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Abstract 

In this paper, we first carry out an investi-

gation on two existing pivot strategies for 

statistical machine transliteration, namely 

system-based and model-based strategies, 

to figure out the reason why the previous 

model-based strategy performs much 

worse than the system-based one. We then 

propose a joint alignment algorithm to op-

timize transliteration alignments jointly 

across source, pivot and target languages 

to improve the performance of the model-

based strategy. In addition, we further 

propose a novel synthetic data-based 

strategy, which artificially generates 

source-target data using pivot language. 

Experimental results on benchmarking da-

ta show that the proposed joint alignment 

optimization algorithm significantly im-

proves the accuracy of model-based strat-

egy and the proposed synthetic data-based 

strategy is very effective for pivot-based 

machine transliteration. 

1 Introduction 

Machine transliteration refers to the phonetic 

translation of names across languages by comput-

er. With the rapid growth of the Internet data and 

the dramatic changes in the user demographics 

especially among the non-English speaking parts 

of the world, machine transliteration is important 

in many cross-lingual NLP, MT and CLIR appli-

cations as their performances have been shown to 

positively correlate with the correct conversion of 

names between the languages in several studies 

(Demner-Fushman and Oard, 2002; Mandl and 

Womser-Hacker, 2005; Hermjakob et al., 2008; 

Udupa et al., 2009). However, the traditional 

source for name equivalence, the bilingual dictio-

naries — whether handcrafted or statistical built 

— offer only limited support because new names 

always emerge. 

All of the above points to the critical need for 

high-performance machine transliteration tech-

nology. Much research effort has been made to 

address this issue in the research community 

(Knight and Graehl, 1998; Meng et al., 2001; Al-

Onaizan and Knight, 2002; Oh and Choi, 2002; 

Klementiev and Roth, 2006; Sproat, 2006; Zelen-

ko and Aone, 2006; Li et al., 2004, 2009a, 2009b; 

Sherif and Kondrak, 2007; Bertoldi et al., 2008; 

Goldwasser and Roth, 2008). These previous 

work falls into three categories, i.e., grapheme-

based, phoneme-based and hybrid methods (Li et 

al., 2009a, 2009b). The report of the first machine 

transliteration shared task NEWS 2009 (Li et al., 

2009a, 2009b) provides common benchmarking 

data in diverse language pairs and systematically 

evaluate the state-of-the-art technologies using 

their provided data. 

Although promising results have been reported, 

one of major issues is that the current translitera-

tion methods rely heavily on significant amount 

of source-target parallel data to learn translitera-

tion model. However, such corpora are not always 

available and the amounts of the currently availa-

ble corpora, even for language pairs with English 

involved, are far from enough for training, letting 

alone many low-density language pairs. Indeed, 

transliteration corpora for most language pairs 

without English involved are unavailable and are 

usually rather expensive to manually construct 

(Khapra et al., 2010; Zhang et al., 2010). To date, 

only two previous works (Khapra et al., 2010; 

Zhang et al., 2010) touch this issue of transliterat-

ing names across low-density language pairs. 

Both of them resort to pivot language-based ap-

proaches to address this issue. 
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Khapra et al. (2010) proposes the system-based 

pivot strategy for machine transliteration, which 

learns a source-pivot model from source-pivot 

data and a pivot-target model from pivot-target 

data, respectively. In decoding, it first translite-

rates a source name to N-best pivot names and 

then transliterates each pivot name to target 

names which are finally re-ranked using the com-

bined two individual transliteration scores. Zhang 

et al. (2010) verifies the system-based strategy 

together with joint source-channel model (Li et al., 

2004) on Chinese, English, Korean and Japanese 

data (Li et al., 2009a, 2009b) and they further 

proposes a model-based strategy, which learns a 

direct source-target transliteration model from 

two independent
1
 source-pivot and pivot-target 

name pair corpora, and does direct source-target 

decoding without relying on pivot languages. 

However, it was reported that the model-based 

strategy performed much worse than the system-

based one (Zhang et al., 2010). 

