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Abstract

This paper describes the system we built for the Chinese
to English track of the IWSLT 2004 evaluation campaign. A
one month effort was devoted to this exercise, starting from
scratch and making use as much as possible of freely avail-
able packages. We show that a decent phrase-based transla-
tion engine can be built within this short time frame.

1. Introduction

Machine Translation is a very active field nowadays strongly
anchored into a paradigm of performance. Evaluation exer-
cises such as those conducted within the TIDES project are
pushing system designers to constantly improve their sys-
tems. Currently, many of the top-performing systems are
phrase-based statistical machine translation (SMT) engines.
The fact that SMT systems are among the best ones in those
evaluation exercises is not surprizing considering the pecu-
liarities of the translation tasks considered. The popularity
of phrase-based models (PBMs) in SMT is neither a surprise,
since PBMs allow to a certain extent to cope with local word
reordering across languages, as well as to account for local
context modelling. [1] also credit PBMs for being somehow
tolerant to tokenization errors, an interesting characteristic
when dealing with languages such as Chinese, the source lan-
guage under consideration in this study.

This effervescent activity comes with some bonus. Sev-
eral freely available valuable packages (e.g. Giza++ [2],
Pharaoh [3], SRILM [4]) make possible the fast develop-
ment of a phrase-based translation engine. Other packages
allow to quickly evaluate a system according to a gold stan-
dard (e.g. MTEVAL http://www.nist.gov/speech/
tests/mt/mt2001/resource and GTM http://
nlp.cs.nyu.edu/GTM ). This paper reports on the one
month effort we spent building a system for the Chinese-to-
English track of the IWSLT workshop, relying intensively on
these packages.

2. Phrase-Based Models

Very recently, several authors [5, 6] proposed at the same
time an astonishingly simple but powerful model which we
designate hereafter as Flat Phrase-Based model (FPBM). A
FPBM is simply a collection of pairs of sequences of words
with one or several scores (or probabilities) attached to them.
The main difference between a FPBM and an alignment tem-
plate (AT) model [7] being that the former does not attempt
to model internal reordering of phrases. Thus, FPBMs as
such do not have generalization capabilities. Zens and Ney
[8] give an experimental comparison of both models on three
different test sets. On the German-English Verbmobil task,
the AT engine outperforms the PB engine they tested, while
on the other tasks — the Spanish-English Xerox task, and the
French-English Hansards task — they observed the opposite.
Tomàs et al. [9] recently revisited the AT model and report
that combining it with a FPBM brings some improvements.

The recipe given in [5, 6] for acquiring a FPBM is sim-
ple: use a word-alignment to identify in an heuristic way an
alignment relation at the so-called phrasal level. Both arti-
cles propose relative frequency counts to score each pair of
phrases. Several authors noted that the relative frequency es-
timator is particularly inappropriate to the task, since many
phrases (and especially long ones) are seen only few times,
sometimes only once. [5, 10] proposed to score a pair of
phrases according to an IBM-like word-based model, the lex-
icon probabilitiesp(f |n) being learned by relative frequency
over the word alignment set. This idea has also been tested
by Vogel et al. [10]. Also, in [8], the authors propose to score
a pair of phrases according to a smoothed probabilistic word
bilingual lexicon. And Vogel et al. [1] demonstrated ex-
perimentally that rating phrases according to an information-
based score yields noticeable improvements.

Other variations to the recipe mentioned above have been
extensively investigated by the CMU team and summarized
in [10]. They investigated variations on the way the word
alignment is produced, considering for instance a bilingual
bracketing alignment [11], an alignment technique also tried
at the same workshop by [12].

Zhang et al. [13] proposed an alternative way to collect
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phrases without requiring word alignment. They rely instead
on point-wise mutual information between source and tar-
get words to identify phrases in both languages. This has a
clear advantage over methods that rely on a monolingual seg-
mentation step, followed by a bilingual mapping one, as for
instance the one described in [14].

3. Our system

We developed a translation engine around the freely avail-
able packagePharaoh [3]. This package is provided with
a binary file, as well as a carefully written user manual.
The core of this decoder is a beam search engine optimiz-
ing a noisy channel model, as described in equation 1, where
sI
1 = s1, . . . , sI stands for the best sequence ofI phrases that

fully cover the source sentences.

