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Abstract

Phrase-based statistical machine transla-
tion (PBSMT) decoders translate source
sentences one phrase at a time using strong
independence assumptions over the source
phrases. Translation table scores are typ-
ically independent of context, language
model scores depend on a few words sur-
rounding the target phrase and distortion
models do not influence directly the choice
of target phrases.

In this work, we propose to condition the
selection of each target word on the whole
source sentence using a multilayer percep-
tron (MLP). Our interest in MLP lies in
their hidden layer which encodes source
sentences in a representation that is not di-
rectly tied to the notion of word.

We evaluated our approach on an English
to French translation task. Our MLP model
was able to improve BLEU scores over a
standard PBSMT system.

1 Introduction

Phrase-based statistical machine translation sys-
tems translate source sentences step by step, start-
ing with an empty sentence and ending when all
source words have been translated (Koehn et al.,
2003). At each step, an untranslated phrase is se-
lected and one of its translation is appended at the
end of the translation.

In this work, we are interested in the selec-
tion of a target phrase to translate a given source
phrase. This selection is usually guided by three
families of models. Translation models evaluate
the intrinsic quality of a given phrase pair using
evidences such as cooccurrence statistics between

source and target words or phrases. These models
always compute the same scores for a given pair
of phrases, wherever it is used. A second family
are language models, which evaluate the likeliness
of target n-grams1 independently from the source
sentence. A third family are distortion models,
whose main purpose is to evaluate the likelihood
of phrase reorderings.

All these models only consider a fraction of the
information available at a time. Figure 1 presents
a partial translation that could be encountered by
a decoder where these fractions of information are
not enough to make a good decision. In this ex-
ample, the decoder has already translated all but
the last source word and it must decide if plant
is translated by usine (a building) or plante (the
botanic sense). As the position of the source
word is fixed, the distortion model will not be of
any help. If the system uses a 3-gram, only the
last two words (de cette) of the partial hypothesis
will be considered. Finally, the translation model
will score the two options considering only plant.
Therefore, the word leaves is never considered and
the final decision largely depends on whether the
training corpus is more biased toward one transla-
tion or the other.

This problem is not new and has even been ad-
dressed by the creators of CANDIDE (Berger et al.,
1994), one of the first SMT system. We know of
three groups of approaches for tackling it.

A first group of approaches acknowledge the
bias of the system and use it at its advantage by
customizing the training corpus for each source
sentence. This bias can be introduced with the-
matic training corpora (Xu et al., 2007; Lü et al.,
2007) or with custom corpora built dynamically to

1Sequences of n words where n usually varies between 3
and 5.
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Source the leaves of this plant
Partial target les feuilles de cette

Pair 1 plant→ usine
Pair 2 plant→ plante

Figure 1: An example state where the selection of
a target phrase depends mostly on the bias of the
training corpus (words already translated are strike
through).

be similar to the source sentence (Hildebrand et
al., 2005; Lü et al., 2007).

A second group of approaches cast the target
phrase selection problem in a word sense disam-
biguation setting where source phrases are con-
sidered as ambiguous words and their transla-
tions as different meanings (Vickrey et al., 2005).
This usually boils down to training one classifier
per source phrase. These classifiers use a vari-
ety of features like surrounding source words, tar-
get words, part-of-speech or lemmas(Berger et al.,
1994; Carpuat and Wu, 2007; Stroppa et al., 2007;
Chan et al., 2007). Instead of training one classi-
fier per source phrase, Gimpel and Smith (2008)
use the same contextual scores for all the source
phrases. The weights of those scores are then op-
timized with the other weights of the decoder.

Finally a third group of approaches assign a
probability to every words in the target vocabu-
lary given a source sentence (Venkatapathy and
Bangalore, 2009; Mauser et al., 2009; Patry and
Langlais, 2009). This predicted vocabulary can
guide the decoder at translation time.

Our approach stands in this last group and we
present its general idea in section 2. While previ-
ous approaches used linear or logistic regression
models, we opted for the multilayer perceptron
presented in section 3. Section 4 motivates this
choice with a simple example. Section 5 details
the algorithm to train our MLP. Experimental re-
sults, previous works and conclusion then follow
in sections 6, 7 and 8 respectively.

