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Abstract—The aim of this paper is to describe the first steps of ~ Manually designed translation rules scale up well to gdnera
research towards a hybrid MT system that combines the strentlhs  translation tasks and are fairly domain-independent. At th
of rule-based syntactic transfer with recently developed yntax- same time, it is quite easy to fine-tune the translation of

based statistical translation methods within a unified framework. . . - .
The similarities of both paradigms concerning the processig particular syntactic or _IeX|caI phenomena although thiyy ma
of syntactically parsed input trees serve as a basis for this become problematic if many such phenomena are to be
reseach. We focus on the statistical part of the future syste and considered. Modern syntax-based statistical methodshen t
present a syntax-based statistical machine translation syem—  other hand, provide at minimum cost millions of high quality
Bonsal—for Polish-to-French translation. Although BONSAI IS 4o main-dependent translation rules that are triggeredidy s
still under develepmont, it reaches a translation quality @ par e .
with that of a modem phrase-based system. We provide the nal words apd can therefore model context-specific symtacti
theoretical background as well as some implementation detis ~transformations. Nevertheless SMT suffers the consegsenc
and preliminary evaluation results for BonsAl. At the end of this  of all corpus-based methods: the handling of unseen stegtu
paper we shortly discuss the benefits of a combined approach. words or meanings. This is especially true if resources are
scarce, as is the case with parallel corpora involving Rptisr
main language of interest. Here the manually built trafstat
CADEMIC research in machine translation of the lagexicons of a rule-based system—usually of a high quality an
decade has been focused on statistical machine trapgverage—might prove helpful.
lation (SMT), especially on the phrase-based variants ef th |n this paper we present the first steps of research towards
paradigm, while the classical rule-based approach is makgi a hybrid MT system that combines the strengths of rule-based
ized. syntactic transfer with recently developed syntax-basatiss
In the sector of translation software available for homgcal translation methods. The similarities of both pagaois
users, however, the rule-based approach prevails. A quigincerning the processing of syntactically parsed inpeesdr
look at [1] reveals only one commercial product for desktogerve as a basis for this research. The rule-based system we
computers—PAIN TRANSLATE'—that uses statistical transla-plan to adapt in the future is an existing commercial MT
tion techniques. ENGUAGE WEAVER? offers a commercial application—TRANSLATICA—that will be introduced in the
MT software package that is entirely based on SMT, bufext section. We focus on the statistical part of the futyse s
here a client-server architecture is required. The tréioslas tem and present a syntax-based statistical machine ttamsla
conducted by a central unit and the software installed on tBgstem—RONSAI—for Polish-to-French translation. disAl
client computer is not involved in the translation proc@$se works currently as a stand-alone application and althotigh i
reasons for such a centralized approach become obvious wRestill under develepmont, it reaches a translation qualit
we read that the installation of only one additional languagar with that of a modern phrase-based system.
pair requires about 30 GB of free disk space. An overview of syntax-based methods for SMT is pro-
While SMT seems to exploit resources which even todaywided in section Ill. Sections IV to VII give the theoretical
typical home user will not give up voluntarily to a single @& background, implementation details and evaluation rggalt
of software, the requirements of rule-based MT systems @@NsAl. Source language analysis that is a common neces-
rather modest, both in terms of memory usage and process#agy step for both, rule-based MT and syntax-based SMT, is
time. Recent tests [2] showed that when it comes to humatdressed in section V. In the same section we illustrate the
evaluation, rule-based system can achieve results noeveors process of automatic extraction of translation rules.
better than SMT systems, even if the automatically caledlat Section VIII highlights the similarities between rule-bds
BLEU scores seem to suggest different conlusions. syntactic transfer and syntax-based statistical machamesia-
_ _ _ tion of the type decribed in this paper. We outline briefly how
M.Th.e author of this work has received a scholarship from th@md 1y, tynes of systems can interact with each other due to thei
ickiewicz University Foundation for the year 2009. o 0r . L
Lttp:/www.apptek.com/index.php/plaintranslate similarities and benefit from each other due to their diffiére
2http://www.languageweaver.com approaches.
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Il. THE RULE-BASED REFERENCE SYSTEM IIl. SYNTAX-BASED SMT

