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Abstract—The aim of this paper is to describe the first steps of
research towards a hybrid MT system that combines the strengths
of rule-based syntactic transfer with recently developed syntax-
based statistical translation methods within a unified framework.
The similarities of both paradigms concerning the processing
of syntactically parsed input trees serve as a basis for this
reseach. We focus on the statistical part of the future system and
present a syntax-based statistical machine translation system—
BONSAI—for Polish-to-French translation. Although BONSAI is
still under develepmont, it reaches a translation quality on par
with that of a modern phrase-based system. We provide the
theoretical background as well as some implementation details
and preliminary evaluation results for BONSAI. At the end of this
paper we shortly discuss the benefits of a combined approach.

I. I NTRODUCTION

A CADEMIC research in machine translation of the last
decade has been focused on statistical machine trans-

lation (SMT), especially on the phrase-based variants of the
paradigm, while the classical rule-based approach is marginal-
ized.

In the sector of translation software available for home
users, however, the rule-based approach prevails. A quick
look at [1] reveals only one commercial product for desktop
computers—PLAIN TRANSLATE1—that uses statistical transla-
tion techniques. LANGUAGE WEAVER2 offers a commercial
MT software package that is entirely based on SMT, but
here a client-server architecture is required. The translation is
conducted by a central unit and the software installed on the
client computer is not involved in the translation process.The
reasons for such a centralized approach become obvious when
we read that the installation of only one additional language
pair requires about 30 GB of free disk space.

While SMT seems to exploit resources which even today a
typical home user will not give up voluntarily to a single piece
of software, the requirements of rule-based MT systems are
rather modest, both in terms of memory usage and processing
time. Recent tests [2] showed that when it comes to human
evaluation, rule-based system can achieve results not worse or
better than SMT systems, even if the automatically calculated
BLEU scores seem to suggest different conlusions.

The author of this work has received a scholarship from the Adam
Mickiewicz University Foundation for the year 2009.

1http://www.apptek.com/index.php/plaintranslate
2http://www.languageweaver.com

Manually designed translation rules scale up well to general
translation tasks and are fairly domain-independent. At the
same time, it is quite easy to fine-tune the translation of
particular syntactic or lexical phenomena although this may
become problematic if many such phenomena are to be
considered. Modern syntax-based statistical methods, on the
other hand, provide at minimum cost millions of high quality
domain-dependent translation rules that are triggered by sig-
nal words and can therefore model context-specific syntactic
transformations. Nevertheless SMT suffers the consequences
of all corpus-based methods: the handling of unseen structures,
words or meanings. This is especially true if resources are
scarce, as is the case with parallel corpora involving Polish, our
main language of interest. Here the manually built translation
lexicons of a rule-based system—usually of a high quality and
coverage—might prove helpful.

In this paper we present the first steps of research towards
a hybrid MT system that combines the strengths of rule-based
syntactic transfer with recently developed syntax-based statis-
tical translation methods. The similarities of both paradigms
concerning the processing of syntactically parsed input trees
serve as a basis for this research. The rule-based system we
plan to adapt in the future is an existing commercial MT
application—TRANSLATICA—that will be introduced in the
next section. We focus on the statistical part of the future sys-
tem and present a syntax-based statistical machine translation
system—BONSAI—for Polish-to-French translation. BONSAI

works currently as a stand-alone application and although it
is still under develepmont, it reaches a translation quality on
par with that of a modern phrase-based system.

An overview of syntax-based methods for SMT is pro-
vided in section III. Sections IV to VII give the theoretical
background, implementation details and evaluation results for
BONSAI. Source language analysis that is a common neces-
sary step for both, rule-based MT and syntax-based SMT, is
addressed in section V. In the same section we illustrate the
process of automatic extraction of translation rules.

Section VIII highlights the similarities between rule-based
syntactic transfer and syntax-based statistical machine transla-
tion of the type decribed in this paper. We outline briefly how
both types of systems can interact with each other due to their
similarities and benefit from each other due to their different
approaches.
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II. T HE RULE-BASED REFERENCE SYSTEM

TRANSLATICA [3] is a rule-based commercial MT system
continuously developed by POLENG SP. Z O O.3 since 1995.
Since TRANSLATICA is a product tailored to the needs of
the Polish market, it allows translations from and to Polish
for English, Russian and German. According to the Vauquois
Triangle, TRANSLATICA has to be classified as a MT system
based on syntactic transfer with elements of direct and seman-
tic transfer. A large and richly annotated translation lexicon
contains a great number of idiomatic phrases and extensive
semantic information for all its entries, e.g. an ontology
reminiscent of a bilingual wordnet or information concerning
the translation of verb frames. Until now, the transfer rules as
well as the translation lexicons for all supported languagepairs
have been created manually—those for the Polish-German
language pair by the author of this paper.