This paper investigates the reason why pre-

vious model-based strategy performs worse than 

system-based one and then proposes a joint 

alignment algorithm to solve the alignment unit 

inconsistent issue, which is the main reason of 

leading to the worse performance of model-based 

strategy. The key point of the proposed joint 

alignment algorithm is to jointly optimize transli-

teration unit alignments among source, pivot and 

target languages. In addition, the paper further 

proposes a novel synthetic data-based strategy for 

pivot-based machine transliteration. It automati-

cally constructs source-target data using source-

pivot and pivot-target data, and then trains a direct 

source-target transliteration model using the syn-

thetic data. We verify the proposed methods using 

the benchmarking data released at NEWS2009 (Li 

et al., 2009a, 2009b). Experiential results show 

that our proposed joint alignment optimization 

algorithm is able to effectively solve the translite-

ration unit mismatching issue and the proposed 

synthetic data-based strategy is very effective, 

achieving the best-reported performance. 

The rest of the paper is organized as follows. 

Section 2 introduces the direct transliteration 

model. Section 3 discusses our proposed joint 

alignment algorithm and synthetic data-based 

strategy. Experimental results are reported at sec-

tion 4. Finally, we conclude the paper in section 5. 

                                                           
1 Here ―independent‖ means the source-pivot and pivot-target 

data are not from the same English name source. 

2 The Transliteration Model: JSCM 

To make our study language-independent, we 

select joint source-channel model (JSCM, also 

named as n-gram transliteration model) (Li et al., 

2004) under grapheme-based framework as our 

transliteration model due to its state-of-the-art 

performance and using orthographical information 

only (Li et al., 2009a). In addition, unlike other 

feature-based methods, such as CRFs (Lafferty et 

al., 2001), MaxEnt (Berger et al., 1996) or SVM 

(Vapnik, 1995), the JSCM model directly 

computes model probabilities using maximum 

likelihood estimation (Dempster et al., 1977). 

This property facilitates the implementation of the 

model-based strategy.  

JSCM directly models how both source and 

target names can be generated simultaneously.  

Given a source name S and a target name T, it 

estimates the joint probability of S and T as fol-

lows: 

 

                                      
                                     

           
                        

         

                     
    

 

   

 

                        
     

    (1)  
 

 

where    and    is an aligned transliteration unit
2
 

pair, and n is the n-gram order.  

In our implementation, we compare different 

unsupervised transliteration alignment methods, 

including Giza++ (Och and Ney, 2003), JSCM-

based EM algorithm (Li et al., 2004), edit dis-

tance-based EM algorithm (Pervouchine et al., 

2009) and Oh et al.’s alignment tool (Oh et al., 

2009). Based on the aligned transliteration corpus, 

we learn the transliteration model using maximum 

likelihood estimation (Dempster et al., 1977) and 

decode the transliteration result    
              using stack decoder (Schwartz 

and Chow, 1990). 

                                                           
2 Transliteration unit is language dependent. It can be a Chi-

nese character, a sub-string of English words, a Korean Han-

gual or a Japanese Kanji or several Japanese Katakanas.  
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3 Joint Alignment and Synthetic Data-

based Strategy 

In this section, we elaborate our proposed joint 

alignment algorithm and synthetic data-based 

strategy for pivot-based machine transliteration.  

3.1 System-based Strategy 

Given a source name S, a target name T and let Z 

be the n-best transliterations of S in a pivot lan-

guage Ź 
3
, the system-based transliteration strate-

gy under JSCM can be formulized as follows: 

                        

 

 

                   

 

 

                                 
 

  
             

    
                      

 

 

 

where        and        can be computed using 

JSCM as formalized at Eq. (1). Eq. (2) assumes 

that   is independent of    when given   because 

the parallel name corpus between S and T is not 

available under the pivot transliteration frame-

work. The n-best transliterations in pivot language 

are expected to be able to carry enough informa-

tion of the source name S. Following the nature of 

JSCM, Eq. (2) directly models how the source 

name S and pivot name   and how the pivot name 

  and the target name   are generated simulta-

neously. Since   is considered twice in        

and       , the duplicated impact of   is re-

moved by being divided by     . 

3.2 Joint Alignment Algorithm for Model-

based Strategy 

Rather than combining the transitive translitera-

tion results at system level, the model-based strat-

egy aims to learn a direct model       by 

combining the two individual models of 

       and       . Here we use bigram as an 

example to illustrate how to learn the JSCM trans-

literation model                    
   

 , > −1 using the model-based strategy. 
 