TRANSLATICA [3] is a rule-based commercial MT system By syntax-basedSMT we mean methods based on statisti-
continuously developed by ENG Sp. z 0 0.2 since 1995. cal translation models that incorporate hierarchical @it
Since TRANSLATICA is a product tailored to the needs ofepresentations—i.e. syntactic parse trees of any form—of
the Polish market, it allows translations from and to Polisthe source and/or the target language. Factored phrase-bas
for English, Russian and German. According to the Vauquoiodels as introduced in [5] that use syntactic or morphatalgi
Triangle, TRANSLATICA has to be classified as a MT systeninformation as factors do not match this requirement, ai¢fo
based on syntactic transfer with elements of direct and seméhey are sometimes referred to as syntax-based models.
tic transfer. A large and richly annotated translation dexi One of the first syntax-based SMT approaches in this sense
contains a great number of idiomatic phrases and extensisg6] where parsed source sentences form the input for an
semantic information for all its entries, e.g. an ontologinglish-to-Japanese translation process. The translataxel
reminiscent of a bilingual wordnet or information conceigii consists of probabilistic permutation, deletion, insertiand
the translation of verb frames. Until now, the transfer suds translation tables defined for tree nodes and their children
well as the translation lexicons for all supported langueajes These tables are obtained from a word aligned and source
have been created manually—those for the Polish-Gernmlanguage parsed parallel corpus.
language pair by the author of this paper. The concept of phrase-based models is extended to a

The paradigm of syntactic transfer requires the input to terarchical phrase-based model by [7]. A Chinese-English
syntactically parsed. The parser [4] built intRANSLATICA  synchronous context-free grammar(SCFG) with only one
relies on a manually created context-free grammar. A mechgecursively used) non-terminal symbol X is automatically
nism similar to feature unification is supported but restdc created extending the approach for flat phrase-based models
to one level of argument depth. Thus the expressive powerfadm [8]. This SCFG is used for source language parsing
the grammar is not increased, but it is easier to design hyleswhich results in a synchronous parse tr8dM{ by parsing).
hand, e.g. case agreement can be set by attributes instea@ihegf target sentence can then be read off the target language
using complex symbol names. The parser has been extengad of the parse tree’s leaves. The difference between this
with the possibility to perform basic semantic role labajli method and all other approaches presented in this section is
Preprocessing performed before parsing includes namégl erthat the corpus used for training has not been syntactically
recognition, identification of multi-word units, and idiatic parsed. The SCFG is computed from the raw alignment data
phrases. alone.

Syntactic transfer in RANSLATICA relies on parse tree The idea of translation by parsing is further enhanced by
transformations which are encoded in a specialized progral®] who train a French-English SCFG on a word aligned
ming language. Default operations specified for each syintagoarallel corpus the target language part of which has been
category are executed in a recursive depth-first post-ordgyntactically parsed. A chart parser is used to build target
fashion in three different passes. During the first passouari language parse trees by parsing the source language with the
normalization steps are performed, e.g. renaming of soulSEFG. Compared to the previous method, the SCFG employs
language syntactic categories to target language caesgorall non-terminal symbols of the parser used for annotat®n a
the deletion of source language negation particles, or d-hewell as incomplete nonterminals that correspond to the non-
wise up-propagation of morphological features. Re-omigxi Syntactic phrases of a phrase-based system.
of child nodes, insertions of new target language nodestend t Instead for parsing, SCFGs and similar concepts can be used
down-propagation of target language features are perfbrnfer the direct translation of syntactic trees created irthep
in the second pass. The third pass involves the generatiently from the SCFG. The idea dates back to [10] where so
of correct morphological forms of the target language tskewalled tree transducers are employed for the translatiqmasf
considering, for instance, the agreement of number, gendergramming language parse trees to machine code. A thedretica
case between dependent target words, etc. framework for tree transducers is presented in [11]. Theehod

From the depth-first postorder processing scheme follofeom [6] is later formalized as a tree-to-tree transduce&j.
that in the generélcase the children of a node are processéd this approach, tree transformation rules are restritietie
independently from each other and before their parent nodiest level of the matched subtree’s structure, i.e. onlydinect
Actions that concern two or more subtrees rooted in siblirghildren of a subtree root can be matched and changed by
nodes are therefore carried out by operations attached to théfe application of a single rule. [12] also introduedended-

parent node. LHS tree transducers which are related rather to synchronous
tree-substitution grammars (STSG) [13] than to SCFG. In
Shtp://www.poleng.pl an extended-LHS tree transducer, single production riudes c
4Child nodes can refer to their ancestors by special instmst but this is  perform transformations of trees on multiple levels of treet
rarely used and must be invoked explicitly. structure without being restricted to the direct children.

