
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 129–137,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Comparing Two Techniques for Learning Transliteration Models Using a
Parallel Corpus

Hassan Sajjad Nadir Durrani Helmut Schmid Alexander Fraser
Institute for Natural Language Processing

University of Stuttgart
{sajjad,durrani,schmid,fraser}@ims.uni-stuttgart.de

Abstract
We compare the use of an unsupervised
transliteration mining method and a rule-
based method to automatically extract lists
of transliteration word pairs from a par-
allel corpus of Hindi/Urdu. We build
joint source channel models on the auto-
matically aligned orthographic transliter-
ation units of the automatically extracted
lists of transliteration pairs resulting in two
transliteration systems. We compare our
systems with three transliteration systems
available on the web, and show that our
systems have better performance. We per-
form an extensive analysis of the results
of using both methods and show evidence
that the unsupervised transliteration min-
ing method is superior for applications
requiring high recall transliteration lists,
while the rule-based method is useful for
obtaining high precision lists.

1 Introduction

Urdu and Hindi are closely related languages
which have a similar phonological, semantic and
syntactic structure. Hindi is derived from San-
skrit and Urdu is a mixture of Persian, Arabic,
Turkish and Sanskrit. Both share closed class vo-
cabulary which they inherit from Sanskrit. They
differ however in the open class vocabulary and
in the writing script used. Hindi is written in
Devanagari script and borrows most of the open
class vocabulary from Sanskrit. Urdu is written
in Perso-Arabic script and borrows most of the
open class vocabulary from Persian, Arabic, Turk-
ish and Sanskrit. Both languages have lived to-
gether for centuries and now share a large part
of their vocabulary with each other. In an initial
study on a small parallel corpus, we found that
both languages share approximately 82% (tokens)
and 62% (types) of the vocabulary. Transliterating

overlapping words will help to bridge the script-
ing gap between Hindi and Urdu. The remaining
words must be converted into the other language
with a bilingual dictionary which is beyond the
scope of this work.

In this paper, the term transliteration pair refers
to a word pair where the words are translitera-
tions of each other and the term transliteration
unit refers to a character pair where the charac-
ters are transliterations of each other. We are
interested in building joint source channel mod-
els for transliteration. Because we do not have a
list of transliteration pairs to use as training data
in building such a transliteration model, we use
two methods to extract the list of transliteration
pairs from a parallel corpus of Hindi/Urdu. The
first method uses the transliteration mining algo-
rithm of Sajjad et al. (2011) to automatically ex-
tract transliteration pairs. This approach does not
use any language specific knowledge. The sec-
ond method uses handcrafted transliteration rules
specific to the mapping between Hindi and Urdu
to extract transliteration pairs. We automatically
align the two lists of extracted transliteration pairs
at the character level and learn two transliteration
models. We compare the results with three other
transliteration systems. Both of our transliteration
systems perform better than the other systems.

The 1-best output of the transliteration system
built on the list extracted using the rule-based
method is better than the 1-best output of the sys-
tem built on the automatically extracted list. The
rule-based extraction method is focused on obtain-
ing a high precision list as compared to the auto-
matic method which obtains a higher recall list.
The 10-best and 20-best output of the transliter-
ation system built on the automatically extracted
list is better than the N-best outputs of the sys-
tem built on the list extracted using the rule-based
method. The wide coverage of transliteration
units in the automatically extracted list helps the

129



transliteration system to produce difficult translit-
erations which are hard to learn using the rule-
based list.

The transliteration task between Hindi and Urdu
is non-trivial. The missing short vowels in the
writing of Urdu and a missing short vowel in the
writing of Hindi are a particular problem, and we
identify other areas of difficulty. We provide a de-
tailed error analysis to account for the complexi-
ties in Hindi to Urdu transliteration motivated by
linguistic phenomena.

The paper is organized as follows. Previous
work on transliteration is summarized in Section
2. The two methods used to extract lists of translit-
eration pairs are described in Section 3. The joint
probability model for transliteration is explained
in Section 4. The evaluation and the results in
comparison with three other transliteration sys-
tems are presented in Section 5. A detailed dis-
cussion and error analysis is presented in Section
6. Section 7 concludes.

