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Abstract

Word ordering remains as an essen-
tial problem for translating between lan-
guages with substantial structural differ-
ences, such as SOV and SVO languages.
In this paper, we propose to automatically
extract pre-ordering rules from predicate-
argument structures. A pre-ordering rule
records the relative position mapping of a
predicate word and its argument phrases
from the source language side to the tar-
get language side. We propose 1) a linear-
time algorithm to extract the pre-ordering
rules from word-aligned HPSG-tree-to-
string pairs and 2) a bottom-up algorithm
to apply the extracted rules to HPSG trees
to yield target language style source sen-
tences. Experimental results are reported
for large-scale English-to-Japanese trans-
lation, showing significant improvements
of BLEU score compared with the base-
line SMT systems.

1 Introduction

Statistical machine translation (SMT) suffers from
an essential problem for translating between lan-
guages with substantial structural differences,
such as between English which is a subject-verb-
object (SVO) language and Japanese which is a
typical subject-object-verb (SOV) language.

Numerous approaches have been consequently
proposed to tackle this word-order problem, such
as lexicalized reordering methods, syntax-based
models, and pre-ordering ways. First, in or-
der to overcome the shortages of traditional dis-
tance based distortion models (Brown et al., 1993;
Koehn et al., 2007), phrase dependent lexical-
ized reordering models were proposed by several
researchers (Tillman, 2004; Kumar and Byrne,
2005). Lexicalized reordering models learn local

orientations (monotone or reordering) with proba-
bilities for each bilingual phrase from the training
data. For example, by taking lexical information
as features, a maximum entropy phrase reordering
model was proposed by Xiong et al. (2006).

Second, syntax-based models attempt to solve
the word ordering problem by employing syntac-
tic structures. For example, linguistically syntax-
based approaches (Galley et al., 2004; Liu et al.,
2006) first parse source and/or target sentences
and then learn reordering templates from the sub-
tree fragments of the parse trees. In contrast, hier-
archical phrase based translation (Chiang, 2005) is
a formally syntax-based approach which can auto-
matically extract hierarchical ordering rules from
aligned string-string pairs without using additional
parsers. These approaches have been proved to
be both algorithmically appealing and empirically
successful.

However, most of current syntax-based SMT
systems use IBM models (Brown et al., 1993) and
hidden Markov model (HMM) (Vogel et al., 1996)
to generate word alignments. These models have
a penalty parameter associated with long distance
jumps, and tend to misalign words which move far
from the window sizes of their expected positions
(Xu et al., 2009; Genzel, 2010).

The third type tackles the word-order prob-
lem in pre-ordering ways. Through the usage of
a sequence of pre-ordering rules, the word or-
der of an original source sentence is (approxi-
mately) changed into the word order of the tar-
get sentence. Here, the pre-ordering rules can be
manually or automatically extracted. For man-
ual extraction of pre-ordering rules, linguistic
background and expertise are required for pre-
determined language pairs, such as for German-
English (Collins et al., 2005), Chinese-to-English
(Wang et al., 2007), Japanese-to-English (Katz-
Brown and Collins, 2007), and English-to-SOV
languages (Xu et al., 2009).
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Specially, for English-to-Japanese translation,
Isozaki et al. (2010b) proposed to move syntac-
tic or semantic heads to the end of correspond-
ing phrases or clauses so that to yield head fi-
nalized English (HFE) sentences which follow the
word order of Japanese. The head information of
an English sentence is detected by a head-driven
phrase structure grammar (HPSG) parser, Enju1

(Miyao and Tsujii, 2008). In addition, transfor-
mation rules were manually written for appending
particle seed words, refining POS tags to be used
before parsing, and deleting English determiners.
Due to the usage of the same parser, we take this
HFE approach as one of our baseline systems.

