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Abstract

Focus of this paper is the system for statistical machine trans-
lation developed at ITC-irst. It has been employed in the
evaluation campaign of the International Workshop on Spo-
ken Language Translation 2004 in all the three data set condi-
tions of the Chinese-English track. Both the statistical model
underlying the system and the system architecture are pre-
sented. Moreover, details are given on how the submitted
runs have been produced.

1. Introduction

This paper reports on the participation of ITC-irst to the eval-
uation campaign organized by the International Workshop on
Spoken Language Translation (IWSLT) 2004. The Statisti-
cal Machine Translation (SMT) system developed at ITC-irst
was applied to all the three data set conditions of the Chinese-
English track.

The ITC-irst SMT system implements an extension of the
IBM Model 4 as a log-linear interpolation of statistical mod-
els, which estimate probabilities in terms ofphrases. The
use of phrases rather than words has recently emerged as a
mean to cope with the limited context that Model 4 exploits
to guess word translation (lexicon model) and word positions
(distortion model) [1, 2, 3, 4, 5, 6, 7].

While parameters of the models are estimated exploiting
statistics of phrase pairs extracted from word alignments, the
weights of the interpolation are optimized through a train-
ing procedure which directly aims at minimizing translation
errors on a development set.

Decoding is implemented in terms of a dynamic program-
ming algorithm.

The paper is organized as follows. Next section details the
statistical model underlying the system. Sections 3 and 4
briefly describe the search and the segmentation algorithms,
respectively. Section 5 gives an overview of the system ar-
chitecture. Finally, in Section 6 experimental set-ups of the
evaluation campaign runs and results are presented and dis-
cussed.

2. Statistical Machine Translation

The advantages of the statistical translation approach are ad-
vocated by the many papers on the subject, which followed
its first introduction. Of course, there have been also attempts
to overcome some of its shortcomings, e.g. the use of limited
context within the foreign string to guess word translations
and word positions. Recently, several research labs have re-
ported improvements in translation accuracy by shifting from
word- to phrase-based SMT. In particular, statistical phrase-
based translation models have recently emerged, which rely
on statistics of phrase pairs. Phrase pairs statistics can be au-
tomatically extracted from word-aligned parallel corpora [5].
In the following subsections, we introduce the SMT frame-
work and the Model 4. Then, we briefly describe a method
for extracting phrase pairs. Finally, a novel phrase-based
translation framework is presented which is tightly related
to Model 4.

2.1. Log-linear Model

As originally proposed by [8], the most likely translation of a
foreign source sentencef into English is obtained by search-
ing for the sentence with the highest posterior probability:

e∗ = arg max
e

Pr(e | f) (1)

Usually, thehiddenvariablea is introduced:

e∗ = arg max
e

∑
a

Pr(e,a | f) (2)

which represents analignmentfrom source to target posi-
tions.
The framework of maximum entropy [9] provides a mean to
directly estimate the posterior probabilityPr(e,a | f). It
is determined through suitable real valued feature functions
hi(e, f ,a), i = 1 . . .M , and takes the parametric form:

pλ(e,a | f) =
exp{∑i λihi(e, f ,a)}∑
e,a exp{∑i λihi(e, f ,a)} (3)
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The maximum entropy solution corresponds to valuesλi that
maximize the log-likelihood over a training sampleT :

λ∗ = arg max
λ

∑

(e,f ,a)∈T

log pλ(e,a | f) (4)

Unfortunately, a closed-form solution of (4) does not exist.
An iterative procedure converging to the solution was pro-
posed by [10]; an improved version is given in [11].
If the following feature functions are chosen [12]:

h1(e, f ,a) = log Pr(e)
h2(e, f ,a) = log Pr(f ,a | e)

exploiting eq. (3), eq. (2) can be rewritten as:

e∗ = arg max
e

Pr(e)λ1
∑
a

Pr(f ,a | e)λ2 (5)

whereλi’s represent scaling factors of factors.
In eq. (5), English stringse are ranked on the basis of the
weighted product of the language model probabilityPr(e),
usually computed through ann-gram language model [13],
and the marginal of the translation probabilityPr(f ,a | e).
In [8, 14] six translation models (Model 1 to 6) of increas-
ing complexity are introduced. These alignment models are
usually estimated through the Expectation Maximization al-
gorithm [15], or approximations of it, by exploiting a suit-
able parallel corpus of translation pairs. For computational
reasons, the optimal translation off is computed with the
approximated search criterion:

e∗ ≈ arg max
e

Pr(e)λ1 max
a

Pr(f ,a | e)λ2 (6)