                       

                                                           
3 There can be multiple pivot languages used. However, same 

as Khapra et al. (2010) and Zhang et al. (2010), without loss 

of generality, we only use one pivot language to facilitate our 

discussion. It is straightforward to extend one pivot language 

to multiple ones by considering all the pivot transliterations 

in all pivot languages. 

 
                  

           
                

 

where,  
 

                     
                               

                            

       

 

 

                            

       

                    
 

                    

       

                                                             

                        

       

                    
                                        

 

             

                     

      

        

 

where                   ,                    and 

           can be directly estimated at training 

corpus. 

In summary, eq. (2) formalizes the system-

based strategy while eq. (3) formalizes the model-

based strategy, where we can find that eq. (2) in-

volves the pivot language   in modeling and de-

coding while eq. (3) does not (its model 

parameters are pre-computed using eq. (4) and (5) 

during training).  

In previous work (Zhang et al., 2010), the 

model-based strategy was reported to perform 

much worse than the system-based. We find that 

the main reason is due to the size inconsistence of 

transliteration unit of pivot language in the 

source-pivot and pivot-target alignments during 

training. As shown at eq. (4), the source-target 

model is calculated using the source-pivot 

el                  and the pivot-target model 

                   directly. This requests that 

the pivot transliteration unit         must be con-

sistent in the two individual modes. Thus, all the 

source-pivot and pivot-target model parameters 

                   are of no use if their in-

volved pivot unit         can only be found at 

either source-pivot or pivot-target model. Unfor-

tunately in the only previous work (Zhang et al., 

2010), the source-pivot model and pivot-target 
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model are trained separately, i.e., their object 

function is to maximize       and        inde-

pendently. This results in serious pivot translitera-

tion unit inconsistent issue for some language 

pairs. For example, in our experiment (Chi-

nese English  Japanese) with English as pivot 

language, we find that the English transliteration 

unit size in Chinese English model is much larger 

than that in English Japanese model. This is be-

cause from phonetic viewpoint, in Chinese Eng-

lish model, the English unit is at syllable level 

(corresponding one Chinese character) while in 

English Japanese model, the English unit is at 

sub-syllable level (consonant or vowel or syllable, 

corresponding one Japanese Katakana). Following 

example excerpted from our training corpus illu-

strates the pivot transliteration unit mismatching 

issue, where the English word ―Aachen‖ is seg-

mented into ―Aa‖ and ―chen‖ in Chinese-English 

model while it is segmented into ―A‖, ―a‖, ―che‖ 

and ―n‖ in English-Japanese model. This trilingual 

pair is then of no use in model-based strategy.  

To solve the mismatching issue, this paper pro-

poses a joint alignment algorithm to jointly optim-

ize transliteration unit alignments among source, 

pivot and target languages for model-based strate-

gy. To facilitate discussion, we base on the task of 

using English as pivot language for Chinese-

Japanese transliteration (see Table 1) to present 

our proposed algorithm. The core idea of this al-

gorithm is to use Chinese-English alignments as a 

constraint to do English-Japanese alignment. The 

algorithm consists of the following 6 steps: 

 

Algorithm 1.  Joint Alignment 

 

Inputs:  

Chinese-English Name List (CE). 

English-Japanese Name List (EJ). 

 

Outputs: 
More consistent CE and EJ alignments at Chi-

nese syllable level and a direct Chinese-

Japanese (CJ) JSCM. 
 

1. Align the CE names at Chinese syllable level 

using the JSCM-based EM algorithm (Li et al., 

2004). 

2. Train a transliteration unit-based English bi-

gram LM with the transliteration unit-

segmented (at step 1) English side names of 

CE using SRILM toolkits (Stolcke, 2002). 

Note that here the English transliteration units 

are corresponding to Chinese syllable level. 

3. Align the Chinese-English-Japanese (CEJ) 

names that are the intersection of the entire CE 

and EJ names (with the same English names). 

a. CE part of CEJ has been aligned at Step 1. 

b. Align the CJ part of CEJ at Chinese sylla-

ble level using the JSCM-based EM algo-

rithm (Li et al., 2004). 

c. Construct the CEJ name alignments by 

merging the CE and CJ alignments. 

4. Align EJ names at Chinese syllable level. 

a. The intersection part of EJ with CJ (iEJ) 

has already been aligned at Chinese sylla-

ble level at step 3. 

b. Align the remaining non-intersection part 

of EJ name pairs (niEJ) using Algorithm 2 

with the help of the aligned intersection 

part done at step 4.a and the transliteration 

unit-based English bi-gram LM learned at 

step 2. 

c. Merge the above two parts. 