The goal in this paper, however, is to learn pre-
ordering rules from parallel data in an automatic
way. Under this motivation, pre-ordering rules
can be extracted in a language-independent man-
ner. A number of researches follow this auto-
matic way. For example, in (Xia and McCord,
2004), a variety of heuristic rules were applied to
bilingual parse trees to extract pre-ordering rules
for French-English translation. Rottmann and Vo-
gen (2007) learned reordering rules based on se-
quences of part-of-speech (POS) tags, instead of
parse trees. Dependency trees were used by Gen-
zel (2010) to extract source-side reordering rules
for translating languages from SVO to SOV, etc..

The novel idea expressed in this paper is that,
predicate-argument structures (PASs) are intro-
duced to extract fine-grained pre-ordering rules.
PASs have the following merits for describing re-
ordering phenomena:

• predicate words and argument phrases re-
spectively record reordering phenomena in a
lexicalized level and an abstract level;

• PASs provide a fine-grained classification of
the reordering phenomena since they include
factored representations of syntactic features
of the predicate words and their argument
phrases.

The idea of using PASs for pre-ordering fol-
lows (Komachi et al., 2006). Several reordering
operations were manually designed by Komachi
et al. (2006) to pre-ordering Japanese sentences
into SVO-style English sentences. For compari-
son, our proposal 1) makes use of not only PASs
but also the source syntactic tree structures for pre-
ordering rule matching, 2) extracts pre-ordering

1http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html

rules in an automatic way, and 3) use factored rep-
resentations of syntactic features to refine the pre-
ordering rules.

Following (Wu et al., 2010a; Isozaki et al.,
2010b), we use the HPSG parser Enju to gener-
ate the PASs of English sentences. HPSG (Pollard
and Sag, 1994) is a lexicalist grammar framework.
In HPSG, linguistic entities such as words and
phrases are represented by a data structure called
a sign. A sign gives a factored representation of
the syntactic features of a word/phrase, as well as
a representation of their semantic content which
corresponds to PASs.

In order to record the relative positions among
a predicate word and its argument phrases, we
propose a linear-time algorithm to extract pre-
ordering rules from word-aligned HPSG-tree-to-
string pairs2. The syntactic features included in
signs and the types of PASs enable us to extract
fine-grained pre-ordering rules and thus make it
easier to select appropriate rules for given source
HPSG trees. We further propose a bottom-up
algorithm to apply the extracted rules to HPSG
trees to pre-order source sentences. Using the pre-
ordered source sentences, we retrain word align-
ments again.

The remaining of this paper is organized as
follows. In the next section, we describe the
algorithms guided by using a real example for
extracting and applying PAS-based pre-ordering
rules. Then, we design experiments on large-scale
English-to-Japanese translation to testify our pro-
posal. Employing Moses (Koehn et al., 2007), we
show that our proposal can significantly improve
BLEU scores of 2.47∼3.15 points compared with
using the original English sentences. We finally
conclude this paper by summarizing our proposal
and the experiment results.

2 Pre-ordering Rule Extraction and
Application

2.1 An example

Figure 1 shows a word-aligned HPSG-tree-to-
string pair for English-to-Japanese translation.
PASs among lexical nodes and their argument
nodes in this HPSG tree are described by arrows
in thick-lines. For simplicity, we only draw the
identifiers for the signs of the nodes in the HPSG
tree. Note that the identifiers that start with ‘c’

2These word alignments are gained by running GIZA++
(Och and Ney, 2003) on the original parallel sentences.
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when the fluid pressure cylinder 31 is used , fluid is gradually applied . 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

c2 c5 c7 c9 c11 c12 c14 c15 c17 c20 c22 c24 c25 

c3 

c4 

c6 

c8 

c10 c13 

c18 

c19 

c21 

c23 

c16 

c1 

c0 

流体 0 圧 1 シリンダ れる 12 こと 13313 の 4 場合 5 は 6 流体 7 が 8 徐々に 9 排出 10 さ 11 なる 15 と 14 。16 
fluid pressure cylinder thing 31 's when fluid gradually (be) applied becomes 