2.2. Model 4

Given the stringe = e1, . . . , el, a stringf and an alignmenta
are generated as follows: (i) a non-negative integerφi, called
fertility, is generated for each wordei and for the null word
e0; (ii) for eachei, a listτi, calledtablet, of φi source words
and a listπi, calledpermutation, of φi source positions are
generated; (iii) finally, if the generated permutations cover all
the available source positions exactly once then the process
succeeds, otherwise it fails.
Fertilities fix the number of source words to be aligned to
each target word, and the total length of the foreign string.
Moreover, as permutations of Model 4 are constrained to
assign positions in ascending order, it can be shown that
if the process succeeds in generating a triple(φl

0, τ
l
0, π

l
0),

then there is exactly one corresponding pair(f ,a), and vice-
versa. This property justifies the following decomposition of
Model 4:

pθ(f ,a | e) = p(φl
0, τ

l
0, π

l
0 | el

0) (7)

= p(φ, τ , π | e) (8)

= p(φ | e) · p(τ | φ, e) · p(π | φ, τ , e) (9)

where

p(φ | e) =
l∏

i=1

p(φi | ei) p(φ0 |
l∑

i=1

φi) (10)

p(τ | φ, e) =
l∏

i=0

p(τi | φi, ei) (11)

p(π | φ, τ , e) =
1

φ0!

l∏

i=1

p(πi | φi, π̄ρ(i)) (12)

with

p(τi | φi, ei) =
φi∏

k=1

p(τi,k | ei) (13)

p(πi | φi, π̄ρ(i)) = p=1(πi,1 − π̄ρ(i))×

×
φi∏

k=2

p>1(πi,k − πi,k−1) (14)

In eq. (9), the first factor is thefertility model p(φ | e) -
see eq. (10) - and represents step (i): fertilities ofe1, . . . , el

are generated for each word according to the distributions
p(φi | ei), while the fertility of e0 is generated through a
Binomial distributionp(φ | m′). The remaining factors, the
lexicon modelp(τ | φ, e) - see eq. (11) - and thedistortion
modelp(π | φ, τ , e) - see eq. (12) - correspond to step (ii):
tablets for cepts1 are generated according to eq. (13), and per-
mutationsπi, with the exception ofπ0, are generated accord-
ing to eq. (14). The latter relies on two probability tables:
p=1(·), which considers the distance between the first gener-
ated position and thecenter2 of the most recent cept;p>1(·),
which considers the distance between any two consecutively
assigned positions of the permutation. Finally, positions for
e0 are generated at random over the residualφ0 positions,
with probability 1

φ0!
. It is worth remarking that the here con-

sidered distortion model omits some dependencies specified
in [8].

2.3. Phrase-pair Extraction

The here used method exploits the so calledunion alignments
between sentence pairs of the training corpus [5]. Given
stringsf = f1, . . . , fm ande = e1, . . . , el, a direct align-
menta (from f to e) and an inverted alignmentb (from e to
f ), the union alignment is defined as:

c = {(j, i) : aj = i ∨ bi = j} (15)

It is easy to verify that whilea andb are many-to-one align-
ments,c is a many-to-many alignment. Moreover, the union

1A ceptis a target word (includinge0) with positive fertility. A not-cept
word may only generate an empty tablet and an empty permutation with
probability 1.

2π̄ρ(i) is defined as the ceiling of the mean position assigned to the most
recent cept, whose index is defined byρ(i).
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alignment does not necessarily cover all source and target
positions.
Given a source-target sentence pair(f , e) and a union align-
mentc, let J andI denote two closed intervals within the
positions off ande, respectively. We say thatI andJ form
a phrase pair3 underc if and only if c aligns all source po-
sitionsJ with target positions contained inI, and all target
positionsI with source positions contained inJ .

Given a parallel corpus provided with Viterbi alignments in
both directions, we can compute all phrase pairs occurring in
its sentences:

P = {(f̃p, ẽp) : p = 1, . . . , P} (16)

Practically, in order to limit the number of phrases, the max-
imum length ofI andJ is limited to some valuek. Note that
the setP also includes phrase pairs with one single target
word.