SExamples for such actions are re-orderings, combined dmepagation .
of morphological features of a verb and its complementefahg from verbal A variant of extended-LHS tree transducers—extended-LHS

frames, etc. tree-to-string transducergRRs)—are described by [14] in the
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context of an English-Chinese MT system. In the followinfrom the tree transducer that were applied for the transaluct
sections we will present a similar approach for a syntaxebasof a to b. We are interested in the set of left-most derivations
Polish-to-French SMT system. Compared to [14], we uselaD(M ), a subset of the set of derivatioAy M ), where pro-
flatter representation of translation rules by modifyin@ thductions are always applied to the left-most source languag
concept ofxRs, as will be illustrated below. As in [6] and tree in a string. Again, for the full formal description Bi{ M),
[12], xRsrequire the input to be a syntactic tree or a string df D(M) and the corresponding derivation relations see [11].
such trees. The final output consists of plain target languag The productions of arRs can match and transform trees of
strings. arbitrary height and complexity, but for the matching fuout

We implemented a syntax-based SMT system similar ihto match a particular subtree the complete structure of the
principle to the models presented in [14] and [15] and basedbtree must be specified (compare [14]). We modify the con-
on the theory from [11]. The working name of the systeroept ofxRsby simplifying §, the matching function. Instead of
used in this paper is 8NSAI. The system is developed undematching the whole subtree structure it is sufficient to imatc
the assumption that it will be combined with a commerciahe root of the subtree and the sequence of descendants of
rule-based MT system. In this paper we concentrate on Rolishe specified root that are actually modified by the rule. This
to-French translations, for the Polish-French languadeipa sequence of descendants has to comply with the following two
the next to be integrated intoRENSLATICA. The next section criteria:
describes the formal aspects of the system in more detail. | ng two nodes are descendants of each other:

« the concatenation of the yields of the subtrees rooted in
these nodes is equal to the yield of the whole subtree.

We call any such a sequencefange. Thus the internal
tree structure is ignored and productions can be reprasente
without redundant information. This seems to be a reasenabl
modification of thexRs concept especially for tree-to-string
A. Tree-to-string transducers transducers where the tree structure is increasingly filedte

By 7% we denote the set of ordered, finite, and rootediith each step. If the matching part of the first rule applied
trees over an alphab&t. Formally our translation algorithm to the example tree from Fig. 1 were fully specified, it would
is a tree-to-string transducer. For an exhaustive themetihave to take the following form:

description of tree transducer see [11]. Following [11] we : AL )
define aweighted extended-lhs root-to-frontier tree-to-string S(ADV(obecnie), VP{o:V-PP, V(s3)),x1:NP).

IV. DESCRIPTION OF THE TRANSLATION MODEL

Throughout this work we will traditionally denote the soarc
language sentence Wyand the target language sentenceeby
Strings consist of source language parse trees, targeidgeg
symbols, or combinations thereof.

transducer)M as a 5-tuplg®, A, @, qo, R), where Instead we can simply write
o X is the input alphabet, .
« A is the output alphabet, S(obecnieyo:V-PP, sq,r1:NP).

« @ is afinite set of states, This notation is especially useful for purely lexical rutbsit

* 40 € Q Is a distinguished start state, do not contain non-terminal symbols. The fringe is then équa

» Risafinite set of productions of the for. 8) =" rhs. 5 the yield of the matching subtree. The tree pattern
Here o is a pattern for the LHS tree that checks whether a

given subtree can be matched by the rule. The tree’s root RartP(V-PA(dotyczace), NP(NP(R(j&ém), NP(R(lekow)))))

required to have been marked by the state Q). The leaves

of a LHS tree are labelled with terminal symbols frainor a

v_ariable fron_1 the set of variable¥ = {.’:617.1'2,16-3, ...}. The PartP(dotyczace, jakai, lek6w)

right-hand siderhs € (A U (Q x X))* is a string of target

language terminals and those variables that appeared aed we theory, such a rule can match several non-isomorphistree

matched in the pattern. Each rule is associated with a weidhit in practice, it is not very likely unless the contextere

w € RT. grammar used for parsing is very ambiguous. Even if it does
The tree transducer operates on strings consisting of souh@appen it should not do much harm to the translation result.