 

c3 

c1 

c0 

c16 

t0 

c2 

<tok id=t0 cat=SC pos=WRB 
base=when lexentry=[when] 
pred=conj_arg12 arg1=c16 
arg2=c3> 
 
<cons id=c16 cat=S xcat= 
head=c18 sem_head=c18 
schema=mod_head> 
 
<cons id=c3 cat=S xcat= 
head=c13 sem_head=c13 
schema=subj_head> 

Figure 1: Illustration of a word-aligned HPSG-tree-to-string pair for English-to-Japanese translation.

denote non-terminal nodes (e.g., c0, c1), and the
identifiers that start with ‘t’ denote terminal nodes
(e.g., t0, t2). In a complete HPSG tree (Wu et
al., 2010b), factored syntactic features listed in
Table 1 are included in the terminal and non-
terminal signs. These features are used by us to
sub-categorize pre-ordering rules. As an example
of the XML output of Enju, the signs of “when”
(t0) and its arguments c16, c3 are shown in the
top-left corner of Figure 1.

2.2 Data structures
We define the following data structures for both
extracting and applying pre-ordering rules. First,
a PAS-based pre-ordering rule is defined to be a
four-tuple <pw, args, srcOrder, trgOrder>. Here,
pw is the predicate word, args are the argument
nodes of pw, and srcOrder and trgOrder respec-
tively record the relative positions among pw and
args in the source and target language sides.

Then, we suppose an HPSG tree/subtree object
contains the following methods:

• localize(): localize syntactic/semantic heads;

• computeSrcSpans(): topologically compute
the source span of each node;

• computeSpans(A): topologically compute
the source and target spans of each node (Gal-
ley et al., 2004). A is the word alignment;

• getArgs(pw): return the argument nodes of
pw;

Name Description Examples
WORD surface word form “when”
BASE base word form “when”
POS part-of-speech WRB (“when”)
LE lexical entry [when] (“when”)
PRED type of predicate conj arg12

argument structure (“when”)
CAT syntactic category SC (“when”)
TENSE tense of a verb (past, present (“used”)

present, untensed)
ASPECT aspect of a verb none (“used”)

(none, prefect,
progressive,
prefect-progressive)

VOICE voice of a verb passive (“used”)
(passive, active)

AUX auxiliary verb or not minus (“used”)
(minus, modal, have,
be, do, to, copular)

CAT syntactic category S (c16), S (c3)
XCAT extended category
HEAD syntactic head R (c16), R(c3)
SEM HEAD semantic head R (c16), R (c3)
SCHEMA schema rule mod head (c16)

Table 1: Templates of atomic features included
in the predicate node (top size) and its argument
nodes (bottom side).

• MCT(pw, args): return the minimum cover
tree (Wu et al., 2010a) of pw and args.

To implement the localize() method, we use the
approach described in (Wu et al., 2010a). That
is, we replace the pointer values of HEAD and
SEM HEAD features in non-terminal nodes with
three labels: “S” for single daughter, “L” for the
left-hand-side daughter, and “R” for the right-
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hand-side daughter. For example, for node c16 in
Figure 1, its HEAD and SEM HEAD will change
from c18 to “R”.

We use the concept of minimum covering trees
(MCT) defined in (Wu et al., 2010b) to guide the
pre-ordering process. A MCT is a subtree of the
original HPSG tree that takes a predicate node and
its argument nodes as (new) leaf nodes. For exam-
ple, as shown in the top-right corner of Figure 1,
the MCT of “when” (t0) and its argument nodes
c3, c16 is ”c0(c1(c2(t0)c3)c16)”.

Finally, the attributes in the nodes of an HPSG
tree include: 1) pred: the PAS of a leaf node, 2)
srcSpan: the index set of the source words that
current node covers, 3) trgSpan: the index set of
the target words that srcSpan aligned to, and 4) sr-
cPhrase that stores the pre-ordered source phrase
covered by current node.