5. Train two individual JSCMs using the Chinese 

syllable level-aligned CE and EJ name corpus, 

respectively. 

6. Train a direct CJ JSCM using the two individ-

ual JSCMs learned at step 5 by the model-

based pivot strategy as formulated at eqs. (3), 

(4) and (5). 

 

Algorithm 2.  Constrained EM-based Align-

ment 

 

Inputs:  

1. Non-intersection part of EJ name pairs 

(niEJ). 

2. Intersection part of EJ name pairs (iEJ) 

aligned at Chinese syllable level and the in-

itial JSCM (named as iJSCM) learned from 

this corpus (step 3.d of Algorithm 1). 

3. The transliteration unit-based English bi-

gram LM (named as eLM, step 2 of Algo-

rithm 1). 

 

Output: 
English-Japanese name pairs aligned at Chi-

nese syllable level. 

 

1. Bootstrap initial alignment of the niEJ name 

using the initial model iJSCM. 

Chinese:                亚(ya) 琛(chen) 

               
English:              A   a   c   h   e   n 

 

Japanese:      ア  ー  ヘ   ン 
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2. Expectation: re-train iJSCM using both the 

input iEJ name alignments and the updated 

niEJ name alignments. 

3. Maximization: Apply the re-trained iJSCM 

and the input eLM to obtain new alignments of 

the niEJ names. Note that different from pre-

vious EM-based transliteration alignment algo-

rithm (Li et al., 2004) that only maximizes the 

JSCM probabilities, here we maximize two 

kinds of probabilities: 
 

         
 

                             
 

where   refers to English and   refers to Japa-

nese;   is an alignment which defining the 

transliteration unit segmentations of   and  , 

and their mappings;          is the JSCM 

probability of    and   under   ; and        is 

the eLM transliteration unit bigram probability 

of    segmented by  . 

4. Go to step 2 until the alignment converges. 

5. Output the niEJ name alignments. 

 

The motivation of the joint alignment algorithm 

(Algorithm 1 and 2) is to address the English 

transliteration unit mismatching issue by aligning 

the EJ at Chinese syllable level with the help of 

CE alignment. While the mismatching issue in the 

intersection part of the data is easy to solve by 

step 3 of Algorithm 1, it is more complicated at 

the non-intersection part. As illustrated at step 3 

of Algorithm 2, the core idea is to use English 

segmentation learned from CE alignment (step 2 

of Algorithm 1) and already-aligned intersection 

part of EJ (iEJ, step 3 of Algorithm 1) to constrain 

the EM alignment process. Therefore, the English 

bigram LM and the aligned intersection part (iEJ) 

keep unchanged during all the EM iterations. But 

in E step (step 2 of Algorithm 2), the iJSCM 

model is updated at each iteration using the entire 

EJ data while in M step (step 3 of Algorithm 2), 

the alignments are decoded out using both the 

iJSCM and the English bi-gram LM. Indeed, in 

our implementation, we introduce more know-

ledge sources, including transliteration unit inser-

tion penalty and Japanese LM, into the M step by 

simply considering these two features at eq. (6).  

Given the jointly optimized CE and EJ aligned 

name corpus, we can easily learn a direct CJ mod-

el using the pivot-based strategy (steps 5 and 6 of 

Algorithm 1). 

3.3 Synthetic Data-based Strategy 

Different from previous two strategies, the syn-

thetic data-based strategy automatically constructs 

source-target data using source-pivot and pivot-

target data, and then trains a direct source-target 

transliteration model using the synthetic and any 

other available source-target data. The philosophy 

of this strategy is straightforward while the key is 

how to generate ―good‖ data. Next, we also use 

Chinese-English-Japanese as example to elaborate 

this strategy. 
 

Algorithm 3. Artificial Data Generation 

 

Inputs:  

Chinese-English Name List (CE). 

English-Japanese Name List (EJ). 

 

Outputs: 
Synthetic Chinese-Japanese name pairs. 

 

1. Directly output those CJ names (iCJ), which 

are the intersection of the entire CE and EJ 

names (with the same English names). 