2.4. Phrase-based Model

We assume that the target vocabulary is augmented by in-
cluding all target phrases inP. Hence, the search criterion
(6) is modified as follows:

ẽ∗ = arg max
ẽ

Pr(ẽ)λ1 max
a

pθ(f ,a | ẽ)λ2 (17)

whereẽ ranges over all strings of the augmented target vo-
cabulary.
Our phrase-based language modelPr(ẽ) is a simple exten-
sion of an-gram word-based language model.
The phrase model exploits a counting probability measure
defined on the phrase sampleP. Hence, the relative fre-
quency of a given phrase pair(f̃ , ẽ) in the sampleP is inter-
preted as the probability of the phrase pair, given the training
data. Basic probabilities of the translation model relying on
statistics overP are summarized in Table 1.̃f(τ) trivially
transformsτ into a phrase.
The implicit assumption that the tablet must correspond to
a source phrase, i.e. it must cover consecutive positions, is
made explicit by the distortion model. In fact, it assigns the
first tablet position the same probability given by the Model 4
distortion model, but constrains successive positions to be
adjacent.

3. Decoding Algorithm

Given the source sentencef = fm
1 , the optimal translation

ẽ∗ is searched through the approximate criterion (17).
According to thedynamic programmingparadigm, the opti-
mal solution can be computed through a recursive formula
which expands previously computed partial theories, and re-
combines the new expanded theories. A theory can be de-
scribed by itsstate, which only includes information needed

3In order to distinguish between words and phrases and between word-
based and phrase-based models, the latter will be identified with the symbol˜
through all the rest of the paper.

Table 1: Phrase-based model: fertility, lexicon, and distor-
tion probabilities.

N(f̃ , φ, ẽ) =
P∑

p=1

δ(f̃p = f̃) δ(ẽp = ẽ) δ(|f̃p| = φ)

N(φ, ẽ) =
∑

f̃

N(f̃ , φ, ẽ)

N(ẽ) =
∑

φ

N(φ, ẽ)

Fertility Model: p̃S(φ | ẽ) =
N(φ, ẽ)
N(ẽ)

Lexicon Model: p̃S(τ | φ, ẽ) =
N(f̃(τ), φ, ẽ)

N(φ, ẽ)
Distortion Model: p̃S(π | φ, π̄) = p=1(π1 − π̄)×

φ∏

k=2

δ(πk − πk−1 = 1)

for its expansion; two partial theories sharing the same state
are identical (undistinguishable) for the sake of expansion,
i.e. they should be recombined.
More formally, letQi(s) be the best score among all partial
theories of lengthi sharing the states, pred(s) the set of
partial theories which are expanded in a theory of states,
andG(s′, s) the cost for expanding a partial theory of state
s′ into one of states. The scoreQ∗ of the optimal solution
ẽ∗ can be computed by explicitly searching among optimal
solutions fixing the lengthi and the states, i.e.:

Q∗ = max
ẽ

Pr(ẽ) max
a

pθ(f ,a | ẽ) (18)

= max
i

max
ẽi
1

Pr(ẽi
1) max

a
pθ(f ,a | ẽi

1) (19)

= max
i,s

Qi(s) (20)

Henceforth, the scoreQi(s) can be defined recursively with
respect to the lengthi as follows:

Qi(s) = max
th′∈pred(s)

Qi−1(s(th′)) ∗G(s(th′), s) (21)

with a suitable initialization forQ0(s).
Given the model described in the previous section, the state
s(th) = (C, π̄, ẽ′, ẽ) of a partial theoryth includes the cover-
age set,C, the center of the last cept,π̄, and the last two out-
put phrases,̃e′andẽ. A theory of states = (C, π̄, ẽ′, ẽ) can
be only generated from one of states′ = (C \ π, π̄′, ẽ′′, ẽ′),
i.e. a new output phrasẽe is added with fertilityφ = |π|,
andφ positions are covered. Notice that ifφ = 0 the cen-
ter remains unaltered, i.e.̄π′ = π̄. The possible initial states
s = (π0, π̄0, ε, ε) correspond to partial theories with no target
phrases and with allφ0 positions inC = π0 covered by the
null phrasẽe0. Notice that̄π0 is not used in the computation.
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Hence, eq. (21) relies on the following definitions:

G(s′, s) = G((C \ π, π̄′, ẽ′′, ẽ′), (C, π̄, ẽ′, ẽ))
= p(ẽ | ẽ′′, ẽ′)×

×
{

p(φi, τi, πi | ẽ, π̄′) if π 6= ∅
p(φi = 0 | ẽ) if π = ∅ (22)

Q0(s) = Q0(π0, π̄0, ε, ε) (23)

= p(φ0 | m− φ0) p(τ0 | ẽ0)
1

φ0!
(24)

In order to reduce the huge number of theories to generate,
some methods are used, which affect the optimality of the
search algorithm:

• Comparison with the best theory: theories are pruned,
whose score is worse than the so-far best found com-
plete solution, as theory expansion always decreases
the score.

