
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 67–73

ISSN 1896-7094
c© 2006 PIPS

An Algorithm for Extracting Translation Rules from Scarce

Bilingual Corpora

Jassem Krzysztof, Kowalski Tomasz

Abstract. We propose a method for automatical extraction of translation rules suitable for a rule-
based machine translation system, by using a target language syntactic parser and scarce bilingual
resources as linguistic knowledge sources.

Introduction

In recent years we observe a growing interest in Statistical Machine Translation (SMT). To a large
extent this is due to the increasing volume of parallel bilingual data for major languages. Moreover, the
statistical approach involves a lot of computation time to train the model but almost no manpower.

On the other hand, linguistic knowledge acquired in the training phase of a statistical model does
not allow for any human tuning, which makes it difficult to correct potential errors.

In Rule-based Machine Translation (RMT), linguistic knowledge is hand-coded into the system. The
translation process may be tuned according to the language-specific features. RMT systems deliver
translations of better quality than SMT systems, but are much more expensive as they require manpower
with both linguistic and computer programming skills in order to encode linguistic knowledge into a
machine-readable form.

It would be desirable to combine the advantages of both approaches. To do so one may build an RMT
system with the rules being achieved automatically – by means of statistical calculations.

The idea to require transfer rules automatically from a word-aligned corpus has been ([1, 2, 5, 6]).
There, transfer units are based on subtrees in the source language parse tree.

In this paper we would like to focus on the possibility of obtaining translation rules without using a
source language parser. We assume the availability of a parser for a target language and scarce bilingual
resources in the form of word aligned sentences.

Galley et al. ([3]) propose a theory that gives formal semantics to word-level alignments defined
over parallel corpora. They introduce a linear algorithm that can be used to derive the minimal set
of syntactically motivated transformation rules from word-aligned parallel corpora. The transformation
rules are extracted from the parse tree of the target sentence and the pre–determined equivalents of its
nodes in the source sentence.

We modify that algorithm by using a different annotation schema for analyzed graphs and by using
a binary vector algebra instead of set operations. The modified algorithm is used to extract translation
rules for an RMT German-Polish system. We perform experiments with small German-Polish corpora
and parse target sentences with the state-of-the-art non-statistical parser for Polish ([4]) used in the
Translatica system1.

The development of an RMT system based on this idea requires some human knowledge – it is needed
for tagging the equivalence between simple components (usually words) in the parallel sentences (this
may be done by just verifying the suggestions of a computer program). Such tagging, however, does not
require specialized computer or linguistic skills of human operators.

Rule extraction

We extract rules later used in the translation process, from a structure called an alignment graph ([3]).
An alignment graph AG is a rooted, directed (in the diagrams, direction is usually presented from top
to down), connected, acyclic graph spanned over the tokens of the source sentence and the parse tree of
the target sentence. We denote the set of nodes in a graph G by V (G) and the set of edges by E(G). We
use the notation (n1, v2), where n1, n2 ∈ V (G) to describe the edge from the node a to b in the graph G.
It consists of the set of source sentence nodes S, i.e. nodes that represent words (more precisely: tokens)
of the source sentence, a parse tree P of the target sentence, where T ⊂ V (P) denotes the set of leaves

1
Translatica (http://www.translatica.pl) is a commercial name of a system developed formerly under the
name Poleng

67

68 Jassem Krzysztof, Kowalski Tomasz

Fig. 1. An example of an alignment graph

of the parse tree, that is the target sentence nodes, and an alignment A, i.e. edges between T and S:
A = {(t, s) ∈ E(AG) : t ∈ T, s ∈ S}. We also require that ∀s∈S∃t∈T (t, s) ∈ A. Figure 1 shows an example
of an alignment graph.

The idea is to extract automatically subgraphs of the alignment graph that would generate translation
rules.

Definition 1. Let n be a node of the parse tree (n ∈ V (P)), such that removing the edge between node
n and its parent dissects the alignment graph into two disjoint graphs. We call the graph rooted in node
n rule–inducing if it covers a contiguous part of the source sentence, i.e. source sentence nodes of that
graph form a substring of the source sentence.

An example of such a subgraph is shown in Figure 2.