The paradigm of syntactic transfer requires the input to be
syntactically parsed. The parser [4] built into TRANSLATICA

relies on a manually created context-free grammar. A mecha-
nism similar to feature unification is supported but restricted
to one level of argument depth. Thus the expressive power of
the grammar is not increased, but it is easier to design rulesby
hand, e.g. case agreement can be set by attributes instead of
using complex symbol names. The parser has been extended
with the possibility to perform basic semantic role labelling.
Preprocessing performed before parsing includes named entity
recognition, identification of multi-word units, and idiomatic
phrases.

Syntactic transfer in TRANSLATICA relies on parse tree
transformations which are encoded in a specialized program-
ming language. Default operations specified for each syntactic
category are executed in a recursive depth-first post-order
fashion in three different passes. During the first pass various
normalization steps are performed, e.g. renaming of source
language syntactic categories to target language categories,
the deletion of source language negation particles, or a head-
wise up-propagation of morphological features. Re-orderings
of child nodes, insertions of new target language nodes and the
down-propagation of target language features are performed
in the second pass. The third pass involves the generation
of correct morphological forms of the target language tokens
considering, for instance, the agreement of number, gender, or
case between dependent target words, etc.

From the depth-first postorder processing scheme follows
that in the general4 case the children of a node are processed
independently from each other and before their parent node.
Actions that concern two or more subtrees rooted in sibling
nodes5 are therefore carried out by operations attached to their
parent node.

3http://www.poleng.pl
4Child nodes can refer to their ancestors by special instructions, but this is

rarely used and must be invoked explicitly.
5Examples for such actions are re-orderings, combined down-propagation

of morphological features of a verb and its complements following from verbal
frames, etc.

III. SYNTAX -BASED SMT

By syntax-basedSMT we mean methods based on statisti-
cal translation models that incorporate hierarchical syntactic
representations—i.e. syntactic parse trees of any form—of
the source and/or the target language. Factored phrase-based
models as introduced in [5] that use syntactic or morphological
information as factors do not match this requirement, although
they are sometimes referred to as syntax-based models.

One of the first syntax-based SMT approaches in this sense
is [6] where parsed source sentences form the input for an
English-to-Japanese translation process. The translation model
consists of probabilistic permutation, deletion, insertion, and
translation tables defined for tree nodes and their children.
These tables are obtained from a word aligned and source
language parsed parallel corpus.

The concept of phrase-based models is extended to a
hierarchical phrase-based model by [7]. A Chinese-English
synchronous context-free grammar(SCFG) with only one
(recursively used) non-terminal symbol X is automatically
created extending the approach for flat phrase-based models
from [8]. This SCFG is used for source language parsing
which results in a synchronous parse tree (SMT by parsing).
The target sentence can then be read off the target language
part of the parse tree’s leaves. The difference between this
method and all other approaches presented in this section is
that the corpus used for training has not been syntactically
parsed. The SCFG is computed from the raw alignment data
alone.

The idea of translation by parsing is further enhanced by
[9] who train a French-English SCFG on a word aligned
parallel corpus the target language part of which has been
syntactically parsed. A chart parser is used to build target
language parse trees by parsing the source language with the
SCFG. Compared to the previous method, the SCFG employs
all non-terminal symbols of the parser used for annotation as
well as incomplete nonterminals that correspond to the non-
syntactic phrases of a phrase-based system.

Instead for parsing, SCFGs and similar concepts can be used
for the direct translation of syntactic trees created indepen-
dently from the SCFG. The idea dates back to [10] where so
called tree transducers are employed for the translation ofpro-
gramming language parse trees to machine code. A theoretical
framework for tree transducers is presented in [11]. The model
from [6] is later formalized as a tree-to-tree transducer in[12].
In this approach, tree transformation rules are restrictedto the
first level of the matched subtree’s structure, i.e. only thedirect
children of a subtree root can be matched and changed by
the application of a single rule. [12] also introduceextended-
LHS tree transducers which are related rather to synchronous
tree-substitution grammars (STSG) [13] than to SCFG. In
an extended-LHS tree transducer, single production rules can
perform transformations of trees on multiple levels of the tree
structure without being restricted to the direct children.