2.3 Rule extraction algorithm

We express the idea for extracting PAS-based pre-
ordering rules by using the first word “when” of
the English sentence in Figure 1. Given the PAS
information of “when” (t0) in the English side,
we need to determine the target-side-order among
t0 and its two arguments c16, c3. To achieve
this, we compute the target spans of these three
nodes by using current word alignment and then
sort their target spans. Through referring to the
word alignment shown in Figure 1, we can collect
the target spans which are {5}, {4,0,1,2,3,6,15},
and {7,8,9,10,11,12,13} respectively for t0, c3,
and c16. However, we cannot sort these three
spans since there are overlapping between the first
two spans3. In order to solve this problem, we
sort the spans in a heuristic way. Note that in
c3’s target span, five indices are smaller than 5
yet only two indices are larger than 5. Thus,
we take {4,0,1,2,3,6,15} to be dominantly smaller
than {5}. Now, we can determine the pre-order
rule guided by the PAS of t0 to be “t0 c3 c16 →
c3 t0 c16” and formally to be “t00 c31 c162 → 1 0
2”. Generally, we use the following heuristic rules
to sort two spans, named span A and span B:

• if more than half of numbers in A is bigger
than the maximum number in B, or if more
than half of numbers in B is smaller than the
minimum number in A, then B < A;

3In this example, the overlapping is caused by the
wrong/ambiguous alignments between “used” and “naru15”,
and between “is” and “ha6”.

Algorithm 1 Pre-ordering Rule Extraction
Input: HPSG tree TE of an English sentence E, word align-

ment A
Output: a pre-ordering rule setR
1: TE .localize()
2: TE .computeSpans(A)
3: for each leaf node t of TE do
4: if t.pred is opened and t.trgSpan != NULL then
5: Node[] args← TE .getArgs(t)
6: if all nodes in args are aligned then
7: int[] srcOrder ← SORTSPANS(t.srcSpan, src-

Spans of args)
8: int[] trgOrder ← SORTSPANS(t.trgSpan,

trgSpans of args)
9: R.add(< t, args, srcOrder, trgOrder>)

10: end if
11: end if
12: end for

• if more than half of numbers in B is bigger
than the maximum number in A, or if more
than half of numbers in A is smaller than the
minimum number in B, then A < B.

In case of a tie (e.g., A={3,4,7,8}, B={5,6}), we
keep the original order of A and B in the source-
side sentence without any reordering.

Algorithm 1 sketches the pre-ordering rule ex-
traction algorithm guided by PASs. The algorithm
collect pre-ordering rules through a traversal of the
leaf nodes in an HPSG tree. A non-terminal node
will not be accessed unless it is an argument of
some predicate node(s). Thus, this algorithm runs
in a time that is approximately linear to the num-
ber of leaf nodes in the tree, i.e., the number of
words in the source sentence.

We define that a terminal node’s PAS is opened
if at least one of its arguments is neither empty nor
unknown. We will not extract a pre-ordering rule
if the terminal node is unaligned or any of its ar-
gument node is unaligned. These constraints are
reflected by Line 4 and 6 in Algorithm 1. After
heuristically sorting the source/target spans of a
predicate node and its argument nodes, we finally
extract a pre-ordering rule.

Table 2 summarizes the PAS-based pre-ordering
rules extracted from the example shown in Fig-
ure 1. Application of these pre-ordering rules to
the original English sentence yields the following
Japanese style sentence:

• the fluid pressure cylinder 31
is used when, fluid is gradually
applied.

2.4 Applying pre-ordering rules
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Word PRED Pre-ordering Rule
when conj arg12 when c3 c16→ c3 when c16
the det arg1 the c6→ the c6
fluid adj arg1 fluid c8→ fluid c8
pressure noun arg1 pressure c10→ pressure c10
cylinder noun arg0 -
31 adj arg1 c11 31→ c11 31
is aux arg12 c4 is c15→ c4 is c15
used verb arg12 c4 used→ c4 used
, punct arg1 , c18→ , c18
fluid noun arg0 -
is aux arg12 c19 is c23→ c19 is c23
gradually adj arg1 gradually c25→ gradually c25
applied verb arg12 c19 applied→ c19 applied

Table 2: PAS-based pre-ordering rules extracted
from the example shown in Figure 1. We use real
words instead of predicate nodes here for intuitive
understanding.