language trees and target language symbols from the setFof rules that consist only of terminal symbols, we can gafel

strings(AU(Q x Tx))*. A Polish source sentence correspondasssume that the internal tree stucture is irrelevant. Irctse

to a string that consists only of source language trees gaii@E mixed rule the terminal symbols should provide enough

with a state from the transducer. A French target sentenae isontext to prevent incorrect translations. ARs modified

string of symbols from the target alphabet. Intermediaselts in such a way is of course not suited for the transduction

will contain source language trees as well as target larguayg parse trees of formal languages where ambiguity should

symbols. be avoided. For natural language processing, however,evher
A derivation is a triple(a, b, k), wherea andb are strings of allowing for a little vagueness can even be helpful, thigtly

the type described above ande (N x R)* is the derivation more compact reprensentation can save memory and matching

history, a sequence of string indexes and productions rutése if the xRs consists of millions of rules.

can be represented only by the labels of its leaves as
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Fig. 1 illustrates a sample derivation of the following Bbli
sentence:

Glosses

obecnie prowadzonesa badaniadotyczace jakosci
actuellemenmenées  sontétudes concernanta qualité

lekow
des médicaments

Correct: études concernant la qualité des médicaments sont
actuellement menées

English: studies concerning the quality of medicaments are
currently being conducted

Polish is a free-word-order language and the above glosses
imply that a lot of re-ordering has to be performed to bring
the fragments of the French translation into the correceord
In the example translation this is achieved by the first rule.
It works on the sentence level and shifts around the main
constituents of the sentence (movements marked by dashed
arrows). Similar re-orderings are much harder to achieve in
phrase-based statistical machine translation system.

The costs of a derivatiofu, b, h) whereh is the derivation
history of lengthn is calculated as follows:

wyr((a,b,h)) = Hwi. (1)

Different derivations can yield the same transduction ltesu

for a pair of stringsa, b. Therefore, the global derivation cost
for a,b is calculated as

War((a,b) = >

(a,b,h)eLD(M)

wM((a,b, h)) (2)

Based on this, we can formulate a translation model based on a
tree-to-string transducev/. The best translation of a (parsed)
source sentencgis the target sentencethat can be derived

from f by M (in a left-most fashion) and that maximizes the
global derivation costV;:

& = argmax Wy ((f, e)) (3)

Obviously there is no target language model integration yet
The only information that guides the translation process in
such a model are the syntactic annotations of the source
sentence and the costs of the production rules.

B. Rule features

The production rule cosp is split into several feature costs.

For each translation rule we actually gather the following
information:

prowadzone « the rule probability conditioned on the source language
q V-PP(prowadzone)» menées part of a rule;
o_ ©tudes concernant la qualité¢ des médicaments sont « the rule probability conditioned on the target language
~ actuellement menées

Fig. 1.

matched by the rule given below each intermediate derivatio

A sample derivation with heavy reordering of ternhinad non-
terminal symbols. The bold labels mark the symbols on theg&ithat are

part of a rule;
« the source conditioned word translation probability which
estimates whether the source and target words of a rule

are good translations of each other (see [8] for a detailed
description);
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« the target conditioned word translation probability; have:

o the non-terminal symbol penalt@’“% where k is the k n
number of non-terminal symbols in a rule. That way (e, }}) :argmaX(Z)\j210ngi+>\k+1 1ogp1m(e)) (6)
the use of lexical rules is favoured over compositional (eh) 501 im1

translations;
« the length difference penalty-l*»—™! wheren andm where hk - £(p1’T1)’ cos (o)) i = (03, 00, rhsi, wi),
I1 7, and(f,e, h) € LD(M).

are the lengths of the source and target language pdfts_ 11j=1 CIJ T h ded .
of a rule respectivelya is the average ratio of target Our translator is thus an extended-LHS tree-to-string-root

sentence and source sentence lenghts estimated from!fifontier transducer with a single staje The semantics of
training corpus. For Polish-to-French translation we ha\mIS state can be paraphrasedapgl.y a produgﬂon rule to this
a = 1.22, i.e. French sentences have in average subtree The input alphabeX: consists of Polish words found

times more words than Polish sentences. in the source language half of a parallel training corpus and
of non-terminal symbols from the grammar used for source
P language parsing. The output alphabketconsists of French
then calculated asv = [[;_, ¢j’, wherec; are the above 4rgs from the training corpus only, i.e. there are no non-
mentioned rule costs weighted by a paramelgr These (orminal symbols inA. We still need to describe the set of
parameters are the main parameters of the translation modghqyctionsg, the construction of which will be discussed

shortly in the next section.