A variant of extended-LHS tree transducers—extended-LHS
tree-to-string transducers (xRs)—are described by [14] in the
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context of an English-Chinese MT system. In the following
sections we will present a similar approach for a syntax-based
Polish-to-French SMT system. Compared to [14], we use a
flatter representation of translation rules by modifying the
concept ofxRs, as will be illustrated below. As in [6] and
[12], xRs require the input to be a syntactic tree or a string of
such trees. The final output consists of plain target language
strings.

We implemented a syntax-based SMT system similar in
principle to the models presented in [14] and [15] and based
on the theory from [11]. The working name of the system
used in this paper is BONSAI. The system is developed under
the assumption that it will be combined with a commercial
rule-based MT system. In this paper we concentrate on Polish-
to-French translations, for the Polish-French language pair is
the next to be integrated into TRANSLATICA. The next section
describes the formal aspects of the system in more detail.

IV. D ESCRIPTION OF THE TRANSLATION MODEL

Throughout this work we will traditionally denote the source
language sentence byf and the target language sentence bye.
Strings consist of source language parse trees, target language
symbols, or combinations thereof.

A. Tree-to-string transducers

By TΣ we denote the set of ordered, finite, and rooted
trees over an alphabetΣ. Formally our translation algorithm
is a tree-to-string transducer. For an exhaustive theoretical
description of tree transducer see [11]. Following [11] we
define aweighted extended-lhs root-to-frontier tree-to-string
transducerM as a 5-tuple(Σ, ∆, Q, q0, R), where

• Σ is the input alphabet,
• ∆ is the output alphabet,
• Q is a finite set of states,
• q0 ∈ Q is a distinguished start state,
• R is a finite set of productions of the form(q, δ) →w rhs.

Hereδ is a pattern for the LHS tree that checks whether a
given subtree can be matched by the rule. The tree’s root is
required to have been marked by the stateq ∈ Q. The leaves
of a LHS tree are labelled with terminal symbols fromΣ or a
variable from the set of variablesX = {x1, x2, x3, . . .}. The
right-hand siderhs ∈ (∆ ∪ (Q × X ))∗ is a string of target
language terminals and those variables that appeared and were
matched in the pattern. Each rule is associated with a weight
w ∈ R

+.
The tree transducer operates on strings consisting of source

language trees and target language symbols from the set of
strings(∆∪(Q×TΣ))∗. A Polish source sentence corresponds
to a string that consists only of source language trees paired
with a state from the transducer. A French target sentence isa
string of symbols from the target alphabet. Intermediate results
will contain source language trees as well as target language
symbols.

A derivation is a triple(a, b, h), wherea andb are strings of
the type described above andh ∈ (N × R)∗ is the derivation
history, a sequence of string indexes and productions rules

from the tree transducer that were applied for the transduction
of a to b. We are interested in the set of left-most derivations
LD(M), a subset of the set of derivationsD(M), where pro-
ductions are always applied to the left-most source language
tree in a string. Again, for the full formal description ofD(M),
LD(M) and the corresponding derivation relations see [11].

The productions of anxRscan match and transform trees of
arbitrary height and complexity, but for the matching function
δ to match a particular subtree the complete structure of the
subtree must be specified (compare [14]). We modify the con-
cept ofxRsby simplifyingδ, the matching function. Instead of
matching the whole subtree structure it is sufficient to match
the root of the subtree and the sequence of descendants of
the specified root that are actually modified by the rule. This
sequence of descendants has to comply with the following two
criteria:

• no two nodes are descendants of each other;
• the concatenation of the yields of the subtrees rooted in

these nodes is equal to the yield of the whole subtree.

We call any such a sequence afringe. Thus the internal
tree structure is ignored and productions can be represented
without redundant information. This seems to be a reasonable
modification of thexRs concept especially for tree-to-string
transducers where the tree structure is increasingly flattened
with each step. If the matching part of the first rule applied
to the example tree from Fig. 1 were fully specified, it would
have to take the following form:

S(ADV(obecnie), VP(x0:V-PP, V(są)),x1:NP).

Instead we can simply write

S(obecnie,x0:V-PP, są,x1:NP).