2 Target vocabulary prediction

Standard PBSMT systems condition their transla-
tion on one source phrase at a time. In this work,
we propose a new model conditioning its score on
the complete source sentence. We treat the predic-
tion of each target word as a Bernouilli trial where
the presence of a word is a success and its absence

a failure. The probability of a target sentence can
thus be evaluated with:

Pr(t | s) =
Present︷ ︸︸ ︷∏

t∈t
Pr(t | s)

Absent︷ ︸︸ ︷∏

t/∈T −t
1− Pr(t | s) (1)

where t is a target word, t a target sentence, T the
target vocabulary and s the source sentence.

We are now left with the problem of evaluat-
ing Pr(t | s), the probability of a target word
given a source sentence. Previous work have mod-
elled this distribution with linear models like IBM
Model 1 (Mauser et al., 2009):

Pr
IBM1

(t | s) = 1

|s|
∑

s∈s
Pr(t | s) (2)

or a logistic regression model (Venkatapathy and
Bangalore, 2009; Mauser et al., 2009):

Pr
lr
(t | s) = sigmoid

(∑

s∈s
wt,s

)
(3)

sigmoid(z) =
1

1 + e−z
(4)

where wt,s is a weight between the tokens s and t.
Both models assign weights directly between

source and target words. We opted instead for
a multilayer perceptron where source and target
words are connected indirectly through an hidden
layer.

3 Multilayer perceptrons

Instead of assigning weights between source and
target words, our MLP project the source words in
an artificial representation offered by the hidden
layer, and then project this artificial representation
on the target vocabulary. The architecture of our
MLP is as follow:

~h = tanh(W~s) (5)

~y = tsigmoid(V~h) (6)

tsigmoid(z) = sigmoid(z − 4.6) (7)

where V and W are weight matrices to optimize,
~s the source sentence encoded in an one-hot vec-
tor, ~h contains the values of the hidden units and
~y contains the prediction probabilities of all target
words in T .

We use a sigmoidal activation function on the
output layer (eq. 6) because it returns values be-
tween 0 and 1 that can be interpreted as proba-
bilities. Sigmoid returns 0.5 when its input is 0,
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Source Target

the floor of the plant le plancher de l’usine
the stem of the plant la tige de la plante

the leaves and stem of the
flower

les feuilles et la tige de la
fleur

the floors and walls of the
house

les planchers et les murs de
la maison

Figure 2: Training corpus for our motivating ex-
ample.

meaning that empty sentences encoded by vectors
containing only zeros yield probabilities of 0.5 for
all target word. It is clearly not what we want,
so we use instead a modified sigmoid function
(eq. 7) where empty sentences entail small prob-
abilities for all target words (0.01 in our case). We
could have used the same function for the hidden
layer, but we opted for the hyperbolic tangent as
it is known to shorten training time (LeCun et al.,
1998).

More details on the training of our MLP are
given in section 5.

4 Motivating Example

Conditioning the translation on the whole source
sentence has already been studied. Previous ap-
proaches used linear or logistic regression models
assigning a weight between every pair of source
and target words. The number of connections in
those models is thus quadratic in the size of the
source and target vocabularies. Figure 3 shows
the weight matrix of a logistic regression mod-
els trained by gradient descent on the sentences
of Figure 2. The matrix is displayed in an Hin-
ton diagram where white squares represent posi-
tive weights and black squares represent negative
weights. The size of the squares are proportional
to the absolute value of the weights.

Only pairs of words cooccurring in the train-
ing corpus get a weight different from zero, mak-
ing the weight matrix sparse. This sparsity helps
the model to scale well to larger vocabulary, but it
cannot model relations in translation beyond word
cooccurrences.

On the other hand, a MLP where source words
are first projected into an artificial representation,
and then on the target words, is not sparse. Fig-
ure 4 presents the weight matrices that were learnt
from our training corpus. Any source word can
thus contribute to the probability of any target
word even when both words do not cooccur in the

Figure 3: Weights learned for a logistic regression
model optimized by gradient descent.

W T V

Figure 4: Weights learned for a MLP.

training corpus.
To show this fundamental difference between

both kinds of models, we trained a logistic regres-
sion model and a MLP on the training corpus pre-
sented in Figure 2. We used these two models to
predict the French words from the content words
of the leaves of the plant. Both set of predictions
are presented in Figure 5.

The regression model is unable to favour plante
over usine because both words cooccur the same
number of times with plant but do not cooccur
with leaves. On the other hand, the MLP is able
to favour plante because its artificial representa-
tion can separate words related to botanic (white
squares in h2 columns of Figure 4) from words re-
lated to buildings (black squares in h2 columns of
Figure 4).

