NEORG is
about 4 times smaller than NEPER. Also the PER
related categories are about five times more pro-
ductive than the ones related to MISC. In other
words, most of WP’s contributors write articles
about NEs of the type PER and categorize them
studiously. The quality of the results will be dis-
cussed in the evaluation in section 4.

Type t Ct NEt
NEt
Ct

PER 9,640 502,173 52
LOC 2,798 41,539 15
ORG 8,108 128,433 16
MISC 4,774 47,887 10

Table 2: Number of classified articles derived
from seed categories. The last row shows the
rounded average classification produced by each
category.

3.3 Type Vectors & Bootstrapping

After the initial classification step we can remove
the 720,032 classified articles from the NE list
with 2,224,472 entries leaving 1,504,440 yet to
classify articles. As the presented method relies
on categories 7,033 articles without any catego-
rization are removed too which results in a final
list of 1,497,407 NEs that need to be classified in
the bootstrapping process.

As explained earlier the categories of the classi-
fied articles are used to build a NE type vector con-
sisting of categories associated with NEs of a cer-
tain type. The categories of classified articles form
the dimensions of the type vectors, their counts de-
fine the length in that dimension. The algorithm in
figure 5 shows how the vector is created. Note that
for the NE type vector all categories are taken into
account and not just the ones pointing to NEs that
were used in the initial classification step. The in-
tuition behind this is that the aggregated categories
form the footprint of a type even if not each of
them points to a NE.

def c o m p u t e v e c t o r (NEt) :
s t o r e v e c t o r as a d i c t i o n a r y
c a t e g o r y v e c t o r = {}
f o r article in NEt :

f o r c in article.catgories :
i f c a t e g o r y v e c t o r . h a s k e y (c) :

c a t e g o r y v e c t o r [c] += 1
e l s e :

c a t e g o r y v e c t o r [c] = 1
re turn c a t e g o r y v e c t o r

Figure 5: Python-Pseudocode algorithm of a func-
tion to build the category vector. The vector is
stored in a dictionary where the category name is
the key and the count its value.

The algorithm is applied to each NE type in
NEt, the results are shown in table 3. The di-
mensions of the vectors in the third row show the
number of unique categories. The fourth row rep-
resents the overall count of categories in the arti-
cles and the last row shows the average number of
categories per article. Again we can see that PER
is categorized in more detail while LOC and ORG
have a similar ratio. MISC has the lowest catego-
rization rate. We expect our method to work best
with articles that are placed in many categories.

The type of an unclassified NE article is deter-
mined by converting its categories into a vector,
computing similarities to the type vectors, and as-

38

type
t

NEt dimen-
sions

category
count

categories
per NEt

PER 502,173 132,098 4,037,634 7.86
LOC 41,539 35,880 228,468 5.08
ORG 128,433 72,184 694,523 4.94
MISC 47,887 33,110 229,438 4.33

Table 3: Statistics for the NE type vectors that are
created for NEt.

signing the type with the highest similarity score.
As categories can either be present or not the cat-
egory vector of an article is binary. In order to
verify the general approach we classify the NEs
in two setups using different similarity measures,
cosine similarity and Dice’s coefficient:

cosine(~x, ~y) =

∑n

k=1
xkyk√∑n

k=1
x2
k ·

√∑n

k=1
y2
k

dice(~x, ~y) =
2 ·

∑n

k=1
(weightxk · weightyk)∑n

k=1
weightxk +

∑n

k=1
weightyk

Cosine similarity computes the angle between
the two vectors taking only the directions of type
vectors into account and not their length. Because
there are no negative categorizations the result-
ing similarities range between zero and one. The
Dice’s coefficient includes the count of shared el-
ements in relation to all elements that are not zero.
It considers the weights of the vectors by multi-
plying the shared elements4. The factor 2 keeps
the result range between zero and one.

In the bootstrapping phase HeiNER’s unclassi-
fied NEs are classified as just described. In 10 it-
erations the 10% with the highest similarity val-
ues are added to their respective set NEt and the
type vectors are updated before the next 10% are
classified. Figure 6 shows the process for cosine
similarity and figure 7 for Dice’s coefficient.