Algorithm 2 Pre-ordering Rule Application
Input: HPSG tree TE of an English sentence E[], rule setR
Output: srcPhrase in the root node of TE

1: TE .localize()
2: TE .computeSrcSpans()
3: mct rule← {}
4: for each leaf node t of TE do
5: Node[] args← TE .getArgs(t)
6: int[] srcOrder← SORTSPANS(t.srcSpan, srcSpans of

args)
7: Rule r←RULEMATCH(R, < t, args, srcOrder>)
8: if r != NULL then
9: mct← TE .MCT(t, args)

10: mct rule.add(<mct, r >)
11: end if
12: end for
13: for each mct in mct rule in a bottom-up order do
14: Rule r← mct rule.get(mct)
15: mct.root().srcPhrase← ‘’ ◃ root() returns root node
16: for i from 0 to r.trgOrder.length-1 do
17: mct.root().srcPhrase += ‘ ’ + mct.leaves()

[r.trgOrder[i]].srcPhrase
18: end for
19: end for
20: for each node n in TE in a topological order do
21: if n is a terminal node then
22: n.srcPhrase← E[n.srcSpan[0]]
23: else if n.srcPhrase = NULL then
24: n.srcPhrase← CONNECT(n.children().srcPhrase)
25: end if
26: end for

Algorithm 2 sketches the algorithm for apply-
ing pre-ordering rules to a given HPSG tree TE .
The algorithm contains three parts: rule match-
ing (Lines 4-12), bottom-up rule applying (Lines
13-19), and sentence collecting (Lines 20-26). We
first retrieve available pre-ordering rules from rule
set R by a left-to-right traversal of the leaf nodes
of TE . For each leaf node, we select one pre-
ordering rule with the highest frequency. Our ex-
periments testified that this greedy rule selection

strategy worked quite well. We selected 93% of
the top frequent rule without facing a tie.

The terminal node t, the argument nodes of t,
and their source-side ordering are taken as the key
for rule matching. Available rules will be assigned
to the MCT of t. Then, we apply the available
rules to the root nodes of each MCT through a
bottom-up traversal of TE . A competitive problem
is that, a non-terminal node can be shared by sev-
eral MCTs. For example, node c3 and c18 (gray
color) in Figure 1 are respectively shared by two
MCTs (t6 and t7, t10 and t12). In order to avoid
duplicated reordering of these nodes, we first pick
the pre-ordering rule in which there are no “gaps”
among the predicate words and argument phrases.
For example, there is a gap (t6) between t7 and
its argument node c4. We then pick a rule by fre-
quency if there are still more than one rule avail-
able. Finally, after applying all available rules, we
collect the pre-ordered source sentence from the
root node of the HPSG tree.

3 Experiments

3.1 Setup

We test our proposal by translating from English to
Japanese. We use the NTCIR-9 English-Japanese
patent corpus4 as our experiment set. Since the
reference set of the official test set has not been
released yet, we instead split the original develop-
ment set averagely into two parts, named dev.a and
dev.b. In our experiments, we first take dev.a as
our development set for minimum-error rate tun-
ing (Och, 2003) and then report the final transla-
tion accuracies on dev.b. For direct comparison
with other systems in the future, we use the con-
figuration of the official baseline system5:

• Moses6 (Koehn et al., 2007): revision =
“3717” as the baseline decoder. Note that
we also train Moses using HFE sentences
(Isozaki et al., 2010b) and the English sen-
tences pre-ordered by PASs;

• GIZA++: giza-pp-v1.0.37 (Och and Ney,
2003) for first training word alignment us-
ing the original English sentences for pre-
ordering rule extraction, and then for retrain-