Fig. 2. An example of a rule-inducing graph

Figure 3(a) shows a subgraph that does not induce a translation rule because removing the edge
between its root and the root’s parent does not dissect the alignment graph into two disjoint graphs.
Figure 3(b) shows a subgraph that does not induce a translation rule because it covers a non-contiguous
part of the source sentence. The algorithm we describe below analyses the alignment graph in a single
traversal in order to find all rule–inducing subgraphs.

First, the algorithm defines the order of the alignment edges “from left to right”: number 0 is assigned
to the left-most edge of the alignment, i.e. the edge that links the first token of the source sentence to

Extracting Translation Rules from Scarce Corpora 69

(a) The ”R” node does
not become the root of
a graph when detached
from its parents.

(b) The ”C”-rooted graph does not cover a contiguous part of the
source sentence.

Fig. 3. Examples of non rule-inducing graphs.

the left–most token of the corresponding target sentence tokens; v = card(A) is assigned to the right-
most edge of the assignment. More precisely: Let (t1, s1), (t2, s2) ∈ A. Each alignment edge is assigned a
number n((t, s) ∈ A) ∈ [1, v] so that the following should hold:

(t1, s1) ≺ (t2, s2) ⇔ s1 ≺
S

s2 ∨ s1 = s2 ∧ t1 ≺
T

t2 (1)

For each node m in the alignment graph, the algorithm calculates two binary vectors, span(m) and
mask(m) of length v equal to the number of edges in the alignment (|span(m)| = |mask(m)| = card(A)).
For each s ∈ S the vectors are:

span(s ∈ S) = 0 (2)

mask(s ∈ S) = [mv, .., m1] : mi =

{
1, ∃t ∈ T : i = n((t, s) ∈ A)
0, otherwise

(3)

For each t ∈ T the vectors are:

span(t ∈ T) = [mv, .., m1] : mi =

{
1, ∃s ∈ S : i = n((t, s) ∈ A)
0, otherwise

(4)

mask(t ∈ T) =
∨

(t,s)∈A

mask(s) (5)

For the remaining nodes the vectors are calculated by traversing the alignment graph bottom–up.

span(n ∈ V (P) \ T) =
∨

(n,m)∈E(P)

span(m) (6)

mask(n ∈ V (P) \ T) =
∨

(n,m)∈E(P)

mask(m) (7)

70 Jassem Krzysztof, Kowalski Tomasz

Listing 1.

#i n i t i a l i z i n g source sentence nodes
$edge number = 1 ;
foreach $s (@S)
{

foreach $t ($s−>{a l i gn ed t o })
{

$t−>{span} |= $edge number ;
$s−>{mask} |= $edge number ;
$edge number << 1 ;

}
c r e a t e a d i s c a r d r u l e ($s) i f (0 == $s−>{mask}) ;

}
#i n i t i a l i z i n g t a r g e t sentence nodes
foreach $t (@T)
{

$t−>{mask} |= $s−>{mask} foreach $s ($t−>{a l i gn ed t o }) ;
$seen {$n} = 1 ;

}
#t r a v e r s i n g the r e s t o f the a l i gnment graph bottom−−top
@stack = ($r) ; #root o f the a l i gnment graph
while ($n = pop @stack)
{

unless ($seen {$n})
{

$seen {$n} = 1 ;
push @stack , $n ;
push @stack , $n−>{s i b l i n g s } ;

}
else

{
foreach $c in ($n−>{ s i b l i n g s })
{

$n−>{span} |= $c−>{span } ;
$n−>{mask} |= $c−>{mask } ;

}
i f ($n−>{span} == $n−>{mask}

&& b in a r y t o s t r i n g ($n−>{span }) =˜ /ˆ0∗1+0∗ $/
)

{
c on v e r t t o r u l e ($n) ;
@n−>{ s i b l i n g s } = () ; #detach ing a l l s i b l i n g s

}
}

}

It is claimed here that:

Lemma 1. For any node p ∈ P , mask(p) = span(p) iff removing the edge e′ between the node p and its
parent dissects the alignment graph into two disjoint graphs.

Proof. Let R be a p-rooted graph.