For each NE type the tables list the exact counts
of how many NEs were added in each of the 10 it-
erations. The bar plots beneath the tables visualize
these data by stacking the counts of each type in
every iteration. As the sum is always 10% of the
initially unclassified data the bars have the same
length. The exception at iteration 10 stems from
the fact that articles that do not share a category
with any of the type vectors cannot be classified.
The difference between the last Dice and cosine

4As we multiply with a binary vector we just decide
whether to add the value of the non-binary vector at that po-
sition or not.

run PER LOC ORG MISC
initial 502,173 41,539 128,433 47,887

Cosine
1 3,999 120,641 23,469 1,631
2 1,216 11,456 42,997 94,071
3 1,414 56,725 38,220 53,381
4 33,664 11,763 39,064 65,249
5 50,990 10,690 17,511 70,549
6 44,166 24,131 22,569 58,874
7 14,924 39,565 33,347 61,904
8 4,482 45,417 37,201 62,640
9 3,392 38,138 38,711 69,499
10 4,057 26,395 38,719 60,913

Bootstrap 162,304 384,921 331,808 598,711
Total 664,477 426,460 460,241 646,598
Plus 32% 927% 258% 1250%

1 2 3 4 5 6 7 8 9 10

Bootstrap Cosine

Iteration

0

20000

40000

60000

80000

100000

120000

140000

PER
LOC
ORG
MISC

Figure 6: Bootstrapping using cosine similarity.
The bar plot shows the visualization of the NE
type classifications in the table above.

bar is a result of the different classification deci-
sions made in the bootstrapping process.

Inspecting the results we can see that the lion’s
share in the first iteration in both setups is clas-
sified as LOC. This indicates that many locations
were missed by the enhanced seed categories, but
the type vector allowed to find the missed NEs.
Following iterations do not show a bias towards
LOC which supports this analysis. Neverthe-
less cosine similarity seems to be biased towards
MISC because on average about 60,000 articles
are added to this type per iteration resulting in the
biggest gain in 8 of the 10 iterations. This could be
caused by cosine similarity’s ignorance of weights
in the type vector thus preferring articles that share

39

many categories with a type vector over articles
with less but higher weighted categories. MISC
might have thematically wide spread categories
supporting that effect. However, the bias towards
that type cannot solely be based on this property,
because the initialized vector is the one with the
least dimensions in comparison to the others.

Bootstrapping using the Dice’s coefficient tends
to be biased towards LOC and ORG, the former
showing an overall gain of 1,308 percent5. In
four of the iterations ORG wins the majority of
new classified articles, LOC is in advantage in
five of the iterations leaving PER one major gain
in the fifth run. Because Dice’s coefficient takes
the counts of categories into account, it is likely
that the unclassified articles are placed in some of
the categories that have high values for LOC and
ORG.

The count of articles added to PER develops re-
markably similar for both measures. They start
with few new articles in the first three iterations,
rise to many more additions in steps four, five and
six to slow down again in the left iterations. In
both cases eventually PER is the NE type with the
least added articles (cf. lines “Bootstrap“), but still
the biggest count when summing it up with the ini-
tial count (cf. lines ”Total“). No other named en-
tity type shows such a strong correlation between
the two different similarity measures. This indi-
cates that most of the articles were already clas-
sified in the initialization proving the seed cate-
gories for that type to be of high quality.

In summary, both bootstrapping setups are able
to classify almost all of the unclassified NEs, but
differ a lot in their results with the exception of the
type PER.

4 Evaluation

Before the bootstrapping phase an evaluation set
of NEs was created and excluded from the pro-
cess. It consists of NEs of each type: 295 PER,
192 LOC, 110 ORG and 122 MISC entries that
were annotated manually by one annotator. Both
setups are evaluated by classifying the NEs in the
same way as in the bootstrapping and investigating
the precision of the results.

5This growth is narrowed a little bit by the fact that it
started with the smallest count of articles.

run PER LOC ORG MISC
initial 502,173 41,539 128,433 47,887

Dice’s coefficient
1 5,271 137,051 6,406 1,012
2 17 25 138,578 11,120
3 1,266 58,780 65,593 24,101
4 36,595 16,952 56,017 40,176
5 67,975 31,508 25,819 24,438
6 38,196 56,745 45,219 9,580
7 16,166 67,458 54,813 11,303
8 8,969 67,890 52,944 19,937
9 5,581 65,655 46,860 31,644
10 5,751 41,301 56,864 26,323

Bootstrap 185,787 543,365 549,113 199,634
Total 687,960 584,904 677,546 247,521
Plus 37% 1,308% 427% 417%

1 2 3 4 5 6 7 8 9 10

Bootstrap Dice

Iteration

0

20000

40000

60000

80000

100000

120000

140000

PER
LOC
ORG
MISC

Figure 7: Bootstrapping using Dice’s coefficient.
The bar plot shows the visualization of the NE
type classifications in the table above.

4.1 Initial type vectors

The confusion matrix in table 4 shows the re-
sults using the type vector from the initial NE
classifications. The rate of correct classifications
varies from 35.25% (MISC, Dice’s coefficient) to
81.02% (PER, Dice’s coefficient). It is not sur-
prising that PER is the best performing named en-
tity type when we remember the earlier statement
that articles of that type are categorized with high
detail and that this NE type has by far the high-
est count of instances after the initialization. This
is underlined by the fact that almost no instances
were classified incorrectly as a person in the other
evaluation sets. Consequently, there is no much
confusion between persons and other NE types.