Figure 6 shows the projection of four sentences
on the artificial representation. Even if the four
sentences share all the same words but one, the
MLP is able to group sentences about botanic and
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Figure 5: Predictions of the logistic regression
model and the MLP for the leaves of this plant.

Figure 6: Projection of four sentences on the arti-
ficial representation.

buildings in different zones.
Leveraging the artificial representation offered

by MLP to overcome data sparsity is not a
novel idea: Bengio et al. (2003) and Schwenk
(2007) trained state-of-the-art language models for
speech recognition and machine translation using
MLP.

5 MLP Training

To train our MLP, we must select values for V and
W that will optimize the likelihood of our training
data (eq. 1). We do so by minimizing the following
error function using a gradient descent algorithm:

E(s, t) =
∑

t∈T −t
log
(
1− yt|s

)
−
∑

t∈t
log yt|s (8)

1. Initialize V and W with U(−0.05, 0.05).

2. For iterations 1 to 20:

(a) For each batch of 100 sentences pairs:
i. Compute the gradients of V and W

with respect to eq. 8.
ii. Test the following learning rates in

orders 0.5, 0.05, 0.01 and select the
first that decreases the error (eq. 9).

iii. When such a learning rate exists, up-
date V and W in the direction of
their negative gradients multiplied
by the learning rate.

3. Return V and W .

Figure 7: Gradient descent algorithm that we used
to train our MLP.

where yt|s is the probability that t appears in a
translation of s according to our MLP. Gradient
descent algorithms for MLP are already covered in
many textbooks (Bishop, 1995), but because our
models contain millions of weights, we had to de-
velop some heuristics in order to keep the training
time reasonable. Our modified gradient descent
algorithm is presented in Figure 7.

This algorithm starts by initializing the val-
ues of V and W with a uniform between
(−0.05, 0.05). We varied the range of this uniform
without notable variations in the results.

Computing gradients on the whole dataset be-
fore each update is too time consuming. There-
fore, we computed the gradients on mini-batch of
100 sentence pairs instead. We could have used a
stochastic gradient descent as well (mini-batches
of size 1), but mini-batches are an opportunity to
easily parallelize the training algorithm. We can
encode all the source sentences of a mini-batch in
a matrix where each sentence stands on a column,
thus ending up with matrices-matrices multiplica-
tions instead of matrices-vectors multiplications in
equations 5 and 6. This is desired as the former
are faster to compute than the latter for modern
linear algebra toolkit like ATLAS (Whaley and Pe-
titet, 2005).

Once the gradients are computed, we must se-
lect a learning rate. We found this step to be crit-
ical to the success of our models. We first tried
with a fixed learning rates, but the results were
disappointing. We then implemented Brent line
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search algorithm (Press et al., 1992, §10.2), but
it was painfully slow. We finally ended up with
the line search algorithm described on lines 2(a)ii
and 2(a)iii. Even though this algorithm is simple,
it did as well as Brent line search to optimize the
log-likelihood in our experiments but it was faster.

We added a L1 regularizer to the error function
during the line search to penalize big updates that
bring small improvements:

EL1(s, t) =E(s, t)

+ 0.1


∑

ki

|wki|+
∑

jk

|vjk|


 (9)

However, we did not used this regularized error
to compute the gradients because it tends to push
all weights toward zero at each update. This be-
haviour is not desired in our setting because only
the weights associated to present source words are
updated in W . Many words only appear in a
couple of batches and their weights would all be
pushed toward zero if we would include the regu-
larizer when computing the gradients.

6 Experiments

We integrated our prediction models (see sec-
tion 6.1) in an in house multi-stack phrase-based
decoder which has performances similar to those
of PHARAOH (Koehn, 2004a) when used in the
same conditions.

We trained our phrase-table using TRAIN-
FACTORED-MODEL.PERL, a script available with
the MOSES PBSMT (Koehn et al., 2007). We op-
timized the weights of our log-linear model to
maximize BLEU on our development set with the
Nelder-Mead algorithm (Press et al., 1992) on n-
best lists of 2000 sentences. To keep the decoding
time reasonable, we limited the number of trans-
lations per source phrase to 30 and the number of
hypotheses per stack to 50. We conducted our ex-
periments with a trigram language model.

We are aware that our system could be enhanced
in several ways. The distortion models embedded
in MOSES are known to improve quality upon the
translations produced by PHARAOH, and larger n-
gram models, such as 5-gram models, might de-
liver as well slightly better results. This is left as
future work. As will be discussed in section 6.5,
our system performs comparably to other state-
of-the-art systems tested in similar settings, and
therefore, the gains we observed by integrating our

prediction model into the decoder are representa-
tive.