The total costw of a production ruleq 6 —" rhs is

C. Approximation of the best translation

With millions of translation rules it is not feasible to V. PARSING AND RULE EXTRACTION

calculate the global derivation cost for a source sentedhce For the extraction of productions, the source language part
and a target sentenee Therefore we decided to approximatef the entire training corpus needs to be parsed by the same
the globally best translation by the single best derivation parser that will be used during the translation. If a corpus
consists of millions of sentences, this is sure to be vergtim
o @) consuming. Currently, the parser used IRANSLATICA is

A arg max max war((£, e, h))). strongly entangled with the transfer process and cannot be

e (f.e,h)€LD(M) easily used as an independent module for the annotation of

Instead of searching for a best translatégrwe search for the COrPus data or as the parser ab8sAl. Work on the extraction
best pair(, 7). Now formulating the translation model as #f the parser from the surrounding code is already in pragres
log-linear model is simple: for a given parsed source semten SiNCe TRANSLATICA’s deep parser is at the moment un-
f we find the best translatiod based on the best derivationdvailable, we decided to use the shallow parsees® [16]

é =argmaxWy((f,e))

history / by for our experiments. S£30s rules form a cascade of regular
expressions that upon match combine tokens or previously
(é,iz) = argmaxwy ((f, e, h)) built groups into larger groups. These groups are annotated
(e;h) N with syntactic categories and morphological features efrth
_ argmaXHwi specified heads. Apart from building hierarchical strues,r
(eh) 21 SPeJD allows for the simple unification of morphological
n k features which can also be used as a disambiguation mech-
=argmax [ [ [] ¢ (5) anism for morphologically ambiguous words. This is a very
(eh)  iZ1j=1 helpful feature if a strongly inflectional language like bl
K n is analyzed.
= ar(g r;l)ax Z Aj Z log ¢;; The grammar used for parsing has been written from scratch
oY=t Nk and consists of no more than 274 rules, of which only 68
log p;(e,f,h) are used for the construction of syntactic parse trees. The

remaining rules are descriptions of multi-word expressitat
are to be treated as single tokens, an example is the exgmnessi

(f’ ei hz etLD(fM)t.hHerepj Ica:n (tj)e {nt(i.rgretgi ats) the cost of %hoéby dlatego abgeng.just so thaf which should be marked
single feature for the complete derivatiomnoA; becomes an .o o single conjunction which joins sentences but not phrase

overt parameter of the model that is not hidden in the We'g*\ﬁs however clear that the use of a shallow parser with such a
of particular productions.

small grammar comes at some costs: the height and complexity
of the parse tree is restricted by the number of rules in the
grammar since no true recursion is possible and probleras lik
Within a log-linear model we can easily enrich the moddtP-attachment or attachment issues in general are virtuall
with additional features. For the moment, only a basic lannsolvable within the formalism. We therefore try to keep
guage modep,,, over target language words is added to thihe resulting trees very flat with chunks being attached at
model. Finally, for a parsed source language senténee sentence level. Nevertheless, complex parses are possitile