ê = argmaxe p(c|e)plm(e)λlmω|e|×λω

= argmaxe,I pφ(cI
1|eI

1)plm(e)λlmω|e|×λω
(1)

Here, an independence assumption is further assumed be-
tween phrases, and the transfer modelpφ is formulated as in
equation 2, whereφ is a FPBM, andd is a simple distortion
model depending onai the starting position of the foreign
phraseci, andbi−1 the ending position of the native phrase
ei−1 (see [5] for more).

p(cI
1|eI

1) =
I∏

i=1

φ(ci|ei)λφd(ai − bi−1)λd (2)

What really matters from the user point of view of this
package, is the fact that the decoder takes as input:

• a pair of FPBMs, one for each direction, the direct
model (in our caseφ(e|c)) being used for nbest-list
rescoring, a functionality ofPharaoh we did not use
in this study.

• a target language model (English), in the format output
by the SRILM package [4],

• a set of weights applied in a log-linear fashion to the
different models, namely:λφ, the weight given to the
transfer model;λlm, the weight given to the language
model,λω, the word-penalty weight andλd, the weight
given to the distortion model.

We trained the language models of the target part of the
training corpus (20 000 English sentences) with the SRILM
package1. In order to feed the phrase extractor, we first word-
aligned the training bitext making use of theGiza++ pack-
age. Since [5] shown that the degree of the IBM model from
which the viterbi alignment is computed was not playing a
crucial role, we used the viterbi approximation computed by
Giza++ for the IBM model 3 (training IBM model 4 is more

1We did not investigate the many smoothing options this package han-
dles, but applied the setting recommended in [15].

demanding, since we need to train the word classes that are
conditioning the distortion probabilities of this model).

The only thing we had really to implement was a pre-
scription to get the FPBMs required byPharaoh . This is
described in the following section.

4. Phrase extraction

We tried two kinds of strategies to compute the FPBMs. The
first one, is directly following the approach described in [5, 6]
and is detailed in section 4.1. The second one is a simple
string-based approach described in section 4.2.

4.1. Word-alignment-based extractor

A nowadays standard practice among the PBM practition-
ers consists in aligning the bitext at the word level mak-
ing use of word-alignment models trained in both direc-
tions (here C→E and E→C). This double alignment process
makes senses since the underlying alignment model (most
often an IBM model [16]) is not symmetrical. Two sets of
links between words are then distinguished. We callP (for
Precision) the set of links that are present in both alignment
directions, andR (for Recall) the links that are present in at
least one alignment (C→E or E→C). Note thatP ⊆ R. The
word alignment retained is constituted of theP-links, as well
as someR-links in the neighborhood ofP.

We implemented a variant of this approach which is
strongly inspired by [5, 6]. Although the principle is very
straightforward, we did not find in those articles a precise
enough description of the algorithm. So, for the sake of
completeness, we report in algorithm 1 the pseudo-code of
the variant that we implemented. Our algorithm works in
4 steps. First, theP-links are considered (line 6), then ex-
tended by consideringR-links (lines 9-21). Third, indepen-
dent boxes are collected (lines 24-33). An independent box
((x1, x2), (y1, y2)) represents a region in the alignment ma-
trix where none of the source wordsSx2

x1
is aligned to a word

not belonging toT y2
y1

and vice-versa:

∀x ∈ [x1, x2],∀y : <(x, y), y ∈ [y1, y2]
∀y ∈ [y1, y2],∀x : <(x, y), x ∈ [x1, x2]

(3)

where< is an alignment relation made explicit by step
1 and 2 of the algorithm. The fourth and last step of the
algorithm (lines 36-42) consists in electing pairs of phrases,
any sequence of adjacent (on the source side) boxes.