6.1 Prediction scores
We investigated two ways (scores) to integrate our
trained prediction models to the decoder.

As our MLP are trained to maximize the like-
lihood of the training data (eq. 1), it would be
natural to add the likelihood score to the log-
linear model optimized by the decoder. Likeli-
hood is however heavy to compute because it sums
over the complete target vocabulary. We followed
Mauser et al. (2009) who suggested to use the odd
score instead:

odd(t|s) =
∏

t∈t

yt|s
1− yt|s

(10)

An odd of x for a given word means that this word
is x times more likely to be present in the transla-
tion than to be absent from it. An interesting prop-
erty of this score is that it is proportional to eq. 1
once the source sentence is known.

We evaluated a second score that counts the
number of target words with a probability higher
than a given threshold α:

pred(t | s) =
∣∣{t ∈ t | yt|s > α}

∣∣ (11)

We selected the threshold to maximize the f-
measure when the predicted words are compared
against the reference translation of our develop-
ment corpus, as suggested in (Patry and Langlais,
2009).

A convenient property of these scores is that
they can be computed one target word at a time.
Each time a new phrase is appended to a partial
translation, the decoder can thus compute odd and
pred on this new phrase and update the partial
translation score accordingly.

6.2 Models and data
We evaluated our system on a French-English
translation task. We used corpora that were made
available for the Fourth Workshop on Machine
Translation (Callison-Burch et al., 2009). We
trained our models on EUROPARL and the NEWS-
COMMENTARY sections. We used TEST2007 as
our development corpus, TEST2008 as our in-
domain test corpus and NEWSTEST2009 as our
out-of-domain test corpus.

We used those data to train three prediction
models:
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IBM1 An IBM1 model (eq. 2) trained with
GIZA++ (Och and Ney, 2003).

PERCEPTRON A perceptron with a translated sig-
moidal activation function:

Pr
PERCEPTRON

(t | s) = tsigmoid(U~s) (12)

where U is a sparse matrix linking each
source word with its 10 best translations ac-
cording to IBM1.2 This model is equivalent
to logistic regression (eq. 12).

MLP-64 A MLP with 64 hidden units. This num-
ber of hidden units was selected after infor-
mal experiments on the development corpus.

Both MLP-64 and PERCEPTRON were trained
using the algorithm of Figure 7. In our first at-
tempts, we observed that our prediction models
caused the decoder to include many spurious stop
words in the translations. We thus restricted their
source and target vocabulary to content words.

MLP-64 and perceptron do not handle large vo-
cabulary as easily as IBM1, we thus limited their
vocabulary to words appearing at least 20 times in
the training corpus. The English vocabulary di-
minished from 133 141 to 21 915 words and the
French vocabulary from 143 980 to 28 095 words.
This simplification allowed us to trained our MLP

in less than 3 hours on an Intel Xeon quad-core
processor with a clock-rate of 2.8 GHz.

6.3 In-domain

The results of the in-domain evaluation are pre-
sented in Table 1. We first observe that all mod-
els predicting a target vocabulary get better BLEU

than the baseline. Those improvements are sta-
tistically significant with a confidence of 95% ac-
cording to our bootstrap resampling with replace-
ment tests (Koehn, 2004b). We also observed that
MLP-64 systems are significantly better than all
the other three systems.

We compared MLP-64 translation against those
of our baseline and noticed that both systems agree
for one sentence out of four. The other translations
usually differ in one or two words having similar
senses, but MLP-64 tends to select translations that
are closer to the reference translations.

2We limited the number of links because our training al-
gorithm implementation had a hard time without it.

System BLEU (%)
odd pred

baseline 30.06 30.06
+ IBM1 30.32 30.65
+ PERCEPTRON 30.68 30.71
+ MLP-64 30.86 31.00

Table 1: In-domain evaluation. Bold scores are
significantly better than the other scores of their
column.

System BLEU (%)
odd pred

baseline 19.05 19.05
+ IBM1 20.00 19.92
+ PERCEPTRON 19.93 19.82
+ MLP-64 20.45 19.89

Table 2: Out-of-domain evaluation.

6.4 Out-of-domain
The results for news translations are presented in
Table 2.

We first observe a decrease of 10 BLEU point
when compared against the results of the in-
domain translation. This decrease asserts the chal-
lenge we face when designing a system that should
translate many genres of documents. We still ob-
serve that all models predicting a target vocabulary
are better than the baseline.