40

Eval. set PER LOC ORG MISC UNCL
Cosine

PER (295) 78.64% (232) 5.76% (17) 8.47% (25) 6.44% (19) 0.68% (2)
LOC (192) 0.0% (0) 60.42% (116) 10.94% (21) 7.29% (14) 21.35% (41)
ORG (110) 0.91% (1) 15,45% (17) 67.27% (74) 8.18% (9) 8.18% (9)
MISC (122) 0.82% (1) 8.2% (10) 38.52% (47) 37.7% (46) 14.75% (18)

Dice’s coefficient
PER (295) 81.02% (239) 6.1% (18) 7.8% (23) 4.41% (13) 0.68% (2)
LOC (192) 0.0% (0) 64.06% (123) 9.9% (19) 4.69% (9) 21.35% (41)
ORG (110) 1.82% (2) 19.09% (21) 64.55% (71) 6.36% (7) 8.18% (9)
MISC (122) 3.28% (4) 9.84% (12) 36.89% (45) 35.25% (43) 14.75% (18)

Table 4: Confusion matrix for the CoNLL named entity types. Members of evaluation sets for every type
were classified by computing similarities to the initialised named entity type vectors. The overall highest
values (cosine and Dice similarity) are marked as boldface. The percentages show the fraction of the
absolute numbers that are given in the first row, the numbers in braces show the absolute numbers.

Considering that 21.35% of the articles were
left unclassified, only 18.23% (cosine) and
14.59% (Dice) of LOC were explicitly classified
wrong. Unclassified articles occur if none of the
instances in the evaluation set LOC has categories
that can be found in any of the NE type vectors.
This could either mean that the seed categories for
this type were not chosen broad enough or that ar-
ticles of type LOC are placed in categories that are
wide spread over WP’s category graph and cannot
be grouped easily. The bootstrapping results indi-
cated that the former case is more likely. ORG are
classified correctly with a chance of 67.27% (co-
sine) and 64.55% (Dice) leaving an error rate of
24.55% (cosine) and 27.27% (Dice). Cosine out-
performs the Dice’s coefficient in this class.

The CoNLL definitions of MISC do not seem
to correspond well with WP categories. For the
evaluation set of type MISC more instances were
classified as an organization in both setups. That
indicates a high probability to confuse members
of MISC with LOC which is not that surprising,
recalling that the definition of this type is “words
of which one part is a location, organization, mis-
cellaneous or person”(Sang, 2002). Further in-
vestigation would be necessary to judge whether
type overlaps are just caused by incorrect classi-
fications or if the articles really do belong to that
class and maybe should be allowed to be classified
as both MISC and LOC. For example a book that
has a location in its title like The Restaurant at the
End of the Universe could benefit from a double
classification because depending on the context it
may serve as one or the other.

The results of the initialization step show that in
general the MUC-6 named entity types(Grishman
and Sundheim, 1996) PER, LOC and ORG can be
classified with this approach reasonably well with
60.42% (LOC, cosine) as lower and 81.02% (PER,
Dice) as an upper bound. This does not work
out as well for MISC, but still the lower bound
of 35.25% (Dice) beats a baseline with randomly
assigned types that would result in 25% correct
classifications. Thus, the initially constructed type
vectors are useful for NEC of WP articles. At this
time it is not possible to say which of the similarity
measures returns better results.

4.2 Bootstrapping Iterations

To evaluate the iterative classification phase we
used the resulting type vectors of every step to
classify the evaluation set and again analyze the
percentage of NEs that were classified correctly. 6

Figure 8 shows the results per iteration for each
type and setup. The continuous line represents
cosine similarity while the dashed line represents
Dice’s coefficient. To see which setup works best
compared to the other the different lines marked
with the same symbols must be compared. The
lines point out the development of the quality of
the type vectors.

After every iteration the type vector is refined
which should improve classifications. However,
because every classification step only incorporates
the best or most certain 10% of unclassified NEs
leaving the less clear NEs unclassified, the preci-

6Because the annotated data represent only a fraction of
the whole data we cannot provide reliable recall results.

41

● ● ●

●

●
● ● ●

● ● ●

Iteration

P
re

ci
si

on

initial 1 2 3 4 5 6 7 8 9 10

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100

● ●
● ● ●

● ● ● ● ● ●

● PER
LOC
ORG
MISC

Cosine
Dice

Figure 8: Precision of the classification for the it-
erations in the bootstrapping phase.

sion is expected to decrease in later iterations due
to introduced noise. Thus a stable line indicates a
successful approach.