4http://ntcir.nii.ac.jp/PatentMT/
5http://ntcir.nii.ac.jp/PatentMT/baselineSystems
6http://www.statmt.org/moses/
7http://giza-pp.googlecode.com/files/giza-pp-

v1.0.3.tar.gz

33



Train Dev.a Dev.b
# of sent. 2,032,679 1,000 1,000

# of En words 48,322,058 31,890 31,935
Enju suc. rate 99.3% 98.9% 98.7%

parse time (sec./sent.) 0.30 0.38 0.48
# of Jp words 53,865,629 37,066 35,921

Table 3: Statistics of the experiment sets.

ing word alignments using the pre-ordered
English sentences;

• SRILM8 (Stolcke, 2002): version 1.5.12 for
training a 5-gram language model using the
target sentences in the total training set;

• Additional scripts9: for preprocessing En-
glish sentences and cleaning up too long (#
of words > 40) parallel sentences;

• Japanese word segmentation: Mecab v0.9810

with the dictionary of mecab-ipadic-2.7.0-
20070801.tar.gz11.

The statistics of the filtered training set, dev.a,
and dev.b are shown in Table 3. The success pars-
ing rate ranges from 98.7% to 99.3% by using
Enju2.3.1. The averaged parsing time for each En-
glish sentence ranges from 0.30 to 0.48 seconds.

3.2 Statistics of PASs and PAS-based
pre-ordering rules

Figure 2 shows the number (natural log) of the
40 types of the PASs that appeared in the HPSG
trees of the three experiment sets. Top five
types of opened PASs include adj arg1, det arg1,
prep arg12, noun arg1, and verb arg12. By com-
paring the distributions of the number of PASs in
the three sets, we can see that the distributions ap-
proximately share the same tendency. Thus, the
pre-ordering rules learned from the PASs in the
training set can be expected to be properly applied
in dev.a and dev.b.

Besides, the statistics of the number of argu-
ments for the predicate words is shown in Table
4. From this table, we find that the ratio of the
number of arguments in the three sets are approx-
imately similar. In particular, nearly half of the

8http://www.speech.sri.com/projects/srilm/
9http://homepages.inf.ed.ac.uk/jschroe1/how-

to/scripts.tgz
10http://sourceforge.net/projects/mecab/files/
11http://sourceforge.net/projects/mecab/files/mecab-

ipadic/

# of args Train Dev.a Dev.b
0 22.9% 22.4% 22.3%
1 47.0% 47.0% 47.5%
2 29.5% 29.8% 29.4%
3 0.6% 0.8% 0.8%
4 0.0% 0.0% 0.0%

Table 4: Statistics of the number of arguments of
the predicate words in the experiment sets.

Number Ratio
Parse success 45,617,387 94.4%
Opened 35,004,893 76.7%
Aligned 33,966,923 97.0%
Contiguous 30,256,858 89.1%

Table 5: Statistics of predicate words in the train-
ing set for rule extraction.

predicate words have one argument. The num-
ber of predicate words that contain two arguments
occurs around 30.0% of all the predicate words.
Also, we can not extract pre-ordering rules from
around 23.0% of the predicate words since they
do not contain any arguments. Finally, less than
1% of predicate words contain three arguments
and we only find one four-argument example of
verb arg1234 in the training set.

Now, in Table 5, we show the statistics of predi-
cate words in the training set for pre-ordering rule
extraction. Of the 48.3 million English words
in the training set, there are 45.6 million words
(94.4%) that are included in the HPSG trees that
were successfully generated. Then, in the PASs
of these 45.6 million words, there are 35.0 mil-
lion words whose PASs are opened. We also list
the number (34.0 million) of aligned predicate
words, since we only extract pre-ordering rules
from predicate words that are aligned to some tar-
get word(s) in Algorithm 1. Finally, there are
89.1% of aligned predicate words that are aligned
to contiguous target words.