2 Previous Work

Transliteration can be done with phoneme-based
or grapheme-based models. Knight and Graehl
(1998), Stalls and Knight (1998), Al-Onaizan and
Knight (2002) and Pervouchine et al. (2009) use
the phoneme-based approach for transliteration.
Kashani et al. (2007) and Al-Onaizan and Knight
(2002) use a grapheme-based model to translit-
erate from Arabic into English. Al-Onaizan and
Knight (2002) compare a grapheme-based ap-
proach, a phoneme-based approach and a linear
combination of both for transliteration. They build
a conditional probability model. The grapheme-
based model performs better than the phoneme-
based model and the hybrid model. This motivates
our use of grapheme-based models.

In this paper, we use a grapheme-based ap-
proach for transliteration from Hindi to Urdu. The
phoneme-based approach would involve the con-
version of Hindi and Urdu text into a phonemic
representation which is not a trivial task as the
short vowel ‘a’ is not written in Hindi text and no
short vowels are written in Urdu text. The diffi-
culty of this additional step would be likely to lead
to additional errors.

Malik et al. (2008) and Malik et al. (2009)
work on transliteration from Hindi to Urdu and
Urdu to Hindi respectively. They use the rules
of SAMPA (Speech Assessment Methods Pho-

Table 1: Ambiguous Hindi characters (charac-
ters which can transliterate to many different Urdu
characters)

netic Alphabets) and X-SAMPA1 to develop a
phoneme-based mapping scheme between Urdu
and Hindi (J C. Wells, 1995).

Malik et al. (2008) reported an accuracy of
97.9% for transliterating Hindi to Urdu. How-
ever, this number is not comparable to ours. Some
Hindi characters can be ambiguously transliterated
to several Urdu characters (see Table 1). Malik et
al. (2008) do not deal with these ambiguous char-
acters and count any occurrence of an ambiguous
character as a correct transliteration in all scenar-
ios. We discuss this further in Section 6.

In the previous work, a transliteration system
is built on transliteration units learned either au-
tomatically from a list of transliteration pairs (Li
et al., 2004), (Pervouchine et al., 2009) or using a
heuristic-based method (Ekbal et al., 2006). We do
not have a list of transliteration pairs for the train-
ing of our Hindi to Urdu transliteration system.
Therefore we use two methods to extract transliter-
ation pairs from parallel data of Hindi/Urdu. In the
first approach, we use the transliteration mining al-
gorithm proposed by Sajjad et al. (2011) to extract
transliteration pairs. This method does not use any
language dependent information. In the second
approach, we use a rule-based method to extract
transliteration pairs. Both processes are imperfect,
meaning that there is noise in the extracted list of
transliteration pairs. We build a joint source chan-
nel model as described by Li et al. (2004) and Ek-
bal et al. (2006) on the extracted list of translitera-
tion pairs. The following sections describe the two
mining approaches and the model in detail.

3 Extraction of Transliteration Pairs

We automatically word-align the parallel corpus
and extract a word list, later referred to as “list of
word pairs“ (see Section 5, for details on training
data). We use two methods to extract translitera-
tion pairs from the list of word pairs. In the first

1SAMPA and XSAMPA are used to represent the IPA
symbols using 7-bit printable ASCII characters.

130



approach, we automatically extract transliteration
pairs using the transliteration mining algorithm as
proposed in Sajjad et al. (2011). We align the
transliteration pairs at character level using a char-
acter aligner. In the second approach, we use an
edit distance metric and handcrafted equivalence
rules to extract transliteration pairs from a paral-
lel corpus. We align the list of transliteration pairs
at character level using the edit distance metric.
The transliteration system is then trained on these
character aligned transliteration pairs which is de-
scribed in Section 5. The following subsections
describe the extraction methods in detail.

3.1 Automatic Extraction of Transliteration
Pairs

In this section, we review the transliteration min-
ing approach described by Sajjad et al. (2011) to
automatically extract the transliteration pairs from
the list of word pairs. The approach consists of
two algorithms, Algorithm 1, which performs an
iterative filtering of the word pair list, and Al-
gorithm 2, which determines when Algorithm 1
should be stopped. The details of this process fol-
low.