If we ignore MISC for a moment, the cosine
setup has an overall decrease in precision relative
to their starting point while the Dice setup is fairly
stable or even better. The difficulty of represent-
ing the MISC type with WP categories seems to
be the reason for its different behaviour, the broad
choice of categories creates the bias of the co-
sine method. Dice’s coefficient is more robust and
seems to avoid that noise making it more suitable
for the task. This can be seen after the first itera-
tion: As discussed in section 3.3 the biggest frac-
tion was classified as LOC. While the precision
of Dice’s coefficient increases by more than 10%
in this iteration the precision of the cosine setup
drops more than 5% which implies that many NEs
were classified wrong. Finally, the best results af-
ter bootstrapping are:

• PER – Dice 78.31% (cosine 73.22%)

• LOC – Dice 66.67% (cosine: 50%)

• ORG – Dice 74.55% (cosine: 60.91%)

• MISC – cosine 61.48% (Dice: 40.16%)

Dice coefficient performs better than cosine
similarity for three out of four NE types, which

implies that taking statistical evidence into ac-
count improves the performance of the classifica-
tion. The numbers indicate that cosine similarity
beats Dice coefficient at the classification of Mis-
cellaneous because it is biased.

5 Conclusion

In this paper we have shown a language-agnostic
method to classify more than two million NEs in
the multilingual lexical resource HeiNER (Went-
land et al., 2008) in two steps, adhering to the
CoNLL definition of NEs (Sang, 2002; Sang and
Meulder, 2003) relying on structural information
only. First, we initialized 700,032 classified NEs
utilizing the category system of Wikipedia starting
with a set of 132 manually annotated seed cate-
gories. As the method relies only on WP’s struc-
ture any classification task that can be represented
by WP categories can be approached this way for
any language available in WP. Second, the cate-
gories of these classified articles were used to cre-
ate NE type vectors to classify yet unlabelled ar-
ticles by computing the similarities between the
vectors and unclassified articles’ categories. This
was done via bootstrapping in two setups that
work with two similarity measures: cosine sim-
ilarity and Dice’s coefficient. The results were
evaluated on manually annotated data and showed
that the type vectors created from the initialization
step easily outperform a random baseline and that
the method is suited well for the NE types used
in MUC-6 (Grishman and Sundheim, 1996) but
that the additional CoNLL class MISC shows a
gap in quality because it is harder to map the latter
to Wikipedia categories. The evaluation of boot-
strapping iterations reveals that Dice’s coefficient
is the better similarity measure for this particular
task. This can be attributed to its property of tak-
ing the weights of the vectors’ values into account
in contrast to cosine’s property of only observ-
ing the angle between two vectors ignoring their
lengths. After all, two lists of NEs were created
for each of the types PER, LOC, ORG and MISC,
one by cosine and one by Dice similarity. Adding
NE types to HeiNER makes it a valuable resource
for multilingual NERC providing a fair amount of
training material in various languages.

6 Acknowledgements

Thanks to Anette Frank for her suggestions and
support for the thesis that is the basis of this paper.

42

References
Oliver Bender, Franz Josef Och, and Hermann Ney.

2003. Maximum entropy models for named entity
recognition. In Proceedings of the seventh confer-
ence on Natural language learning at HLT-NAACL
2003, pages 148–151, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

Razvan Bunescu and Marius Paşca. 2006. Using en-
cyclopedic knowledge for named entity disambigua-
tion. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-06), Trento, Italy, pages 9–
16, April.

Christian Federmann and Sabine Hunsicker. 2011.
Stochastic parse tree selection for an existing rbmt
system. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, pages 351–357, Ed-
inburgh, Scotland, July. Association for Computa-
tional Linguistics.

Michael Fleischman and Eduard Hovy. 2002. Fine
grained classification of named entities. In Proceed-
ings of the 19th international conference on Com-
putational linguistics, pages 1–7, Morristown, NJ,
USA. Association for Computational Linguistics.

Ralph Grishman and Beth Sundheim. 1996. Message
understanding conference: A brief history. In Pro-
ceedings of the 16th International Conference on
Computational Linguistics (COLING), pages 466–
471. http://acl.ldc.upenn.edu/C/C96/C96-1079.pdf.

David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Lin-
guisticae Investigationes, 30(1):3–26, January.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-independent Named Entity Recog-
nition. In Proceedings of the 7th Conference on Nat-
ural language Learning at HLT-NAACL 2003, pages
142–147, Morristown, NJ, USA.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of Con-
ference on Natural Language Learning.

G. Szarvas, R. Farkas, A. Kocsor, et al. 2006. A
multilingual named entity recognition system using
boosting and c4. 5 decision tree learning algorithms.
Lecture Notes in Computer Science, 4265:267.

Wolodja Wentland, Johannes Knopp, Carina Silberer,
and Matthias Hartung. 2008. Building a mul-
tilingual lexical resource for named entity disam-
biguation, translation and transliteration. In Euro-
pean Language Resources Association (ELRA), edi-
tor, Proceedings of the Sixth International Language
Resources and Evaluation (LREC’08), Marrakech,
Morocco, may.

43