• Beam search: at each expansion less promising theo-
ries are also pruned. In particular, two types of pruning
define the beam:

– threshold pruning: partial theoriesth whose
scoreQi(s(th)) is smaller than the current op-
timum scoreQ∗curr times a given factorT , i.e.

Qi(s(th))
Q∗

curr

< T , (25)

are eliminated;

– histogram pruning: hypotheses not among the
topN best scoring ones are pruned.

These criteria are applied, first to all theories with a
fixed coverage set, then to all theories of fixed output
length.

• Reordering constraint: a smaller number of theories
is generated by applying the so-called IBM constraint
on each additionally covered source position, i.e. by
selecting only one of the first 4 empty positions, from
left to right.

Figure 1 shows how theories are generated, recombined and
pruned during the search process.

4. Chinese Segmentation

The Chinese word segmentation problem can be formulated
as follows. Let

xn
1 = x1, x2, . . . , xn xi ∈ Σ (26)

be a string of characters (observations) representing a Chi-
nese text, whereΣ denotes the set of Chinese characters.
We assume that the text is produced by concatenating words
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i=0
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Best
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Theory
Pruned

Theory
Complete

Pool[0]

Direction of Expansion

i=2

Figure 1: Expansion, recombination and pruning of theories
during the search process.

which are independent and identically distributed according
to a distributionP (w), defined over stringsw of Σ:

x1 · · ·xn1−1︸ ︷︷ ︸
P (w1)

xn1 · · ·xn2−1︸ ︷︷ ︸
P (w2)

· · · xnc · · ·xn︸ ︷︷ ︸
P (wc)

(27)

Hence, segmentation is the task of guessing the number of
words c and of detecting the transition pointsnc

1 = n1,
n2 . . . nc within the original string. From a statistical per-
spective, we look for the segmentation which maximizes the
text log-likelihood:

L∗(xn
1 ) = max

c,nc
1

L(xn
1 ; c;nc

1) (28)

= max
c,nc

1

c+1∑

i=1

log P (w = xni−1
ni−1

) (29)

where1 = n0 < n1 < n2 < . . . < nc < nc+1 = n + 1.
The maximization in eq. (29) can be solved by dynamic pro-
gramming, while the word model can be defined as follows.
Elementary statistics suggests that simple and effective word
models can be built from word occurrence statistics col-
lected within a large corpus of segmented texts. However,
while just relying on word counting can be optimal in a
closed-vocabulary situation, smoothing word probabilities
with other less specific features can improve performance on
texts including never observed words. Here, we present a
word model including statistics of words, word lengths, and
character sequences. More specifically, we assume the fol-
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− lexicon distributions

− scaling factors

Figure 2: The architecture of the ITC-irst SMT system at run time: after preprocessing, the input sentence is sent to the decoder
that, given the model parameters, searches for the best hypothesis. A final postprocessing step provides the actual translation.
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− lexicon distributions
− fertility        "
− distortion   "

Figure 3: The two-phase architecture of the training system: first, the distributions of the components of the phrase-based model
are estimated by means of alignments (left side). Then, the scaling factors of the components are computed by a minimum error
training loop (right side).

lowing back-offword model overΣ+:

P (w = xl
1) =

{
(1− λ) p̃(w) if p̃(w) > 0
α λ p(l, xl

1) otherwise
(30)

wherep̃(w) is an empirical word distribution estimated on a
segmented text sample,λ ∈ (0, 1) is a smoothing factor,α is
a normalization term to ensure that

∑
w∈Σ+ P (w) = 1, and

p(l, x1, . . . , xl) is a character-based language model. The
charactern-gram model is defined by:

p(l, xl
1) = p̃(l)

l+1∏

i=1

p(xi | xi−1, l) (31)

where p̃(l) is the empirical word-length distribution of the
training data,p(xi | xi−1, l) is a length conditional bigram
language model, andx0 andxl+1 are set to the conventional
character$ to model word boundaries. Bigram probabilities
are estimated from a sample of words by applying the well-
known Witten-Bell smoothing method [16].