Algorithm 1 is based on an iterative process.
In each iteration, it first builds a joint translitera-
tion model using g2p (grapheme-to-phoneme con-
verter (Bisani and Ney, 2008)) on the current list
of word pairs. It then filters out 5% of the word
pairs which are least likely to be transliterations
according to their normalized joint probability, re-
sulting in a reduced word pair list, after which the
next iteration begins. In each iteration the word
pair list is reduced by 5%.

Algorithm 2 is used to select the optimal stop-
ping iteration for Algorithm 1. Algorithm 2 is an
extension of Algorithm 1. It divides the original
list of word pairs into two halves which are used
as training and held-out data. The division is done
using a special splitting method which keeps the
morphologically related word pairs from the list
of word pairs either in the training data or in the
held-out data. It builds a joint sequence model on
the training data (approximately half of the list of
word pairs) and filters out those 5% word pairs
which are least likely to be transliteration pairs.
Then it builds a transliteration system using the
Moses toolkit (Koehn et al., 2003) on the filtered
data and tests it on the source side of the held-out
data. It repeats this process for 100 iterations. The

iteration which best predicts the held-out data is
selected as the stopping iteration for the transliter-
ation mining algorithm.

We first ran Algorithm 2 on the list of word pairs
for 100 iterations. It returned the 45th iteration as
the best stopping iteration for Algorithm 1. Then
we ran Algorithm 1 for 45 iterations and obtained
a list of 2245 transliteration pairs. Due to data
sparsity, there were two Hindi characters which
were missing in the extracted list of transliteration
pairs. We could either add complete word ex-
amples or just transliteration units of the missing
Hindi characters to the list of transliteration pairs.
Adding examples will provide context information
which may bias the results of the evaluation. Thus
we added only the two missing 1-to-1 translitera-
tion units to the list of transliteration pairs.

We align the list of transliteration pairs at
the character level using a character aligner2.
The aligner uses the Forward-Backward algorithm
to learn the character alignments between the
transliteration pairs. It allows only 0 or 1 char-
acter on either side of the transliteration unit. So,
a source character can align either to a target char-
acter or to ∅ and a target character can align either
to a source character or to ∅. We get three kinds of
alignments of Hindi characters to Urdu characters
i.e. ∅ → 1, 1 → ∅ and 1 → 1. We modify the
∅ → 1 alignments by merging the Urdu character
with the left neighboring aligned pair. If it is the
left-most character, then it is merged with the right
neighboring aligned character pair. Table 2 shows
the alignment of Hindi characters with Urdu char-
acters before and after the merging of unaligned
Urdu characters.

a) Hindi ∅ b c ∅ e f
Urdu A X C D ∅ F

b) Hindi b c e f
Urdu AX CD ∅ F

Table 2: Hindi-Urdu alignment pairs for translit-
eration where a) shows initial alignment with
NULL alignments and b) shows final alignments
after merging of NULL alignments

3.2 Rule-based Extraction of Transliteration
Pairs

As an alternative to automatic extraction of
transliteration pairs, we use our own knowledge

2We were unable to get character alignments from g2p.
We use a separate character aligner to align the list of translit-
eration pairs at the character level.

131



of the Hindi and Urdu scripts to make the ini-
tial transliteration units. The rules are further
extended by looking into available Hindi-Urdu
transliteration systems and other resources (Gupta,
2004; Malik et al., 2008; Jawaid and Ahmed,
2009). Table 3 shows some examples of equiva-
lence rules. Each transliteration unit is assigned a
cost. A Hindi character which is always mapped
to the same Urdu character is assigned zero cost.
In some cases, a Hindi character, say H1, can be
mapped to several different Urdu characters, say
U1, U2 and U3. We assign an equal cost of 0.3 to
all three mappings H1 to U1, H1 to U2 and H1 to
U3 as shown in the last three rows of Table 3.

Table 3: Hindi-Urdu handcrafted equivalence
rules

The edit distance metric allows insert, delete
and replace operations. The handcrafted rules de-
fine the cost of replace operations as shown in Ta-
ble 3. Each insert and delete operation costs 0.6,
except for the deletion of Hindi diacritics where
the cost is 0.