In order to investigate the sub-categorization ef-
fectiveness of the syntactic features included in the
pre-ordering rules, we pick four subsets of the to-
tal feature set (Table 1). These feature subsets,
named from PAS-a to PAS-d, are listed in Table
6. Through the comparison of these four feature
subsets, we also attempt to investigate the data-
sparseness problem of available pre-ordering rules
cased by the factored features.

PAS-a includes all the syntactic features listed
in Table 1. In PAS-b, we only keep three features
for the predicate word and one feature for the argu-
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Figure 2: Number (natural log) of the types of the PASs that appeared in the experiment sets.

Feature PAS-a PAS-b PAS-c PAS-d
WORD

√ √ √ √
BASE

√
POS

√
LE

√
PRED

√ √ √ √
CAT

√ √
TENSE

√
ASPECT

√
VOICE

√
AUX

√
CAT

√ √ √
XCAT

√
HEAD

√
SEM HEAD

√
SCHEMA

√

# rules 469,014 203,184 200,968 148,047
# reorder 179,062 63,378 62,694 37,104
reorder ratio 38.2% 31.2% 31.2% 25.1%
avg. # train 12.0 12.1 12.1 12.1
avg. # dev.a 16.2 16.4 16.4 16.5
avg. # dev.b 16.2 16.4 16.4 16.5

Table 6: Feature subsets used in pre-ordering rules
and statistics of the extraction and application of
the pre-ordering rules under these feature subsets.

ment nodes. We further remove one feature (CAT)
of the predicate word in PAS-c. In the fourth sub-
set PAS-d, we only use two features WORD and
PRED in the predicate word for sub-categorizing
pre-ordering rules. Thus, PAS-d is only related
to PASs (which can be generated by any kinds of
parser) since it does not include additional features
generated by the typical HPSG parser.

As the number of syntactic features decreases,
more rules can be unified together. Thus, the num-
ber of pre-ordering rules and reordering rules, as
shown in Table 6, also decreases. The number
of reordering rules occurs from 25.1% (PAS-d) to
38.2% (PAS-a) in the pre-ordering rules. For each
English sentence in the training set, there are aver-
agely 12 reordering rules (instead of monotonic

Source sent. BLEU RIBES
Original sentences 0.2773 0.6619
PAS-a reordered 0.3088 0.7406
PAS-b reordered 0.3054 0.7334
PAS-c reordered 0.3063 0.7336
PAS-d reordered 0.3020 0.7265

Table 7: Translation accuracies by using the orig-
inal English sentences or the pre-ordered English
sentences under four types of pre-ordering rules.

pre-ordering rules) available under either of the
four feature subsets. For each English sentence in
dev.a and dev.b, the number of available reorder-
ing rules is averagely 16. Around 99.1%, 99.0%,
and 98.6% English sentences were respectively re-
ordered in the training set, dev.a set, and dev.b set.

3.3 Results

Table 7 shows the final translation accuracies
under BLEU score (Papineni et al., 2002) and
RIBES12, i.e., the software implementation of
Normalized Kendall’s τ as proposed by (Isozaki
et al., 2010a) to automatically evaluate the transla-
tion between distant language pairs based on rank
correlation coefficients and significantly penalizes
word order mistakes. Making use of our pre-
ordered English sentences significantly (p < 0.01)
improved BLEU scores from 2.47 (PAS-d) to 3.15
(PAS-a) points. The effectiveness of our proposal
for tackling word-ordering problem can also be
proved by comparing the scores of RIBES.

In addition, the accuracies change slightly
among using the four types of pre-ordering rules.
Among PAS-a, PAS-b, and PAS-c, we did signifi-
cant test and could not differ them under p < 0.01
or p < 0.05. The only significant difference

12Code available at http://www.kecl.ntt.co.jp/icl/lirg/ribes
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Source sent. BLEU RIBES Same PAS
HFE 0.3134 0.7370 - -
HFE+PAS-a 0.3278 0.7379 11.0% 34.7%
HFE+PAS-b 0.3302 0.7397 12.3% 32.8%
HFE+PAS-c 0.3300 0.7380 10.8% 35.0%
HFE+PAS-d 0.3256 0.7337 11.5% 32.8%

Table 8: Translation accuracies by combining
HFE and PAS based pre-ordering approach.