whereh = ((plle)v ) (pann))i Ty = (Qn 5ia Th’sivwi)i and

D. Complete model
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often impressively correct like the example parse tree fromFor now we have implemented three algorithms that solve
Fig. 1 that has been produced byeSD It can further be the shortest path problem approximately:
assumed that systematic and consistent parse errors do nal Greedy search (symbol:REEDY);
necessarily decrease translation quality since the ttiosl 2) A* search (symbol: ATAR);
rules can in turn learn the correct translations systemitic ~ 3) Stack decoding (symbol:T&cK [n], wheren is the size
One huge advantage of a shallow parser is speed: millions of  of the stacks).
sentences can be analyzed within a few hours which simplifigg e stack decoding is a variant of the algorithm succeysful
the development phase. used for phrase-based decoding imARAOH [21] and later in
Once the source language part of a parallel corpus hgag,ses[22]. Originally there are as many stacks as words in a
been analyzed by r&Jg we extract productions in a similargqrce sentence and a translation hypothesis is put info-the
way as [9], but restrict them to complete syntactic phrasegack if it coversk source language words. Therefore the last
The parallel corpus is word-aligned by trainingz&++ in  giack will contain only complete translations. We modified t
both directions. Prior to word alignment we lemmatize bOIQIgorithm to allow for translation hypotheses that do natezo
sides of the corpus. Experience shows that lemmatization Gy words compared to their predecessor. This happens if a
significantly improve alignment quality if at least one lalge e does not contain any terminal symbols in its source lan-
is strongly inflectional, as is the case with Polish. The Itesy guage part, e.g. rules that only perform re-orderings ofreel
alignments are combined with the refined symmetrizatiqf} rjes that translate the phrase compositionally. Thgiral
method described in [17] and lemmatization is undone. FQ[yorithm would have attempted to put a hypothesis resyiltin
each aligned sentence the source parse tree is connected Wl sych a rule into the same stack as its predecessor. Due
the alignment graph. Next we find all phrase pairs that afg monotonicity, the new hypothesis has necessarily a highe
consistent with the word alignment [18] and a subtree of thest than its source and might be pruned from the stack. In
parse tree. For all subtrees in compliance with these @itep,, version of stack decoding there is a second dimension of
the set of fringes is generated and the alignment data is uggghks for each word that gets extended whenever it is needed

to create a production for each fringe. That way a hypothesis is never put into the same stack as its
The number of fringes grows exponentially with the size Cﬁredecessor.
the tree, hence, we apply the following restrictions: All three algorithms require a heuristic function that gesd
« the fringe consists of no more than 7 symbols of whicthe search through the graph. We adapted the heuristidéunnct
at most 4 are non-terminals; for phrase-based translation from [21] in the following way
« the distance of a non-terminal in the fringe from the rodtor all subtrees we choose the cheapest lékicale and
is at most 2. calculate its costs based on the rule features and the lgagua

The described procedure has been applied to the poligmadel. The language model cost for the target side of the rule
French part of the JRC-&Quis parallel corpus [19] with is calculated in isolation from other lexcial rules. Fortadles
about 1.2 M sentences. In spite of the mentioned restrigtio’ subtrees for which no lexical rules exist, we search fer th
on average 130 rules per sentence are generated. Thissre§igapest cover with lexical rules of their subtrees. Next we
in a set of 50 millions unique rules occupying 5.5 GB of disRultiply the costs of all trees in the cover. Unfortunatelgls
space. Compressing them to a minimal finite state automafgdfeuristic function is not necessarily admissible. In thsec
reduces the size to 1.3 GB. of A* search this means that the search will not be optimal.

One problem with our approach is the possibly high redun-All algorithms thqt build their search graph based on the set
dancy of rules. An alternative method is presented by [26f left-most derivations. D(M) traverse the input trees from
who try to extract only a minimal set of translation rulestthd€ft to right and in a top-down manner. Bottom-up approaches
sufficiently explain the translation data in a parallel sece {0 decoding algorithms for syntax-based translation haenb
pair. It needs to be examined how the different approachH@sented in [14] and [15]. We plan to implement variants of
affect the size of the rule set and the translation quality. these in the next versions ofdBISAl.

VIl. PRELIMINARY EVALUATION

) ) The baseline system used for comparison is the phrase-
For a given string of source trees € (Q x Tx)" the paged SMT package O5ES[22]. MosESas well as BNSAI
subset ofl, D(M) consisting of derivations starting fican be 4ye heen trained on the Polish-French part of the JRC-Acqui
interpreted as a directed acyclic graph, where any element harajlel corpus from which 2000 sentences were set apart
(f,t, ) of this set corresponds to a path from the root nodg,g divided equally into development set and test set. The
f to the nodet. Intermediate strings of source language treggining procedure for both systems is identical until thiial
or target language symbols form the nodes of this graph, ®B@iraction of phrases and rules starts. The development set
tree transducer productions in a derivation history ar@iteid \yas used for minimal-error-rate training (MERT) to create

edges. Finding the best derivationfoaccording to the model 5 configuration with optimized translation model weights fo
from section IV-D is thus eqivalent to finding the shortestpa

in G¢ from the nodef to a nodee € A*. 6A lexical rule does not contain any non-terminal symbols.