Suppose that mask(p) = span(p) and that removing the edge e′ does not result in the partition of
the alignment graph into two disjoint graphs. Since P is a tree (and thus removing any edge results in
the partition of the tree into two disjoint trees) there has to be an edge e = (t, s) in the alignment that
either t /∈ V (R) ∧ s ∈ V (R) or t ∈ V (R) ∧ s /∈ V (R). Suppose that t ∈ V (R) ∨ s /∈ V (R). According to
the equation 4: span(t)n(e) = 1. Since span(p), calculated according to the equation 6, is effectively

span(p) =
∨

x∈V (R)∩T

span(x) (8)

Extracting Translation Rules from Scarce Corpora 71

and span(t)n(e) = 1 then span(p)n(e) = 1. We assumed that mask(p) = span(p) so mask(p)n(e) = 1. By
unwinding the recursive equation 7 we get

mask(p) =
∨

x∈V (R)∩S

mask(x) (9)

Therefore ∃s1∈V (R)∩S mask(s1)n(e) = 1. But since edges are numbered uniquely (relation 1) and
mask(s1)n(e) = 1 = mask(s)n(e) then s1 = s, which results in contradiction because we assumed that
s ∈ V (R) but s1 /∈ V (R). A similar reasoning for the other case (t /∈ V (R) ∨ s ∈ V (R)) leads also to
contradiction.

Now suppose that removing the edge e′ results in partition of the alignment graph into two disjoint
graphs and mask(p) 6= span(p). If mask(p) 6= span(p) then ∃i = n(e) = n((t, s)) : mask(p)i 6= span(p)i.
Since {e′} is the edge cut of the alignment graph, t, s ∈ V (R) or t, s /∈ V (R)). Let us assume that
span(p)i = 0 and mask(p)i = 1. Given the equation 8 we get 1 = mask(p)i=n(e)=n(t,s) = mask(s)n(t,s).
By definition of the span and mask vectors: mask(s)n(t,s) = span(t)n(t,s). Since s ∈ V (R), t ∈ V (R)
and the following holds: 1 = span(t)n(t,s) = span(p)n(t,s) = span(p)i.
A similar reasoning for the case span(p)i = 1 and mask(p)i = 0 leads also to contradiction. ⊓⊔

Lemma 2. For any node p ∈ P , the p–rooted graph is rule–inducing iff

span(p) = mask(p) = [0..0
︸︷︷︸

a−1

, 1..1
︸︷︷︸

b−a+1

, 0..0
︸︷︷︸

v−b

], where a ∈ [1..v], b ∈ [a..v]

Proof. According to Definition 1 a p-rooted subgraph of the alignment graph is rule-inducing iff (a) we
are able to dissect the alignment graph into two disjoint graphs and (b) the leaves of the p–rooted graph
form a contiguous part of the source string.

According to Lemma 1 the first condition is met when span(p) = mask(p). Thus, it suffices to prove
that the condition (b) is satisfied by a “0*1+0*” vector, that is a sequence of zero or more zeros, followed
by one or more ones, followed by zero or more zeros.

(⇐) Let us assume that span(p) = mask(p) and mask(p) has the form “0*1+0*” and that the p-
rooted subgraph (R) of the alignment graph does not cover a substring of the source sentence. This
would imply that there has to be a sequence of source nodes of the length m such that: the first
node in sequence s1 ∈ S ∩ V (R) is followed (in terms of the source sentence) by one or more nodes
∀i∈(1,m)si ∈ S ∧ si /∈ V (R), followed by a node sm ∈ S ∩ V (R). According to equation 9:

∀t ∈ T : [mask(p)]n1=n(t,s1) = 1

∀i ∈ (1, m) ∀t ∈ T : [mask(p)]ni=n(t,sm) = 0

∀t ∈ T : [mask(p)]nm=n(t,sm) = 1

But since ∀i∈(1,m)n1 < ni < nm we observe a sequence of the form “10+1” (a single one, followed by
one or more zeros, followed by a single one), which contradicts to the assumption that the mask vector
should have a “0*1+0*” form.

(⇒) Let L be the set of leaves of the p–rooted rule–inducing graph. Since the leaves of a rule–
inducing graph constitute a substring of the source sentence and the order of numbering is “left–to–right”
(relation 1), the alignment edges such that ∀s∈L∃t∈T (t, s) ∈ A are labeled with subsequent numbers.
Moreover for any t ∈ T and s ∈ L let a = min{n((t, s) ∈ A)} and b = max{n((t, s) ∈ A)}. According
to the equation 9 we get ∀i∈[a,b][mask(p)]i = 1. For any source node si that precedes (in terms of the
source sentence) any of the node in L, we have ∀t∈T n(t, si) ∈ A) < a. For any node si /∈ V (R) we
have ∀i∈[0..a)[mask(p)]i = 0. Similarly, for any source node sj that succeeds’ (in terms of the source
sentence) any of the nodes in L, we have ∀t∈T b < n(t, si) ∈ A). Since any node sj /∈ V (R), we have
∀i∈(b..v][mask(p)]i = 0. ⊓⊔

Listing 1 shows the complete algorithm in the form of a Perl–like code. In order to simplify the
exposition we convert the span vector into a string and use a regular expression to check whether it has
the required form.