This notation is especially useful for purely lexical rulesthat
do not contain non-terminal symbols. The fringe is then equal
to the yield of the matching subtree. The tree pattern

PartP(V-PA(dotyczące), NP(NP(R(jakości), NP(R(leków)))))

can be represented only by the labels of its leaves as

PartP(dotyczące, jakości, leków).

In theory, such a rule can match several non-isomorphic trees,
but in practice, it is not very likely unless the context-free
grammar used for parsing is very ambiguous. Even if it does
happen it should not do much harm to the translation result.
For rules that consist only of terminal symbols, we can safely
assume that the internal tree stucture is irrelevant. In thecase
of mixed rule the terminal symbols should provide enough
context to prevent incorrect translations. AnxRs modified
in such a way is of course not suited for the transduction
of parse trees of formal languages where ambiguity should
be avoided. For natural language processing, however, where
allowing for a little vagueness can even be helpful, this slightly
more compact reprensentation can save memory and matching
time if the xRs consists of millions of rules.
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f =

q S

ADV VC NP

obecnie V-PP V NP PartP

prowadzonesą N V-PA NP

badania dotyczące NP NP

N N

jakości leków

q S(obecnie,x0:V-PP, są,x1:NP) → q x1 sont actuellementq x0

q NP

NP PartP

N V-PA NP

badania dotyczące NP NP

N N

jakości leków

sont actuellement

q V-PP

prowadzone

q NP(badania, dotyczące,x0:NP) → études concernantq x0

études concernant

q NP

NP NP

N N

jakości leków

sont actuellement

q V-PP

prowadzone

q NP(x0:NP, leków)→ q x0 des médicaments

études concernant

q NP

N

jakości

des médicaments sont actuellement

q V-PP

prowadzone

q NP(jakósci) → la qualité

études concernant la qualité des médicaments sont actuellement

q V-PP

prowadzone

q V-PP(prowadzone)→ menées

e =
études concernant la qualité des médicaments sont
actuellement menées

Fig. 1. A sample derivation with heavy reordering of terminal and non-
terminal symbols. The bold labels mark the symbols on the fringe that are
matched by the rule given below each intermediate derivation.

Fig. 1 illustrates a sample derivation of the following Polish
sentence:

Glosses:
obecnie
actuellement

prowadzone
menées

są
sont

badania
études

dotyczące
concernant

jakości
la qualité

leków
des médicaments

Correct: études concernant la qualité des médicaments sont
actuellement menées

English: studies concerning the quality of medicaments are
currently being conducted

Polish is a free-word-order language and the above glosses
imply that a lot of re-ordering has to be performed to bring
the fragments of the French translation into the correct order.
In the example translation this is achieved by the first rule.
It works on the sentence level and shifts around the main
constituents of the sentence (movements marked by dashed
arrows). Similar re-orderings are much harder to achieve ina
phrase-based statistical machine translation system.

The costs of a derivation(a, b, h) whereh is the derivation
history of lengthn is calculated as follows:

wM ((a, b, h)) ≡

n∏

i=1

wi. (1)

Different derivations can yield the same transduction results
for a pair of stringsa, b. Therefore, the global derivation cost
for a, b is calculated as

WM ((a, b)) ≡
∑

(a,b,h)∈LD(M)

wM ((a, b, h)). (2)

Based on this, we can formulate a translation model based on a
tree-to-string transducerM . The best translation of a (parsed)
source sentencef is the target sentencee that can be derived
from f by M (in a left-most fashion) and that maximizes the
global derivation costWM :

ê = argmax
e

WM ((f , e)) (3)

Obviously there is no target language model integration yet.
The only information that guides the translation process in
such a model are the syntactic annotations of the source
sentence and the costs of the production rules.

B. Rule features

The production rule costw is split into several feature costs.
For each translation rule we actually gather the following
information:

• the rule probability conditioned on the source language
part of a rule;

• the rule probability conditioned on the target language
part of a rule;

• the source conditioned word translation probability which
estimates whether the source and target words of a rule
are good translations of each other (see [8] for a detailed
description);
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• the target conditioned word translation probability;
• the non-terminal symbol penaltye−

k2

n where k is the
number of non-terminal symbols in a rule. That way
the use of lexical rules is favoured over compositional
translations;

• the length difference penaltye−|αn−m| wheren and m

are the lengths of the source and target language parts
of a rule respectively.α is the average ratio of target
sentence and source sentence lenghts estimated from the
training corpus. For Polish-to-French translation we have
α = 1.22, i.e. French sentences have in average1.22
times more words than Polish sentences.