V1. SEARCHING FOR THE BEST DERIVATION
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TABLE |

SOME EVALUATION RESULTS FOR DIFFERENT CONFIGURATIONS VIII. D1SCUSSION AND FUTURE WORK
Algorithm il BLEU METEOR The syntax-based SMT approaches based on tree trans_-
ducers bear a strong resemblance to the rule-based sgntacti
MOSESDEFAULT 0.5906 0.3944 . .
MOSESMERT 06259  0.4340 transfer approach of RANSLATICA presented in section II.
BONSAIGREEDY 005 06022 03972 Both meth_ods require the input sent(_ence_ to be_ parsed prior
BONSAI ASTAR 133 06104  0.4123 to translation. In both cases translation is achieved bg tre
BONSAI STACK 5] 0.20 0.6140  0.4067 transformations: reordering, insertion and deletion dftsees
BonsalSTack[10] 035 0.6166  0.4122 and the translation of leave symbolsRANSLATICA performs
BONSAI STACK[20] 0.63 0.6194 0.4133 . .
BONSAISTACK[50]  1.45 0.6234  0.4188 a depth-first left-to-right postorder traversal (subtrees re-
BONSAISTACK[100]  2.74 0.6247  0.4194 ordered after processing) of input trees. At the moment the

presented SMT model is a close implementationR§ as in-
troduced by [11] and therefore the processing directioops t
) . o down in a depth-first left-to-right preorder fashion (seles
MosEs This configuration is denoted by the symbobBES  4re reordered before processing), but this is due to change i
MERT. the near future in favour of an equivalent post-order atbani

For BoNsAl we have not constructed a procedure for p&uch an approaches have been put forward by, for instance,
rameter optimization yet, although it should not be a proble[15].
to adapt MERT for this goal once the main programming Leaving aside formal aspects of the expressive power of
work is finished. Instead we use weights that were set afteg language used for transfer rule programming, it seems
few manual trials. Therefore we use a second baseline sysigfausible to interpret the syntactic transfer implemenired
MoOses DEFAULT, equal to MoSESMERT but with default TransLATICA as a deterministic tree transducer. The tree or
parameters instead of optimized weights. We evaluated ti€e-to-string transducers described in section Il ancsish
translation results of MsEsusing its standard settings, i.e. itsof millions of rules and are obviously non-deterministiace
stack decoding algorithm uses a stack size of 100. Our systgiBy most certainly contain productions that have the same
is denoted by the symboldsAl combined with the symbols source language side and different target language sides. T
of the search methods introduced in the previous section. same is true for BNSAL.

The evaluation results have been compiled in Table I.Once the processing order ofoBisAl has been changed
All configurations have been evaluated using the BLEU arid a postorder approach, a combination of both methods on
METEOR metrics. Concerning the BLEU scorespisal  the level of subtrees of the same input tree seems desirable.
fares better than MsesDEFAULT for all configurations and Both systems, RANSLATICA and BONSAI, process subtrees
comes very close to the performance obBESMERT when independently from their siblings, and it is possible to let
the stack-decoding algorithm with greater stack dizesised. them work in parallel. Using the search methods incorpdrate
The results are slightly worse for the METEOR metric wheim BONSAI would also allow for a limited non-determinism
compared to MVSESMERT, but MOSESDEFAULT is again in TRANSLATICA which could now provide all possible
surpassed in all cases. translations for a found lexicon entry that in turn could be

These—and especially the scores @ffBsAl STACK [100]— disambiguated by_BNSAl’s Iapguage model. On t.he (_)ther
are very promising results, all the more so, if we remembB@nd, the semantic information encoded Translatica its
that the model parameters obBisAl where not optimized by handlmg of verb frames, and_lts capabilities to handle gi_me
an appropriate training procedure and that the parser ssedgntext-independent _translatlons would make it a rglteabl
only a shallow parser that may produce a lot of parse errop&ck-bone for the highly context-dependent translatiohs o
Despite its crude implementationoBisal seems to be on par BONSAI. One can imagine a general rule thadisAl is

with a state-of-the-art phrase-based SMT system and teer@fly allowed to translate a given subtree if a rule matches at
still plenty of room for improvements. least one non-terminal symbol while unknown constructions