Once the root of a rule-inducing graph is found we convert it into a rule using the convert_to_rule

procedure. The procedure forms the rule input of leaves of the given graph ([3]). We order the leaves
according to the mask vector. Note that the sorted list of leaves often differs from the list obtained by
in-depth traversal of the rule-inducing graph. Therefore we replace the leaves of the rule-inducing graph
(now the rule body) by references to the sorted list (rule input). Figure 4 shows examples of a translation

72 Jassem Krzysztof, Kowalski Tomasz

(a) A dictionary–like rule. (b) A parser rule. (c) A translation rule
with source tokens in in-
put.

Fig. 4. Examples of translation rules.

rule formed by the convert_to_rule procedure. The input of a rule is shown at the bottom of every
diagram with the rule’s body (production) above it. Arrows between the input and the body of a rule
indicate where the nodes matching the input sequence should be placed. The form_a_discard_rule

procedure creates a special kind of translation rules. Those rules have an empty input body. They store
the information that a particular token, is irrelevant to the translation process, since it was not aligned
to any target token.

A rule-inducing graph may contain smaller rule-inducing graphs. If all rule-inducing graphs were
converted into rules, a lot of the information contained in the rules would be stored multiple times. To
avoid that overload each time a rule-inducing graph is found and converted into a rule we reduce that
graph to its root in the alignment graph. Figure 4(b) shows such a rule. The rule was created after the
“P”-rooted rule-inducing subgraph of the “FP”-rooted rule-inducing subgraph had been reduced to a
single node.

Rule types

We observe tree types of rules acquired by the above algorithm: (a) dictionary–like rules, (b) parsing
rules and (c) mixed rules. Examples of rules of each type are shown in Figure 4.

A dictionary-like rule consists of four nodes: source sentence node—source token, target sentence
node—its equivalent in the target language, a node that identifies the base form of the equivalent, and
a node containing grammatical information. The rule shown in Figure 4(a) was actually achieved in a
post-processing step from three extracted rules, each of them consisting of only two connected nodes. It
is worth noticing that it would be certainly possible to acquire a complete bilingual dictionary in this
way, but it would require large corpora. Having only scarce bilingual resources, dictionary rules have to
be supplied from external sources.

A parsing rule consists of P -nodes only. Those rules will most likely form only a subset of the
knowledge base for the parser of target sentences because the parser may be able to deal with cases not
observed in the corpora. Thus, it would be better to transfer the parser’s complete knowledge base into
parsing rules by some other means.

A third type of the acquired rules are mixed rules, i.e. rules consisting of source sentence nodes and
parse tree nodes. We believe that rules of that type are able to capture translation nuances that a human
operator (e.g. an author of translation rules for a transfer-based MT system) may not be aware of.

Actually, the parser used here takes into account also semantic features of sentence components. This
shows that acquired rules may have not only syntactical but also semantic motivation.

References

1. Carbonell J., Probst K., Peterson E., Monson Ch., Lavie A., Brown R., and Levin L.: Automatic Rule Learning
for Resource-Limited MT., Proceedings AMTA-02. (2002)

Extracting Translation Rules from Scarce Corpora 73

2. Dekang L.: A path-based transfer model for MT, Proceedings COLING-04. (2004).
3. Galley M., Hopkins M., Knight K., Marcu D.: What’s in a translation rule? Proceedings HLT/NAACL-04.

(2004).
4. Graliński F.: Wstȩpuja̧cy parser jȩzyka polskiego na potrzeby systemu POLENG, Speech and Language Tech-

nology. Volume 6 (2002).
5. Lavoie B., White M., and Korelsky T.: Learning Domain-Specific Transfer Rules: An Experiment with Korean

to English Translation, Proceedings COLING-02. (2002).
6. Richardson S., Dolan W., Menezes A., and Pinkham J.: Achieving commercial-quality translation with

example-based methods, Proceedings MT Summit VIII. (2001).