If two identical characters occur next to each
other in an Urdu word then either only one char-
acter is written with a shadda sign after it or
both characters are written next to each other. The
shadda sign is treated as a diacritic by most Urdu
writers and is thus frequently omitted in Urdu text.
We deleted all shadda characters in a preprocess-
ing step in order to obtain a consistent represen-
tation. Hindi, on the other hand, uses a special
joining symbol between two characters to write
conjuncts. If the joining symbol is used between
two identical characters then it will be transliter-
ated with a shadda in Urdu. Assume the joining
symbol is “z” and L is a character in Hindi.

The occurrence L“z”L in Hindi will be translit-
erated as L in Urdu. In the handcrafted rules, we
add separate entries mapping Hindi L“z”L to Urdu
L.

Urdu and Hindi differ in their word definition
for some particular categories. For example, in

Hindi the case marker is always attached to the
pronoun, whereas in Urdu, the case marker can
be written either as a separate token after the pro-
noun or can be attached to the pronoun. The edit
distance metric was modified to avoid penalizing
spaces in Urdu text.

The raw list of word pairs contains translations
(that are not transliterations), transliterations and
alignment errors. We apply the edit distance met-
ric to the list of word pairs and extract the list of
transliteration pairs. We optimized the costs on
a held-out set. We filter out word pairs with a
cost of more than 0.6 thus allowing only one dele-
tion/insertion or at most three ambiguous replace-
ments in the Hindi-Urdu pairs (Table 3). If we
decrease the filtering threshold or increase the re-
placement cost, the number of types extracted re-
duces significantly. We obtained 1695 types in the
list of transliteration pairs. Due to data sparsity,
there were about 5 Hindi characters which were
not covered in the list of transliteration pairs. We
added transliteration units for the missing Hindi
characters to the list of transliteration pairs.

We align the list of word pairs at the character
level using the same handcrafted equivalence rules
and the edit distance algorithm. We get three kinds
of alignments of Hindi characters to Urdu charac-
ters i.e. ∅ → 1, 1 → ∅ and 1 → N . The char-
acter alignments produced using the edit distance
metric differ from those produced using the char-
acter aligner (Section 3.1). The character aligner
allows only one character on the source and the
target side. The edit distance metric allows a Hindi
character to align to more than one Urdu character.
We postprocess the alignment ∅ → 1 as described
in Section 3.1.

4 Transliteration Model

The character-based translation probability
pchar(H,U) is defined as follows:

pchar(H,U) =
∑

an1∈align(H,U)

p(an1 ) (1)

=
∑

an1∈align(H,U)

n∏

i=1

p(ai|ai−1i−k) (2)

where ai is an aligned pair consisting of the
i-th Hindi character hi and a sequence of 0 or
more Urdu characters. Usually a Hindi charac-
ter is aligned with one Urdu character, but some

132



Hindi characters map to zero or two Urdu charac-
ters. The short vowels except the short vowel ‘a’
are always written in Hindi while in Urdu short
vowels are usually not written. Hence, Hindi short
vowels should be aligned to zero Urdu characters.
align(H,U) is the set of all possible alignments
between the characters of U and H.

During transliteration we need to maximize
P (H,U) over all possible sequences U but we can
not efficiently compute the sum over all possible
different alignment pairs in equation 1. Therefore
we resort to the Viterbi approximation and extract
the most probable alignment.

The parameter k in equation 2 indicates the
amount of context used (e.g. if k = 2, we use a
trigram model on character pairs). A good value
of k for our transliteration system is 4. Table 5
(Section 5) shows the variation of results on dif-
ferent values of k.

The SRILM-Toolkit (Stolcke, 2002) was ap-
plied in the implementation. Add-one smoothing
was used for unigrams and Kneser-Ney smoothing
was used for order > 1.

5 Evaluation Setup

5.1 Training and Test Data
We use a Hindi-Urdu parallel corpus taken from
the EMILLE corpus3. In both Urdu and Hindi,
there are cases where one character can be rep-
resented either as one Unicode character or as a
combination of two Unicode characters. These
characters are normalized to have only one rep-
resentation. In Urdu, short vowels are represented
with diacritics which are usually missing in writ-
ten text. In order to keep the corpus consistent, all
diacritics were removed from the Urdu corpus.

A Hindi news corpus of 5000 tokens (1330
types) was randomly selected from BBC News.
The tokens that can be transliterated into Urdu
were manually extracted and a test corpus of 819
transliteration pairs was obtained.