5. System Architecture

The architecture of the ITC-irst SMT system at run time is
shown in Figure 2. After a preprocessing step, the sentence
in the source language is given as input to the decoder, which
outputs the best hypothesis in the target language; the actual
translation is obtained by a further postprocessing.
Preprocessing and postprocessing consist of a sequence of
actions aiming at normalizing text and are applied both for
preparing training data and for managing text to translate.
The same steps can be applied to both source and target
sentences, accordingly with the language. Input strings are
tokenized, and put in lowercase. Text is labeled with few
classes including cardinal and ordinal numbers, week-day
and month names, years and percentages.
As training and decoding assume sentences divided into
words, Chinese sequence of ideograms are segmented by
means of the algorithm described in Section 4.
Parameters of the statistical translation model described in
Section 2 can be divided into two groups: the parameters
of each basic phrase-based model and the weights of their
log-linear combination. Accordingly, the training procedure
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Table 2: Experiments for the selection of additional training data. Results are given on the development set CSTAR-2003.

System Additional Data BLEU NIST MWER MPER
name monolingual bilingual

baseline 0.3001 7.0157 50.8 41.5
lm-btec BTEC 0.3509 7.5099 47.2 38.1
lm-db1 BTEC, DB1 0.3466 7.4475 47.6 38.3
lm-db2 BTEC, DB2 0.3460 7.4427 47.1 38.3
tm-btec BTEC BTEC 0.4311 8.5336 42.0 33.3
tm-db3 BTEC BTEC, DB3 0.4574 8.7890 39.7 30.5

of the system, shown in Figure 3, consists of two separate
phases.
In the first phase, distributions of the components of the
phrase-based models are computed starting from a paral-
lel training corpus. After preprocessing, Viterbi alignments
from source to target words, and vice-versa, are computed
by means of the GIZA++ toolkit [1]. Phrase pairs are then
extracted taking into account both direct and inverse align-
ments (see section 2.3), and the phrase-based distributions
are estimated (section 2.4).
In the second phase the scaling factors of the log-linear
model are estimated by the so-calledminimum error training
procedure. This iterative method searches for a set of factors
that minimizes a given error measure on a development cor-
pus. The simplex method [17] is used to explore the space of
scaling factors. A detailed description of the minimum error
training approach is reported in [18].

6. Experiments

ITC-irst participated to all the three data conditions of the
Chinese-English track: Supplied, Additional, and Unre-
stricted data. According with the evaluation specification,
in the last two conditions monolingual and bilingual training
data can be added to the supplied corpus of 20K sentences.
Experiments on a development set were performed to select
these corpora in order to optimize performance of the system.
System development was performed on the CSTAR-2003
evaluation set, and then blindly applied to the IWSLT-2004
test set. No optimization has been done with respect to
the post-processing required by the IWSLT-2004 evaluation
campaign (e.g. absence of punctuation). The system has
been trained in a standard way (e.g. with punctuation and
with lower-case letters) and the required post-processing was
simply applied to the output sentences as final step. The de-
velopment of the system was done by considering the BLEU
score, both in the data selection and in the optimization of
the scaling factors.

6.1. Selection of additional training data

Adding data for training the system is an hard issue. Us-
ing more training data usually improves performance of the

baseline system, provided these data are close enough to the
domain of the test set. However, an exhaustive exploration
of corpora available for the IWSLT evaluation for finding
the best combination for training the system is unfeasible.
Hence, first we searched for the best monolingual resources
consisting of the English part of parallel corpora. Succes-
sively, we tried the effectiveness of additional bilingual re-
sources. Note that no optimization of scaling factors is made
in this phase.
The upper half of Table 2 summarizes the results of the selec-
tion of additional monolingual resources. Monolingual data
are used only for estimating the language model. Thebase-
line system was trained on the Supplied data.
Among the available corpora, the Basic Traveling Expression
Corpus (BTEC) [19], a collection of 162K parallel sentences
in several languages, is the closest to the task domain4. Us-
ing it, performance improvement over the baseline is about
17% relative. The impact on performance of other corpora
was explored by training different language models on them,
and combining the estimated models in a mixture [20]. Two
groups of additional data are considered: DB1 mostly com-
posed by news corpora5 and DB2 consisting of press releases
released by the Hong Kong Special Administrative Region6.
In both cases, small relative decrements (−1.2% and−1.4%)
of the BLEU score were observed. This behavior can be ex-
plained by the specificity of BTEC, whose domain - tourism
- is different from those of the other corpora. Accordingly,
the language model estimated over BTEC is used for all the
following experiments.
Even more challenging is the selection of bilingual resources.
In order to avoid constraints given by the Additional data
condition, we worked under the Unrestricted data condition,
that permits the use of any parallel corpus for training.
Two translation systems are trained on different sets of bilin-
gual resources:tm-btec and tm-db3 (see lower half of
Table 2). The first system extends the supplied data with
BTEC; the second one with a selection of other corpora
available from LDC (DB37). The tm-btec system signifi-