The best system is MLP-64 combined with odd
score. The translations of the system are signifi-
cantly better than the translations of all the other
systems according to BLEU. We observe modest
gains for pred scores where IBM1 is the best sys-
tem, but there are no significant differences among
all the models predicting a target vocabulary.

6.5 Comparison to state-of-the-art
The best SMT systems of the Fourth Workshop on
Machine Translation (Callison-Burch et al., 2009)
for the English-French translation task were eval-
uated at 28 BLEU points comparatively to our best
system which got 20.45. This is a huge differ-
ence, but news translation was the main task of this
workshop and participant used much more data
than we used in our experiments. It is thus not
fair to compare our out-of-domains results against
those ones.

We can however compare our results to those

663



of the Third Workshop on Machine Transla-
tion (Callison-Burch et al., 2008) where a news
corpus was translated by systems tuned to trans-
late parliament proceedings. The best systems for
in-domain English-French translations obtained
32 BLEU points and the best systems for out-of-
domain translations 20 BLEU points. Our results
are thus competitive with those of state-of-the-art
systems in a comparable situation.

7 Previous Works

To our knowledge, IBM1 is the first target vocab-
ulary prediction models that was used in SMT. It
was one of the best model among many others in a
rescoring module for a PBSMT (Och et al., 2004).

The term global lexical selection was coined by
Bangalore et al. (2007) who pushed the idea of tar-
get vocabulary prediction further than us. They
devised a system that first predicted a set of tar-
get words and then reordered those words to pro-
duce a final translation. This system is particularly
suited for languages that are not sensitive to word
reordering like Hindi (Venkatapathy and Banga-
lore, 2009). Their system use a logistic regression
model to predict the target words from the set of
n-grams in the source sentence. Our pred score is
a softer version of this idea. It encourages the de-
coder to select the predicted words without forcing
it and it allows the reordering to take place in the
PBSMT.

Mauser et al. (2009) integrated a logistic regres-
sion model predicting target words from all the
source words in a PBSMT. Using this model, they
gained one BLEU point over their baseline on a
Chinese to English translation task.

IBM1 is a linear regression model over prob-
ability of target words given each source words
individually. Mauser et al. (2009) extended this
model to condition it on source word cooccur-
rences (word and trigger pairs). This models im-
proved BLEU score of one point over their base-
line system. Note that our MLP consider all source
words jointly, word cooccurrences are thus auto-
matically modelled.

Patry and Langlais (2009) were the first to use a
MLP to predict target words, but they did not tested
it in a SMT system. They got their best results
when they added a bilingual lexicon to their MLP.
We tested this extension in our system but it did
not improve over MLP-64.

8 Conclusion

Phrase-based statistical machine translation sys-
tems condition their scores on few source words at
a time to produce their translations. While previ-
ous works used linear or logistic regression mod-
els to capture broader dependencies on the source
sentence, we presented, motivated and evaluated
the use of a multilayer perceptron for such a task.
We opted for MLP because of their hidden units
which offer an artificial representation of source
sentences.

We compared three different models for target
words prediction: IBM1, PERCEPTRON and MLP-
64. In all our experiments, we observed a signif-
icant improvement for all these models over the
baseline system, but the best of our contextual
model was MLP-64 with improvements of 0.94
and 1.4 BLEU points on in-domain and out-of-
domain translations respectively. These results are
encouraging, especially since several choices have
been made that we could revisit, thus leaving an
open space for further improvements.

In this study, we controlled the size of the
source and target vocabularies by selecting only
words appearing at least 20 times. Since transla-
tion systems are usually good with frequent words,
we would like to select our vocabularies in order
to maximize the gains of the translation system.

We selected a L1 regularizer because it is known
to be efficient and simple to implement. We would
however like to devise another regularizer that
would encourage the MLP to group together arti-
ficial representations of source sentences having
similar translations.

Also, we would like to validate our model on
other language pairs and other corpora and we
plan to investigate the influence of the corpus size
and the number of hidden units on the translation
quality.

An important limitation of our MLP is their ig-
norance of sentence structures. One partial solu-
tion to this problem is to model source n-grams in-
stead of source words like Venkatapathy and Ban-
galore (2009) suggested. This approach has its
limitation because it only captures local structures
and cannot consider grammatical or semantic rela-
tions. We are thus thinking about alternative ways
to encode the source sentences and how these new
representations could be included to our model.
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