2. Transliterate those Chinese names which are 

not in iCJ to Japanese using either the system-

based or model-based strategy. To maintain the 

transliteration quality, we consider both forward 

and backward transliteration probabilities as 

well as the information whether the original 

Chinese can be recovered from a transliterated 

Japanese name. The process is formalized as 

follows: 
 

         
 

                                

 

where        is the forward transliteration 

probability,         is the backward translitera-

tion probability, and         is a penalty func-

tion to penalize those cases where    is not 

equal to  , i.e.,   fails to be covered from J. 

     is a Japanese Katakana language model.  

3. Translate those Japanese names which are not 

in iCJ to Chinese in the similar way as step 2. 

 

         
 

                                

 

Note that the outputs of step 2 and 3 do not 

overlap with each other.      is a Chinese 

character-based language model. 

4. Merge the results of step 1, 2 and 3. Given the 

merged data, we can easily train a direct Chi-

nese-Japanese transliteration model. 

 

The core idea of Algorithm 3 lies in eqs. (7) 

and (8). Among the three strategies (system-

based, model-based and synthetic data-based), the 

first and the third ones are transliteration model 

independent while the second one is not. 
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3.4 Comparison with Previous Work   

Almost all previous work on machine translitera-

tion focuses on direct transliteration or translitera-

tion system combination. Only two recent work 

(Khapra et al., 2010; Zhang et al., 2010) touches 

on the issue of pivot transliteration. Khapra et al. 

(2010) proposes the system-based strategy and 

does extensively empirical study together with 

CRF model on Indic/Slavic/Semetic languages 

and English.  Zhang et al. (2010) proposes the 

model-based strategy, but reporting very bad per-

formance. To address the low performance issue 

of the model-based strategy, this paper proposes 

the joint alignment algorithm to optimize the 

source-pivot-target alignment directly, resulting in 

significant performance improvement. Moreover, 

the paper proposes a new synthetic data-based 

strategy for pivot-based machine transliteration.  

Machine translation carries out similar pivot-

based translation studies. Bertoldi et al. (2008) 

studies two pivot approaches for phrase-based 

statistical machine translation. One is at system 

level and one is to re-construct source-target data 

and alignments through pivot data. Cohn and La-

pata (2007) explores how to utilize multilingual 

parallel data (rather than pivot data) to improve 

translation performance. Wu and Wang (2007, 

2009) study the model-level pivot approach and 

explore how to leverage on rule-based translation 

results in pivot language to improve translation 

performance. Utiyama and Isahara (2007) com-

pare different pivot approaches for phrase-based 

statistical machine translation. All of the previous 

work on machine translation works on phrase-

based statistical machine translation. Therefore, 

their translation model is to calculate phrase-

based conditional probabilities at unigram level 

(        ) while our transliteration model is to 

calculate joint transliteration unit-based condi-

tional probabilities at bigram level (    
                ). This is the fundamental 

difference. 

4 Experimental Results 

4.1 Experimental Settings 

Language Pair Training Test 

Chinese-English (CE) 31,961  2,896 

English-Japanese (EJ) 23,225 1,489 

Chinese-English-Japanese  
(CEJ, the intersection part of CE and EJ) 

10,071 1,030 

Table 1.  Statistics on the data set 
 

We use the NEWS 2009 Chinese-English and 

English-Japanese benchmark data as our experi-

mental data (Li et al., 2009a). All of the names 

originate from Western names, i.e., no native 

Chinese and Japanese names are involved in this 

experiment. Considering the fact that those lan-

guage pairs with English involved have the most 

training data, it is reasonable to select English as 

pivot language. Table 1 reports the statistics of all 

the experimental data. The Chinese-English-

Japanese data is the intersection of the Chinese-

English and English-Japanese data. 

We compare different alignment algorithms on 

the DEV set (Li et al., 2009a). Finally we use 

Pervouchine et al. (2009)’s alignment algorithm 

for Chinese-Japanese and Li et al. (2004)’s for 

Chinese-English and English-Japanese. Given the 

aligned corpora, we directly learn each individual 

JSCM model (i.e., n-gram transliteration model) 

using SRILM toolkits (Stolcke, 2002). We also 

use SRILM toolkits to do decoding. For the sys-

tem-based strategy, we output top-10 pivot trans-

literation results. For the evaluation matrix, to 

save space, we only use top-1 accuracy (ACC) (Li 

et al., 2009a) to measure transliteration perfor-

mance since other five evaluation matrix used at 

Li et al. (2009a) are reported to have great corre-

lation with ACC.  