The total costw of a production ruleq δ →w rhs is
then calculated asw =

∏k

j=1 c
λj

j , where cj are the above
mentioned rule costs weighted by a parameterλj . These
parameters are the main parameters of the translation model.

C. Approximation of the best translation

With millions of translation rules it is not feasible to
calculate the global derivation cost for a source sentencef

and a target sentencee. Therefore we decided to approximate
the globally best translation by the single best derivation:

ê = arg max
e

WM ((f , e))

≈ arg max
e

(
max

(f ,e,h)∈LD(M)
wM ((f , e, h))

)
.

(4)

Instead of searching for a best translationê, we search for the
best pair(ê, ĥ). Now formulating the translation model as a
log-linear model is simple: for a given parsed source sentence
f we find the best translation̂e based on the best derivation
history ĥ by

(ê, ĥ) = argmax
(e,h)

wM ((f , e, h))

= argmax
(e,h)

n∏

i=1

wi

= argmax
(e,h)

n∏

i=1

k∏

j=1

c
λj

ji

= argmax
(e,h)

k∑

j=1

λj

n∑

i=1

log cji

︸ ︷︷ ︸

log pj(e,f ,h)

(5)

whereh = ((p1, r1), . . . , (pn, rn)), ri = (qi, δi, rhsi, wi), and
(f , e, h) ∈ LD(M). Herepj can be interpreted as the cost of a
single feature for the complete derivationh andλj becomes an
overt parameter of the model that is not hidden in the weights
of particular productions.

D. Complete model

Within a log-linear model we can easily enrich the model
with additional features. For the moment, only a basic lan-
guage modelplm over target language words is added to the
model. Finally, for a parsed source language sentencef we

have:

(ê, ĥ) = arg max
(e,h)

( k∑

j=1

λj

n∑

i=1

log cji
+λk+1 log plm(e)

)

(6)

where h = ((p1, r1), . . . , (pn, rn)), ri = (qi, δi, rhsi, wi),
wi =

∏k

j=1 c
λj

ji
, and(f , e, h) ∈ LD(M).

Our translator is thus an extended-LHS tree-to-string root-
to-frontier transducer with a single stateq. The semantics of
this state can be paraphrased asapply a production rule to this
subtree. The input alphabetΣ consists of Polish words found
in the source language half of a parallel training corpus and
of non-terminal symbols from the grammar used for source
language parsing. The output alphabet∆ consists of French
words from the training corpus only, i.e. there are no non-
terminal symbols in∆. We still need to describe the set of
productionsR, the construction of which will be discussed
shortly in the next section.

V. PARSING AND RULE EXTRACTION

For the extraction of productions, the source language part
of the entire training corpus needs to be parsed by the same
parser that will be used during the translation. If a corpus
consists of millions of sentences, this is sure to be very time
consuming. Currently, the parser used in TRANSLATICA is
strongly entangled with the transfer process and cannot be
easily used as an independent module for the annotation of
corpus data or as the parser of BONSAI. Work on the extraction
of the parser from the surrounding code is already in progress.

Since TRANSLATICA ’s deep parser is at the moment un-
available, we decided to use the shallow parser SPEJD [16]
for our experiments. SPEJD’s rules form a cascade of regular
expressions that upon match combine tokens or previously
built groups into larger groups. These groups are annotated
with syntactic categories and morphological features of their
specified heads. Apart from building hierarchical structures,
SPEJD allows for the simple unification of morphological
features which can also be used as a disambiguation mech-
anism for morphologically ambiguous words. This is a very
helpful feature if a strongly inflectional language like Polish
is analyzed.

The grammar used for parsing has been written from scratch
and consists of no more than 274 rules, of which only 68
are used for the construction of syntactic parse trees. The
remaining rules are descriptions of multi-word expressions that
are to be treated as single tokens, an example is the expression
choćby dlatego aby(eng.just so that) which should be marked
as a single conjunction which joins sentences but not phrases.
It is however clear that the use of a shallow parser with such a
small grammar comes at some costs: the height and complexity
of the parse tree is restricted by the number of rules in the
grammar since no true recursion is possible and problems like
PP-attachment or attachment issues in general are virtually
unsolvable within the formalism. We therefore try to keep
the resulting trees very flat with chunks being attached at
sentence level. Nevertheless, complex parses are possibleand
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often impressively correct like the example parse tree from
Fig. 1 that has been produced by SPEJD. It can further be
assumed that systematic and consistent parse errors do not
necessarily decrease translation quality since the translation
rules can in turn learn the correct translations systematically.
One huge advantage of a shallow parser is speed: millions of
sentences can be analyzed within a few hours which simplifies
the development phase.