4In fact, both development and test sets are extracted from BTEC.
5The corpora are available from LDC: LDC2002E17, LDC2002E58, and

LDC2002E18.
6LDC2003E25 and LDC2000T46.
7LDC2002E17, LDC2002L27, LDC2003E25, LDC2002E58, and
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Table 3: Official results of the IWSLT-2004 evaluation campaign. Comparison between different types of Chinese segmentation.

Data Condition Segmentation BLEU NIST MWER MPER
Supplied Supplied 0.3156 7.1604 53.1 45.3

Special 0.3493 7.0973 50.8 43.0
Additional Supplied 0.3499 7.5199 51.0 43.3

Special 0.3514 7.3958 49.7 42.0
Full 0.3490 6.6185 51.9 44.5

Unrestricted Supplied 0.3774 7.0880 50.0 43.4
Special 0.4118 7.0908 47.7 41.0
Full 0.4409 7.2413 45.7 39.3

cantly outperformes previous systems. The increment of the
BLEU score is about 43% and 23% relative, with respect to
the baseline and lm-btec systems, respectively. Per-
formance oftm-db3 system scored better thanbaseline
andlm-btec , too.
The constraints on the use of training data for the three con-
ditions and the above reported results on the development set
suggested the employment of the following systems for the
evaluation campaign: thebaseline system in the Supplied
data condition, thelm-btec in the Additional data condi-
tion, and thetm-db3 in the Unrestricted data condition. The
scaling factors that minimize the errors on the development
set were estimated through the procedure mentioned in Sec-
tion 5 and employed for the official evaluation.

6.2. Official evaluation

In developing the Chinese-English MT system for the
IWSLT-2004 evaluation campaign we had to face the prob-
lem of having different Chinese word segmentation in the
training corpora and in the test set. By assuming that each
available data set provides its own segmentation, and that no
knowledge is given about its characteristics, an interesting is-
sue is to understand which choice is the best between (i) ex-
ploiting the provided segmentation or (ii) removing the pro-
vided segmentation and homogeneously re-segmenting all
data.
Three types of segmentation were taken into account:

1. Supplied, the original Chinese segmentation provided
in the training and test corpus was not changed and
data were used as they were. This means that the seg-
mentation step was skipped during the preprocessing.

2. Special, Chinese segmentation was applied from
scratch by training the segmentation model (Section 4)
on a 7K-entry word-frequency list extracted from the
supplied data.

LDC2002E18.

3. Full, Chinese segmentation was applied from scratch
by training the segmentation model on a 44K-entry
word-frequency list supplied by LDC.

Table 3 reports automatic scores on the official test set for
each data condition and for each segmentation type. Con-
cerning the Supplied data condition, results show that the
Special segmentation outperforms theSuppliedone in terms
of BLEU score; the relative improvement is more than 10%.
It is worth noticing that theFull segmentation is not permit-
ted according to the Supplied data conditions. A reason for
the large difference in performance is probably due to the
fact that training and testing data were manually segmented
by different people. Hence, the two data sets reflect different
ways of interpreting the concept of word, which is quite fre-
quent in Chinese. Hence, the approach of automatically re-
segmenting all the data with one model produces the positive
effect of making training and testing data more consistent.

By looking at the Additional data condition, we notice that
the three segmentation modalities give comparable results.

In the Unrestricted data condition, results show that theFull
Segmentation method achieves the best performance. The
BLEU score relative improvement is about 17% and 7% with
respect toSuppliedandSpecialsegmentations, respectively.
This is not surprising because (i) the size of the training set
is much larger than in the Additional data condition and (ii)
the training set contains data much closer to the Chinese dic-
tionary used by the segmenter. These numbers appear to
confirm that the manual segmentation of the test set exhibits
some differences with respect to the segmentation typically
found in the LDC documents or even in the IWSLT-2004 sup-
plied training set.
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