4.2 Experimental Results 

4.2.1 Results of Direct Transliteration 

 

Language Pair ACC 

English-Chinese 0.681049 

English-Japanese 0.456755 

Chinese-English 0.394490 

Japanese-English 0.314970 

Chinese-Japanese 0.288022 

Japanese-Chinese 0.366559 

 

Table 2.  Performance of direct transliterations 

 
Table 2 reports the performance of direct transli-

teration. The first two experiments (line 1-2) are 

part of the NEWS 2009 share tasks and the others 

are our additional experiments for our pivot stu-

dies. Comparison of the first two experimental 

results and the results reported at NEWS 2009 

shows that we achieve comparable performance 

with their best-reported systems under the same 

conditions of using single system and orthograph-

ic features only. This indicates that our baseline 

represents the state-of-the-art performance. In 
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Methods Chinese-English-Japanese Japanese-English-Chinese 

Baseline 1: Independent alignment of 

Chinese-English and English-Japanese 

(Zhang et al., 2010) 

 

0.065949 (5816/16989) 

 

0.043011(5816/16989) 

Baseline 2: Linguistically heuristic-

based  re-construction of Chinese-

English and English-Japanese align-

ment (Zhang et al., 2010) 

 

0.282638 (26351/34812) 

 

0.378299 (26351/34812) 

Method 1: Joint alignment on intersec-

tion part of Chinese-English and Eng-

lish-Japanese data (Ours) 

 

0.287360 (26432/34920) 

 

0.378796 (26432/34920) 

Method 2: Joint alignment on entire 

data set (Ours) 
0.325367 (37437/48590) 0.440782 (37437/48590) 

 

Table 4.   Performance of model-based strategy (in ACC/# of unigram/# of bigram of the different 

transliteration models learned y the model-based strategy) 
 

addition, we find that the backward transliteration 

(line 3-4) consistently performs worse than its 

corresponding forward transliteration (line 1-2). 

This observation is consistent with what reported 

at previous work (Li et al., 2004; Zhang et al., 

2004). The main reason is because English has 

much more transliteration units than foreign C/J 

languages. This makes the transliteration from 

English to C/J a many-to-few mapping issue and 

backward transliteration a few-to-many mapping 

issue. Therefore backward transliteration has 

more ambiguities and thus is more difficult. 

Moreover, due to the less available training data 

for the language pairs without English involved 

(Chinese/Japanese), the lowest two experiments 

(line 5-6) performs worse than the case with Eng-

lish involved . This observation motivates us the 

study using pivot language for machine translite-

ration. 

4.2.2 Results of System-based Strategy 

Language Pair ACC 

Chinese-English-Japanese (System) 0.324361 

Chinese-English (Direct) 0.394490 

English-Japanese (Direct) 0.456755 

Chinese-Japanese (Direct) 0.288022 

Japanese-English-Chinese (System) 0.445748 

Japanese-English (Direct) 0.314970 

English-Chinese (Direct) 0.681049 

Japanese-Chinese (Direct) 0.366559 

 

Table 3.  Performance of system-based strategy 
 

Table 3 reports the experimental results of sys-

tem-based strategy. It confirms the previous ob-

servations (Khapra et al., 2010; Zhang et al., 

2010).  

 

 The system-based pivot strategy is very ef-

fective, achieving significant performance 

improvement over direct transliteration. 

 Different from other pipeline methodologies, 

system-based pivot strategy does not suffer 

from the error propagation issue. Its ACC is 

significantly better than the product of the 

ACCs of the two individual systems. 

 

The main reasons of the good performance re-

ported at the above observations are due to the 

following reasons: 

 

 The pivot approach is able to use large 

amount of source-pivot and pivot-target data.  

 The nature of transliteration is a phonetic 

translation process. Therefore a little bit var-

iation in orthography may not hurt or even 

help to improve transliteration performance 

in some cases as long as the orthographical 

variations keep the phonetic equivalent in-

formation. 