Once the source language part of a parallel corpus has
been analyzed by SPEJD, we extract productions in a similar
way as [9], but restrict them to complete syntactic phrases.
The parallel corpus is word-aligned by training GIZA ++ in
both directions. Prior to word alignment we lemmatize both
sides of the corpus. Experience shows that lemmatization can
significantly improve alignment quality if at least one language
is strongly inflectional, as is the case with Polish. The resulting
alignments are combined with the refined symmetrization
method described in [17] and lemmatization is undone. For
each aligned sentence the source parse tree is connected with
the alignment graph. Next we find all phrase pairs that are
consistent with the word alignment [18] and a subtree of the
parse tree. For all subtrees in compliance with these criteria
the set of fringes is generated and the alignment data is used
to create a production for each fringe.

The number of fringes grows exponentially with the size of
the tree, hence, we apply the following restrictions:

• the fringe consists of no more than 7 symbols of which
at most 4 are non-terminals;

• the distance of a non-terminal in the fringe from the root
is at most 2.

The described procedure has been applied to the Polish-
French part of the JRC-ACQUIS parallel corpus [19] with
about 1.2 M sentences. In spite of the mentioned restrictions
on average 130 rules per sentence are generated. This results
in a set of 50 millions unique rules occupying 5.5 GB of disk
space. Compressing them to a minimal finite state automaton
reduces the size to 1.3 GB.

One problem with our approach is the possibly high redun-
dancy of rules. An alternative method is presented by [20]
who try to extract only a minimal set of translation rules that
sufficiently explain the translation data in a parallel sentence
pair. It needs to be examined how the different approaches
affect the size of the rule set and the translation quality.

VI. SEARCHING FOR THE BEST DERIVATION

For a given string of source treesf ∈ (Q × TΣ)∗ the
subset ofLD(M) consisting of derivations starting inf can be
interpreted as a directed acyclic graphGf , where any element
(f , t, h) of this set corresponds to a path from the root node
f to the nodet. Intermediate strings of source language trees
or target language symbols form the nodes of this graph, the
tree transducer productions in a derivation history are weighted
edges. Finding the best derivation off according to the model
from section IV-D is thus eqivalent to finding the shortest path
in Gf from the nodef to a nodee ∈ ∆∗.

For now we have implemented three algorithms that solve
the shortest path problem approximately:

1) Greedy search (symbol: GREEDY);
2) A* search (symbol: ASTAR);
3) Stack decoding (symbol: STACK[n], wheren is the size

of the stacks).

Here stack decoding is a variant of the algorithm successfully
used for phrase-based decoding in PHARAOH [21] and later in
MOSES[22]. Originally there are as many stacks as words in a
source sentence and a translation hypothesis is put into thek-th
stack if it coversk source language words. Therefore the last
stack will contain only complete translations. We modified the
algorithm to allow for translation hypotheses that do not cover
new words compared to their predecessor. This happens if a
rule does not contain any terminal symbols in its source lan-
guage part, e.g. rules that only perform re-orderings of subtrees
or rules that translate the phrase compositionally. The original
algorithm would have attempted to put a hypothesis resulting
from such a rule into the same stack as its predecessor. Due
to monotonicity, the new hypothesis has necessarily a higher
cost than its source and might be pruned from the stack. In
our version of stack decoding there is a second dimension of
stacks for each word that gets extended whenever it is needed.
That way a hypothesis is never put into the same stack as its
predecessor.

All three algorithms require a heuristic function that guides
the search through the graph. We adapted the heuristic function
for phrase-based translation from [21] in the following way:
For all subtrees we choose the cheapest lexical6 rule and
calculate its costs based on the rule features and the language
model. The language model cost for the target side of the rule
is calculated in isolation from other lexcial rules. For alltrees
or subtrees for which no lexical rules exist, we search for the
cheapest cover with lexical rules of their subtrees. Next we
multiply the costs of all trees in the cover. Unfortunately such
a heuristic function is not necessarily admissible. In the case
of A∗ search this means that the search will not be optimal.