5.2 Word Alignment
We automatically generate two word alignments
using GIZA++ (Och and Ney, 2003), and re-
fine them using the grow-diag-final-and heuris-
tic (Koehn et al., 2003). We extracted a to-
tal of 107323 alignment pairs from the sentence
aligned parallel corpus of 7007 sentences. The
M-N and N-1 alignment pairs were ignored as

3http://www.emille.lancs.ac.uk/

they are unlikely to be transliterations. Most of
the 1-N alignment pairs are cases where the Urdu
part of the alignment actually consist of two (or
three) words which are sometimes written without
a space because of lack of standard writing con-
vention in Urdu. For example (can go ;

d ZA s@kt de ) is alternatively written as
(can go ; d ZAs@kt de ) , i.e., without a space be-
fore the “s” sound. These are always written as a
single token in Hindi. We drop 1-N alignments
with gaps, but keep alignments with contiguous
words. We refer to the word-aligned corpus gener-
ated from 1-1 and 1-N alignments as “list of word
pairs” later on.

5.3 Baselines

5.3.1 Phrase-based MT
Our first baseline is a phrase-based machine trans-
lation system (PSMT) for transliteration built us-
ing the Moses toolkit. We use the default settings
but the distortion limit is set to zero (no reorder-
ing). Minimum error rate training (MERT) is used
to optimize the parameters. The list of transliter-
ation pairs is divided into 90% training and 10%
development data (used for MERT).

5.3.2 External Transliterators
We also compare our systems with three Hindi-
Urdu transliteration systems, HUMT4 , CRULP5

and Malerkotla6 (MAL), available on the internet.
HUMT is based on finite state transducers. It im-
plements a phoneme-based mapping scheme be-
tween Hindi and Urdu. The HUMT system is de-
scribed in Section 2 (Malik et al., 2008). CRULP
is a rule-based transliterator which uses a direct
orthographic mapping between Hindi and Urdu.
Little information is available on the method of
the Malerkotla transliterator. If there are two legal
transliterations of a Hindi word, it transliterates it
to the most frequent Urdu word. We suspect that
Malerkotla may use a bilingual word list to over-
ride the basic transliteration scheme.

5.4 Experiments

Phrase-based MT: We first build a PSMT system
on the list of word pairs. Due to the amount of
noise in the training data, it shows 45.9% accuracy.
The low score of the PSMT system supports our

4http://www.puran.info/HUMT/HUMT.aspx
5http://www.crulp.org/software/langproc/h2utransliterator.html
6http://www.malerkotla.org/Transh2u.aspx

133



No filtering Automatic Rule-based
45.9% 70.3% 72.7%

Table 4: Results of Phrase-based MT

work of extracting the transliteration pairs from
the list of word pairs to build a transliteration sys-
tem.

The PSMT is then trained on the transliteration
pairs extracted using the automatic method and
the rule-based method. The purpose of this ex-
periment is to compare the quality of the extracted
lists by building an identical model on them. The
PSMT shows best accuracy on the transliteration
pairs extracted using the rule-based method (Ta-
ble 4). The rule-based extraction method is based
on high precision and thus extracted fewer translit-
eration pairs than the the automatic method. The
list extracted using the automatic method contains
close transliterations as well, which are word pairs
which only differ by one or two characters from
correct transliterations. The close transliteration
pairs help to learn transliteration information but
also add noise to the system.

Our systems: We build two versions of our
system, using the list of transliteration pairs ex-
tracted in Section 3.1 (AUTO) and using the list
of transliteration pairs extracted in Section 3.2
(RULE). We use a context size of k = 4 (see eq.
2) for our systems. The results of our translitera-
tion system RULE with different context sizes are
shown in Table 5. The accuracy of the transliter-
ation system is stable at context sizes greater than
three.