 The N-best accuracy of machine translitera-

tion is very high (Li et al., 2004; Zhang et 

al., 2004). It means that in most cases the 

correct transliteration in pivot language can 

be found in the top-10 results and the other 

9 results hold the similar pronunciations 

with the correct one, which can serve as al-

ternative ―quasi-correct‖ inputs to the 
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second stage transliterations and thus large-

ly improve the overall accuracy. 

4.2.3 Results of Model-based Strategy 

Table 4 reports the performance of model-based 

strategy with different alignment refinements, 

where we can find: 

 

 Baseline 1 clearly shows that the model-

based strategy performs extremely worse 

than the other three settings if we align the 

Chinese-English and English-Japanese data 

independently. The major reason attributes 

to the size mismatching of the English trans-

literation units between the two data sets 

(syllable level vs. phoneme or syllable level). 

 The other three experiments demonstrate the 

effectiveness of the alignment refinements. 

However Baseline 2 is more heuristic while 

ours are more mathematically principled.   

 Method 1 performs comparably with Base-

line 2 even utilizing fewer training data. 

 Method 2 achieves the best performance. It 

convincingly shows the effectiveness of the 

proposed joint optimization algorithm. 

 Among all the models, Method 2 has the 

largest amounts of model parameters (# of 

unigram and bigram). From modeling view-

point, it indicates that this model is more 

powerful than others. This is due to the con-

tribution of the more consistent English 

transliteration units. 

 Comparing Tables 4 and Table 3, we can 

see that the model-based strategy performs 

as well as the system-based strategy. This 

clearly demonstrates the effectiveness of our 

proposed joint alignment algorithm. 
 

4.2.4 Results of Synthetic Data-based Strategy 

 

Language Pair ACC 

Japanese-Chinese (Synthetic Data) 0.465648 

 Japanese-Chinese (System) 0.445748 

 Japanese-Chinese (Model) 0.440782 

Japanese-Chinese (Direct) 0.366559 

Chinese-Japanese (Synthetic Data) 0.338930 

Chinese-Japanese (System) 0.324361 

Chinese-Japanese (Model) 0.325367 

Chinese-Japanese (Direct) 0.288022 

Table 5. Performance comparison of the three 

pivot strategies 
 

Table 5 shows the advantage of synthetic data-

based strategy over the other methods.  

 

 The synthetic data-based strategy signifi-

cantly outperforms the direct one. This 

clearly shows the effectiveness of the addi-

tional synthetic data. 

 Using the same amount of data, the synthet-

ic data-based strategy significantly outper-

forms the model-based one. This is not 

surprising since model-based strategy suf-

fers from the transliteration unit mismatch-

ing issue and its performance is also 

compromised by the independent assump-

tion of eq. (4) while the synthetic data-based 

directly learns the model from bilingual data 

without suffering from the above two issues. 

 Using the same amount of data, the synthet-

ic data-based strategy significantly outper-

forms the system-based one. This is because 

the synthetic data-based strategy directly 

learns a source-target transliteration model 

while system-based method utilizes two in-

direct models and has to bear with the inde-

pendent assumption of eq. (2). 

 It is worth noting the transliteration perfor-

mance of the synthetic data-based strategy 

highly depends on the quality of the artifi-

cially generated data. Table 5 reports the 

performance using the default setting of eq. 

(7) and (8) at Algorithm 3. We expect that 

the synthetic data-based strategy has the po-

tential to further improve its performance by 

simply introducing more features into eq. (7) 

and (8). 

5 Conclusions 

A big challenge to statistical-based machine trans-

literation is the lack of the training data, esp. to 

those low-density language pairs without English 

involved. To address the above issue, this paper 

propose a simple, but very effective solution, 

namely synthetic data-based strategy, to artificial-

ly generate direct source-target training data using 

pivot language. Experimental results on NEWS 

2009 data shows that the proposed strategy is very 

useful, achieving the best-reported performance. 

The paper also proposes a joint alignment algo-

rithm to jointly optimize the alignments between 

source, pivot and target data. Experimental results 

show that the joint alignment algorithm is able to 

largely boost the performance of model-based 

strategy. 
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The system-based and the proposed synthetic-

based strategy are transliteration model-

independent while model-based strategy is not. 

However, the three strategies and the proposed 

joint alignment algorithm are not limited to the 

machine transliteration task. They can be applied 

to those tasks which possess the similar ―transi-

tive‖ property as machine transliteration, such as 

paraphrasing, domain adaptation and some multi-

lingual tasks.  
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