All algorithms that build their search graph based on the set
of left-most derivationsLD(M) traverse the input trees from
left to right and in a top-down manner. Bottom-up approaches
to decoding algorithms for syntax-based translation have been
presented in [14] and [15]. We plan to implement variants of
these in the next versions of BONSAI.

VII. PRELIMINARY EVALUATION

The baseline system used for comparison is the phrase-
based SMT package MOSES[22]. MOSESas well as BONSAI

have been trained on the Polish-French part of the JRC-Acquis
parallel corpus from which 2000 sentences were set apart
and divided equally into development set and test set. The
training procedure for both systems is identical until the actual
extraction of phrases and rules starts. The development set
was used for minimal-error-rate training (MERT) to create
a configuration with optimized translation model weights for

6A lexical rule does not contain any non-terminal symbols.
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TABLE I
SOME EVALUATION RESULTS FOR DIFFERENT CONFIGURATIONS

Algorithm t̄ [s] BLEU METEOR

MOSESDEFAULT 0.5906 0.3944
MOSESMERT 0.6259 0.4340

BONSAI GREEDY 0.05 0.6022 0.3972
BONSAI ASTAR 1.33 0.6104 0.4123
BONSAI STACK[5] 0.20 0.6140 0.4067
BONSAI STACK[10] 0.35 0.6166 0.4122
BONSAI STACK[20] 0.63 0.6194 0.4133
BONSAI STACK[50] 1.45 0.6234 0.4188
BONSAI STACK[100] 2.74 0.6247 0.4194

MOSES. This configuration is denoted by the symbol MOSES

MERT.

For BONSAI we have not constructed a procedure for pa-
rameter optimization yet, although it should not be a problem
to adapt MERT for this goal once the main programming
work is finished. Instead we use weights that were set after a
few manual trials. Therefore we use a second baseline system
MOSES DEFAULT, equal to MOSES MERT but with default
parameters instead of optimized weights. We evaluated the
translation results of MOSESusing its standard settings, i.e. its
stack decoding algorithm uses a stack size of 100. Our system
is denoted by the symbol BONSAI combined with the symbols
of the search methods introduced in the previous section.

The evaluation results have been compiled in Table I.
All configurations have been evaluated using the BLEU and
METEOR metrics. Concerning the BLEU scores, BONSAI

fares better than MOSESDEFAULT for all configurations and
comes very close to the performance of MOSESMERT when
the stack-decoding algorithm with greater stack sizes7 is used.
The results are slightly worse for the METEOR metric when
compared to MOSES MERT, but MOSES DEFAULT is again
surpassed in all cases.

These—and especially the scores of BONSAI STACK[100]—
are very promising results, all the more so, if we remember
that the model parameters of BONSAI where not optimized by
an appropriate training procedure and that the parser used is
only a shallow parser that may produce a lot of parse errors.
Despite its crude implementation, BONSAI seems to be on par
with a state-of-the-art phrase-based SMT system and there is
still plenty of room for improvements.

Along with the translation quality for the algorithms im-
plemented in BONSAI, we compare the average timet̄ taken
for the translation of one sentence from the test set. High
processing speed is especially important in the context of
commercial MT systems. Here stack decoding with smaller
stack sizes seems to be a reasonable compromise between
quality and speed. We hope however that we will be able to
improve the speed in future version.

7Note however that we do not use stack sizes greater than than 100 which
is also the stack size used for MOSES.

VIII. D ISCUSSION AND FUTURE WORK

The syntax-based SMT approaches based on tree trans-
ducers bear a strong resemblance to the rule-based syntactic
transfer approach of TRANSLATICA presented in section II.
Both methods require the input sentence to be parsed prior
to translation. In both cases translation is achieved by tree
transformations: reordering, insertion and deletion of subtrees
and the translation of leave symbols. TRANSLATICA performs
a depth-first left-to-right postorder traversal (subtreesare re-
ordered after processing) of input trees. At the moment the
presented SMT model is a close implementation ofxRs as in-
troduced by [11] and therefore the processing direction is top-
down in a depth-first left-to-right preorder fashion (subtrees
are reordered before processing), but this is due to change in
the near future in favour of an equivalent post-order algorithm.
Such an approaches have been put forward by, for instance,
[15].

Leaving aside formal aspects of the expressive power of
the language used for transfer rule programming, it seems
plausible to interpret the syntactic transfer implementedin
TRANSLATICA as a deterministic tree transducer. The tree or
tree-to-string transducers described in section III and consist
of millions of rules and are obviously non-deterministic, since
they most certainly contain productions that have the same
source language side and different target language sides. The
same is true for BONSAI.