1 2 3 4 5
64.5% 76.3% 80.7% 81.6% 81.6%

Table 5: Accuracies of RULE for different context
sizes

AUTO shows an accuracy of 76% on the test
data of 819 types as shown in Table 6. It could not
learn certain language specific phenomena due to
data sparsity. The system had problems to learn
the mapping of a Hindi character to an Urdu con-
junct. The system could not learn the shadda cases
(see Section 3.2). There are 18 types (2% of the
test data) with shadda phenomena. AUTO cor-
rectly transliterates only 28% of these types. This
might be due to the character aligner which can
not capture the information where a Hindi charac-
ter can be aligned to more than one Urdu character
and vice versa. The other factor is the preprocess-

AUTO RULE MAL CRULP HUMT
76% 81.6% 73.4% 69.8% 69.5%

Table 6: Accuracies of the joint model built on
lists from AUTO and RULE, compared with the
three baseline transliterators

ing step where we delete diacritics and the charac-
ter joiner from the Hindi word aligned corpus.

The rule-based system (RULE) shows the best
results of 81.6%. It obtains 100% accuracy in
transliterating the shadda cases. Due to the in-
clusion of transliteration units in the training data
(Section 3.2), it contains at least one entry of every
transliteration unit in its training corpus.

Results of other transliteration systems: We
test three other transliterators (HUMT, CRULP
and MAL) on the test corpus of 819 types. The
results are shown in Table 6. The HUMT system
performs worst with an accuracy of 69.5%. The
HUMT system does not handle ambiguous char-
acters as mentioned in Section 2. It maps each
ambiguous Hindi character to the most frequent
matching Urdu character without taking into ac-
count the transliteration context. CRULP has dif-
ficulty in disambiguating Hindi characters which
map to several different Urdu characters. Table
11 shows some examples of such transliteration
units. The ambiguous Hindi characters (Table 1)
can not be predicted correctly on the basis of the
neighboring characters but these Hindi characters
(Table 11) can be predicted correctly by looking
at the context. MAL mostly performs well on am-
biguous Hindi characters. The results of MAL are
discussed in detail in the next section.

6 Discussion & Error Analysis

In this section, we discuss the errors made by the
transliteration systems by dividing the test data
into different subclasses. The transliteration be-
tween Hindi and Urdu is strongly motivated by
the language of origin and script of the word to
be transliterated.

Proper nouns: The test corpus contains a large
number of words borrowed from other languages
which are differently transliterated to Hindi and to
Urdu. Words borrowed from Arabic contain am-
biguous characters which make the transliteration
task more challenging. Proper nouns form 19% of
the test corpus. In a second set of experiments, we
evaluated only on the proper nouns from the test
corpus. All five transliterators perform poorly in
transliterating proper nouns as shown in Table 7.

134



AUTO RULE MAL CRULP HUMT
59.1% 65.6% 56.5% 56.5% 57.1%

Table 7: Accuracies of AUTO, RULE and three
baseline transliterators on proper nouns

Most of the proper nouns were names borrowed
from English and other languages. We observed
that there is sometimes a difference between the
pronunciation of borrowed words in Hindi and
Urdu. Consider the English name “Donald”: the
character “a” in “Donald” is transliterated us-
ing a long vowel into Hindi as (don-

Ald) and using a short vowel into Urdu as
(don@ld). There are some foreign words which
are directly transliterated in Hindi and borrowed
from another language in Urdu. Consider the
word “America” which is transliterated as
(@“mErIk@) in Hindi but borrowed from Arabic
as (A@mrikA) in Urdu. Table 7 shows the
results of our transliterators in comparison with
other transliterators.

Ambiguous characters: The ambiguous char-
acters frequently occur in Hindi text and are found
in 52% of the types in the test corpus. There are
four ambiguous characters as shown in Table 1.
For each such character, we extract the tokens con-
taining this character from the test corpus. There
were 15%, 19%, 13% and 3.8% occurrences of
words with (h), (s), (t d) and (z) respec-
tively. Table 8 shows the results of the three base-
line transliterators on these four cases.

MAL CRULP HUMT
(h) 74.4% 60.8% 60%
(s) 69.8% 62.9% 66%

(t d) 76.4% 66% 66%
(z) 32.3% 41.9% 3.2%

Table 8: Results of the baseline transliteration sys-
tems on words containing ambiguous characters

Malerkotla shows poor results on words con-
taining (z). These words form only 3.8% types
of the test corpus and thus do not substantially af-
fect the overall accuracy achieved by Malerkotla.
Table 9 shows the results of Malerkotla and our
transliteration systems. RULE performs best on
all cases of ambiguous characters.