(p < 0.05) appeared between PAS-a and PAS-d.
Thus, we argue that the factored syntactic features
such as WORD, PRED, and CAT are more essen-
tial for sub-categorizing pre-ordering rules than
the remaining syntactic features.

As former mentioned, we also take the
language-dependent HFE approach (Isozaki et al.,
2010b) as another baseline. Note that word align-
ment was retrained using head-finalized English
sentences and Japanese sentences in this HFE ap-
proach. Through comparing the HFE results listed
in Table 8, we observe that the results are com-
parable between PAS-a and HFE: HFE is slightly
better under BLEU score and PAS-a is slightly bet-
ter under RIBES score.

Since similar HPSG parser (Enju) yet differ-
ent linguistic information (syntactic head informa-
tion vs. PASs) are used in HFE approach and our
proposal. A straightforward question is whether
we can combine these approaches together. Un-
der this motivation, we select a better pre-ordered
English sentence generated by the HFE method
and our PAS-based method. Following (Genzel,
2010), we use crossing score as the metric for sen-
tence selection. Crossing score is the number of
crossing alignment links for a given aligned sen-
tence pair. For monotonic alignments without re-
ordering, crossing score is zero. During selection,
we found that nearly 10% of the pre-ordered En-
glish sentences yielded by head-finalization and
PAS-based methods were similar. In addition,
among the different sentences, around 30% of
PAS-based pre-ordering sentences were selected.
Since we can not compute crossing score in the de-
velopment/test sets, we instead take both kinds of
pre-ordered English sentences as inputs and pick
one output with a higher translation score.

The translation result based on this reselection
approach is shown in Table 8. Compared with
HFE approach, the reselection approach signifi-
cantly (p < 0.01) improved BLEU scores of from
1.22 (PAS-d) to 1.68 (PAS-b) points. These in-
teresting results reflect that syntactic head infor-

Source sent. Averaged τ τ ≥ 0.8

English 0.407 0.106
HFE 0.708 0.487
PAS-a 0.571 0.291
HFE+PAS-a 0.809 0.643

Table 9: Comparison of Kendall’s τ .

mation and PASs describe the linguistic informa-
tion of an English sentence in different aspects.
Furthermore, compared with the single head-
finalization rule, the automatically extracted pre-
ordering rules kept the variety of word-ordering
by dynamically inferring the word order of target
sentences and thus enlarged the reordering space.

3.4 Alignment comparison

In order to investigate how closely the pre-ordered
English sentences follow target language word or-
der, we measured Kendall’s τ (Kendall, 1948), a
rank correlation coefficient, as shown in Table 9.
We exactly follow Isozaki et al. (2010b) to com-
pute Kendall’s τ . From Table 9, we can see that
the quality of word alignments approximately re-
flects the final BLEU scores listed in Table 7 and
8.

4 Conclusion

We have proposed a pre-ordering approach by
making use of predicate argument structures. The
pre-ordering rules record the relative source-target
position mapping among predicate words and their
argument phrases. We first proposed an algo-
rithm for automatically extracting these lexical
pre-ordering rules from aligned HPSG-tree-to-
string pairs. Then, we apply these pre-ordering
rules to HPSG trees to yield pre-ordered source
sentences that follow the word order of target sen-
tences. Finally, we do word alignment again by us-
ing the pre-ordered source sentences together with
the original target sentences.

Employing Moses (Koehn et al., 2007), our
proposal significantly improved 2.47∼3.15 BLEU
points compared with using the original English
sentences. Combining with the HFE approach
(Isozaki et al., 2010b), our approach significantly
and impressively improved 5.29 points of BLEU
score from 0.2773 to 0.3302. We finally argue that
our proposal is not difficult to be implemented and
can be easily applied to translate English into other
languages.
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