Once the processing order of BONSAI has been changed
to a postorder approach, a combination of both methods on
the level of subtrees of the same input tree seems desirable.
Both systems, TRANSLATICA and BONSAI, process subtrees
independently from their siblings, and it is possible to let
them work in parallel. Using the search methods incorporated
in BONSAI would also allow for a limited non-determinism
in TRANSLATICA which could now provide all possible
translations for a found lexicon entry that in turn could be
disambiguated by BONSAI’s language model. On the other
hand, the semantic information encoded inTranslatica, its
handling of verb frames, and its capabilities to handle general
context-independent translations would make it a relieable
back-bone for the highly context-dependent translations of
BONSAI. One can imagine a general rule that BONSAI is
only allowed to translate a given subtree if a rule matches at
least one non-terminal symbol while unknown constructions
or compositional translations are left to TRANSLATICA.

Nevertheless, before we can approach a combination of
TRANSLATICA and BONSAI, the following matters (among
others) need to be examined and solved:

The influence that parsing quality has on syntax-based SMT
needs to be investigated. In this paper we have presented a
syntax-based system that relies on the results of a shallow
parser and yet is on par with a modern phrase-based system. It
has to be seen if the use of a carefully developed deep parser
brings any improvements. We do not know of any work in
syntax-based SMT that has compared the impact of different
parsers within the same SMT system.
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The most work in syntax-based SMT focuses on languages
that are weakly inflectional and have a strict word order. So it
remains to investigate how complex non-terminal symbols that
contain additional features affect translation quality. For Polish
to French translation it could be helpful to encode information
whether the noun phrases attached to a sentence are verb
complements, modifiers, or the subject, since this does not
follow necessarily from their order in the sentence.

We started the paper with the observation that—apart from
one example—no commercial MT system that is usable on a
stand-alone desktop or notebook computer actually seems to
be using statistical techniques for translation, let alonemethods
from syntax-based SMT. This may be due to the amount of
resources required. In section V it became obvious that a
compact and efficient storage scheme needs to be developed,
allowing access to the millions of translation rules created
during training. Compression however is only one part of
the solution, it is also necessary to minimize the number of
rules necessary for high quality translation. We believe that a
future combination with a rule-based MT system might also
be helpful in this respect.
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[4] F. Graliński, “Some methods of describing discontinuity in polish and
their cost-effectiveness,”Lecture Notes in Artificial Intelligence, Text,
Speech and Dialogue, 9th International Conference, TSD 2006, vol.
4188, 2006.

[5] P. Koehn and H. Hoang, “Factored translation models,” inProceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-
CoNLL). Prague, Czech Republic: Association for Computational
Linguistics, June 2007, pp. 868–876.

[6] K. Yamada and K. Knight, “A syntax-based statistical translation model,”
in Proceedings of the 39th Annual Meeting of the ACL, 2001.

[7] D. Chiang, “A hierarchical phrase-based model for statistical machine
translation.” inACL. The Association for Computer Linguistics, 2005.

[8] P. Koehn, F. Och, and D. Marcu, “Statistical phrase-based translation,”
in NAACL ’03: Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on
Human Language Technology. Morristown, NJ, USA: Association for
Computational Linguistics, 2003, pp. 48–54.

[9] A. Zollmann and A. Venugopal, “Syntax augmented machinetranslation
via chart parsing,” 2006.

[10] A. V. Aho and J. D. Ullman, “Translations on a context-free grammar,”
Information and Control, vol. 19, no. 5, pp. 439–475, December 1971.

[11] J. Graehl, K. Knight, and J. May, “Training tree transducers.” Compu-
tational Linguistics, vol. 34, no. 3, pp. 391–427, 2008.

[12] J. Graehl and K. Knight, “Training tree transducers.” in HLT-NAACL,
2004, pp. 105–112.

[13] J. Eisner, “Learning non-isomorphic tree mappings formachine trans-
lation,” in ACL ’03: Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics. Morristown, NJ, USA:
Association for Computational Linguistics, 2003, pp. 205–208.

[14] L. Huang, “Statistical syntax-directed translation with extended domain
of locality,” in In Proc. AMTA 2006, 2006, pp. 66–73.

[15] Y. Liu, Q. Liu, and S. Lin, “Tree-to-string alignment template for
statistical machine translation.” inACL. The Association for Computer
Linguistics, 2006.
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