Sometimes, the use of several ambiguous char-
acters in a string leads to two legal Urdu words as
shown in Table 10. The disambiguation between
two legal Urdu words requires word context.

Ambiguous transliteration units: There are

AUTO RULE MAL
(h) 69.6% 78.4% 74.4%
(s) 69.8% 74.8% 69.8%

(t d) 77.4% 79.3% 76.4%
(z) 64.5% 74.2% 32.3%

Table 9: Results of Malerkotla and our translitera-
tion systems on words containing ambiguous char-
acters

Table 10: Highly ambiguous words in Urdu that
have the same sound but that are written with dif-
ferent characters and represent different meanings

some characters in Hindi that may map to different
Urdu characters depending on the context. Table
11 shows some examples. In the first column, the
Hindi characters may map to any of the three Urdu
characters in the same row. Sometimes, there is no
phonological difference between the Urdu charac-
ters but conventionally they are written in one way
or the other.

Table 11: Some ambiguous transliteration units

Pronunciation differences between Hindi
and Urdu speakers: Different pronunciations of
Hindi and Urdu speakers also cause confusion for
the transliteration systems. For example, the En-
glish word “bazaar” is written in Hindi as
(bAd ZAr) and in Urdu as (bAzAr). The
transliteration system has to disambiguate by map-
ping the character representing “d Z” in Hindi to
either the “d Z” sound or the “z” sound in Urdu.
Table 12 shows some of these examples.

N-best analysis of RULE and AUTO: The
transliterators show poor performance on words
containing ambiguous characters. In the 20-best
output, we find the correct solution for many
words with ambiguous characters as shown in Ta-
ble 13. However, if a word contains two ambigu-

135



Table 12: Pronunciation differences between
Hindi and Urdu

ous characters, it was difficult for the transliterator
to transliterate it correctly. We hope that the to-
kens with ambiguous characters can be correctly
transliterated using context by a statistical ma-
chine translation system. The unknown translit-
erations in the 20-best output will get lower scores
from the language model as compared to known
words. If two words in the 20-best output are
known, the language model helps to choose the
right output based on the word context.

The 10-best and 20-best results of AUTO are
competitive with RULE7. The automatically ex-
tracted list obtains high recall and thus contains
close transliterations which RULE’s list does not
contain. Close transliterations are word pairs
which only differ by one or two characters from
correct transliterations. The close translitera-
tion pairs are useful for the transliteration system
as they provide information about transliteration
units and help avoid the problem of data sparse-
ness. However, the transliteration system also
learns noise from them and might not produce cor-
rect 1-best output. Table 14 shows two examples
which are correctly transliterated by AUTO but
are wrongly transliterated by RULE in the 10-best
output. These examples are difficult to transliter-
ate as most of the characters are ambiguous and
have more than one possible transliteration. The
system built on AUTO is able to transliterate them
correctly as it contains more instances of infre-
quent ambiguous characters. For the incorporation
of a transliteration model in a machine translation
system, AUTO would be a better option as it is
language independent and has better 10-best and
20-best scores.
7 Conclusion

We have implemented a joint source channel
model to transliterate Hindi words into Urdu

7We also aligned AUTO with the edit-distance based
aligner to verify that alignments differences were not impor-
tant. The results dropped a little less than 1-point for 1-best,
10-best and 20-best, which is still better than RULE for 10-
best and 20-best, so the differences in alignment did not un-
duly influence the results.

AUTO RULE
1-Best 76% 81.6%
10-Best 93.8% 91.5%
20-Best 95.1% 92.3%

Table 13: Comparison of 1-Best, 10-Best and 20-
Best outputs of our transliteration systems

Table 14: In the 10-best output, these examples are
correctly transliterated by AUTO but are wrongly
transliterated by RULE

words. We have used two approaches to ex-
tract transliteration pairs from a parallel corpus of
Hindi/Urdu – an unsupervised transliteration min-
ing method and a method based on handcrafted
rules. We then built models on the automati-
cally aligned orthographic transliteration units of
the extracted Hindi/Urdu transliteration pairs. Our
best transliteration system achieved an accuracy of
81.6% which is 8% better than the best of three
other systems. The 10-best and 20-best results of
our transliteration system built on the automati-
cally extracted transliteration pairs showed that it
is suitable for integration with machine translation
which will allow the use of translation context to
choose the best transliteration (Hermjakob et al.,
2008; Durrani et al., 2010).