Along with the translation quality for the algorithms im-Or compositional translations are left tRANSLATICA.

plemented in BNSAI, we compare the average timigaken Nevertheless, before we can approach a combination of

for the translation of one sentence from the test set. Hi%HQANSLAT'CA and BONSTM’ the following matters (among
processing speed is especially important in the context t1hers) need to be examined and solved:

commercial MT systems. Here stack decoding with smaller
stack sizes seems to be a reasonable compromise bet
quality and speed. We hope however that we will be able
improve the speed in future version.

The influence that parsing quality has on syntax-based SMT
s to be investigated. In this paper we have presented a

fyntax-based system that relies on the results of a shallow
parser and yet is on par with a modern phrase-based system. It
has to be seen if the use of a carefully developed deep parser
brings any improvements. We do not know of any work in

"Note however that we do not use stack sizes greater than famwhich syntax-based SMT that has compared the impact of different
is also the stack size used forddEes parsers within the same SMT system.
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The most work in syntax-based SMT focuses on languaggs K. Yamada and K. Knight, “A syntax-based statisticalskation model,”
that are weakly inflectional and have a strict word order.tSo i__ in Proceedings of the 39th Annual Meeting of the ACQO1.

. . . h | inal bas th [7] D. Chiang, “A hierarchical phrase-based model for statal machine
remains to investigate how complex non-terminal sym t translation.” inACL.  The Association for Computer Linguistics, 2005.

contain additional features affect translation qualityt Polish  [8] P. Koehn, F. Och, and D. Marcu, “Statistical phrase-Hasenslation,”
to French translation it could be helpful to encode inforiorat in NAACL '03: Proceedings of the 2003 Conference of the North

heth th h ttached t ¢ bAmerican Chapter of the Association for Computational Lisgics on
whether the noun phrases attached 1o a senteénce are Verby,man Language TechnolagyMorristown, NJ, USA: Association for

complements, modifiers, or the subject, since this does not Computational Linguistics, 2003, pp. 48-54.
follow necessarily from their order in the sentence. [9] A. Zollmann and A. Venugopal, “Syntax augmented macliraeslation

X . via chart parsing,” 2006.
We started the paper with the observation that—apart fro[rlr(!)] A. V. Aho and J. D. Ullman, “Translations on a contextdrgrammar,”

one example—no commercial MT system that is usable on a Information and Contrglvol. 19, no. 5, pp. 439-475, December 1971.
Stand_alone desktop or notebook Computer actua"y Seemélﬂd J. Graehl, K. Knlght, and J. May, “Training tree transdrs.” Compu-

. . . N tational Linguistics vol. 34, no. 3, pp. 391-427, 2008.
be using statistical techniques for translation, let alme¢hods 151 ;3 Graenl and K. Knight, “Training tree transducersHLT-NAACL

from syntax-based SMT. This may be due to the amount of 2004, pp. 105-112.
resources required. In section V it became obvious thatllgl J. Eisner, “Learning non-isomorphic tree mappings rfeachine trans-

.. lation,” in ACL '03: Proceedings of the 41st Annual Meeting on
compact and efficient storage scheme needs to be deV(:"IOped’Association for Computational Linguistics Morristown, NJ, USA:

allowing access to the millions of translation rules crdate  Association for Computational Linguistics, 2003, pp. 2P88-

dunng tra|n|ng CompreSSK)n however |S Only one part &4] L. Huang, “Statistical Syntax-directed translatiothwextended domain

. g L of locality,” in In Proc. AMTA 20062006, pp. 66—73.
the solution, it is also necessary to minimize the number @&; v. Liu, Q. Liu, and S. Lin, “Tree-to-string alignment rteplate for

rules necessary for high quality translation. We belie\a th statistical machine translation.” ®WCL. The Association for Computer

. . . B . Linguistics, 2006.
future Com,bma_tlon with a rule-based MT system might als[96] A. Przepiorkowski and A. BucZski, “#: Shallow parsing and disam-
be helpful in this respect. biguation engine,” inProceedings of the 3rd Language & Technology

Conference Pozna, 2007.
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