Acknowledgments

The authors wish to thank the anonymous re-
viewers for their comments. Hassan Sajjad and
Nadir Durrani were funded by the Higher Edu-
cation Commission (HEC) of Pakistan. Helmut
Schmid was supported by Deutsche Forschungs-
gemeinschaft grant SFB 732. Alexander Fraser
was funded by Deutsche Forschungsgemeinschaft
grant Models of Morphosyntax for Statistical Ma-
chine Translation. This work was supported in
part by the IST Programme of the European Com-
munity, under the PASCAL2 Network of Excel-
lence, IST-2007-216886. This publication only re-
flects the authors’ views.

136



References
Yaser Al-Onaizan and Kevin Knight. 2002. Machine

transliteration of names in Arabic text. In ACL
Workshop on Computational Approaches to Semitic
Languages, Morristown, NJ, USA.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50(5).

Nadir Durrani, Hassan Sajjad, Alexander Fraser, and
Helmut Schmid. 2010. Hindi-to-Urdu machine
translation through transliteration. In Proceedings
of the 48th Annual Conference of the Association for
Computational Linguistics.

Asif Ekbal, Sudip Kumar Naskar, and Sivaji Bandy-
opadhyay. 2006. A modified joint source-channel
model for transliteration. In Proceedings of the
COLING/ACL poster sessions, pages 191–198, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Swati Gupta. 2004. Aligning Hindi and Urdu bilin-
gual corpora for robust projection. Masters project
dissertation, Department of Computer Science, Uni-
versity of Sheffield.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III.
2008. Name translation in statistical machine trans-
lation - learning when to transliterate. In Proceed-
ings of ACL-08: HLT, pages 389–397, Columbus,
Ohio. Association for Computational Linguistics.

J C. Wells. 1995. Computer-coding the IPA: a pro-
posed extension of SAMPA. University College,
London.

Bushra Jawaid and Tafseer Ahmed. 2009. Hindi to
Urdu conversion: beyond simple transliteration. In
Conference on Language and Technology 2009, La-
hore, Pakistan.

Mehdi M. Kashani, Fred Popowich, and Anoop Sarkar.
2007. Automatic transliteration of proper nouns
from Arabic to English. In Second Workshop on
Computational Approaches to Arabic Script-based
Languages, Stanford University, USA.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

Philipp Koehn, Franz J. Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the Human Language Technology and
North American Association for Computational Lin-
guistics Conference, pages 127–133, Edmonton,
Canada.

Haizhou Li, Zhang Min, and Su Jian. 2004. A joint
source-channel model for machine transliteration.
In ACL ’04: Proceedings of the 42nd Annual Meet-
ing on Association for Computational Linguistics,
pages 159–166, Barcelona, Spain. Association for
Computational Linguistics.

M G Abbas Malik, Christian Boitet, and Pushpak Bhat-
tacharyya. 2008. Hindi Urdu machine translitera-
tion using finite-state transducers. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics, Manchester, UK.

M G Abbas Malik, Laurent Besacier, Christian Boitet,
and Pushpak Bhattacharyya. 2009. A hybrid model
for Urdu Hindi transliteration. In Proceedings of the
2009 Named Entities Workshop, ACL-IJCNLP, Sun-
tec, Singapore.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Vladimir Pervouchine, Haizhou Li, and Bo Lin. 2009.
Transliteration alignment. In Proceedings of the
47th Annual Meeting of the Association for Com-
putational Linguistics and the 4th IJCNLP of the
AFNLP, Suntec, Singapore.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2011. An algorithm for unsupervised translitera-
tion mining with an application to word alignment.
In Proceedings of the 49th Annual Conference of
the Association for Computational Linguistics, Port-
land, USA.

Bonnie G. Stalls and Kevin Knight. 1998. Translating
names and technical terms in Arabic text. In Pro-
ceedings of the COLING/ACL Workshop on Compu-
tational Approches to Semitic Languages.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Intl. Conf. Spoken Lan-
guage Processing, Denver, Colorado.

137