The pseudo-code of our variant makes use of a data struc-
ture T [x] (resp. T [y]) which stands for the target (resp.
source) positions associated to the source (resp. target) posi-
tion x (resp.y):

T [x] = {y : <(x, y)},∀x ∈ [1, |S|]
T [y] = {x : <(x, y)},∀y ∈ [1, |T |] (4)

We also need a few functions to simplify the description
of the algorithm. The first function maintains theT structure
during step 1 and 2 of the projection algorithm.
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function add(x, y)
{

T [x]← T [x] ∪ {y}
T [y]← T [y] ∪ {x}

The second one, called during the extension stage verifies
that(x, y) is a valid link to extend on:

function neighbor(x, y)
if (x, y) ∈ R, 6 ∈P then

if T [x] = {} or T [y] = {} then
a← a ∪ (x, y)

The third function collects the pairs of phrases after
checking some few length properties and is called during step
4 of the algorithm:

function add(x1, x2, y1, y2)
x← x2 − x1 + 1
y ← y2 − y1 + 1
if x ∈ [minLength, maxLength] then

if y ∈ [minLength, maxLength] then
if (max(x, y)/min(x, y)) ≤ ratio then

res← res ∪ (Sx2
x1

, T y2
y1

)

4.2. String-based extractor

The second phrase extractor performs simple string opera-
tions. It is intended to capture obvious redundancies at the
sentence and phrasal level in the training corpus. It is based
on the simplifying assumption that if two strings are in rela-
tion of translation and if part of them also are, then we can
induce a specific translation relation between the other parts.
This is the idea formulated in the algorithm 2.

In practice, we factor out the prefix and suffix test carried
out in lines 10 and 11 of Algorithm 2 by sorting the training
corpus using as sort key: a) the Chinese sentence, b) the En-
glish sentence, c) the inverted Chinese sentence and d) the in-
verted English sentence. Iterating from the top to the bottom
of these lists, whenever a line contains it’s preceding line,
the preceding line is subtracted and the new pair of phrases
added to the training corpus. The process was stopped when
the productivity of the algorithm decreased, producing about
60 000 new pairs of phrases.

5. Phrase ranking

We examined two ways of scoring the pairs of phrases(s, t).
Both are estimates of the conditional probabilityp(t|s). The
first estimator is relative frequency (equation 5) which, as
mentioned earlier, largely overestimates the probability of
rare phrases. Table 1 reports the frequency distributions of
the pair of phrases observed for different settings on the
training corpus (20 000 pairs of sentences). Approximatively
90% of the observed pairs appear only once in the training
corpus, and around 70% of the parameters are set to unity by
the relative frequency estimator.

An alternative is to resort to IBM model 1 [16] to score a
pair. This is done by computing equation 6.

Algorithm 1 A Koehn-Tilmann-like variant for phrase ex-
traction
Require: P,R,minLength,maxLength, ratio
Ensure: res contains all the pairs of phrases

1: Initialization
2: res← {}
3: for all x : 1→ |S| do T [x]← {}
4: for all y : 1→ |T | do T [y]← {}
5:

6: Step1:P-projection
7: for all (x, y) ∈ P do add(x, y)
8:

9: Step2: Extension
10: for p : 1→ 2 do
11: repeat
12: a← {}
13: for s : 1→ |S| do
14: for all t ∈ T [s] do
15: if p = 2 then
16: neighbor(x-1,y-1); neighbor(x+1,y-1);
17: neighbor(x-1,y+1); neighbor(x+1,y-1);
18: else
19: neighbor(x-1,y); neighbor(x+1,y);
20: neighbor(x,y-1); neighbor(x,y+1);
21: for all (x, y) ∈ a do add(x, y)
22: until |a| = 0
23:

24: Step3: Collect independent boxes
25: b← {}
26: for x : 1→ |S| do
27: X ← {x}; Y ← {}
28: repeat
29: Xm ← X; Ym ← Y
30: for all x ∈ X do Y ← Y ∪ T [x]
31: if Y != Ym then
32: for all y ∈ Y do X ← X ∪ T [y]
33: until X = Xm andY = Ym

34: b← b∪
{

(min{x : x ∈ X},max{x : x ∈ X}),
(min{y : y ∈ Y },max{y : y ∈ Y })

}
35: x← max{x : x ∈ X}+ 1
36:

37: Step4: Combine boxes
38: for i : 1→ |b| do
39: let ((xmi

, xMi
), (ymi

, yMi
)) = bi

40: add(xmi
, xMi

, ymi
, yMi

)
41: for j : i + 1→ |b| do
42: let ((xmj , xMj ), (ymj , yMj )) = bj

43: if xMi + 1 = xmj then
44: add(xmi

, xMj
, ymi

, yMj
)
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Algorithm 2 A String-based phrase extractor

Require: T = {(Ei, Ci), i ∈ [1, |T |]}, a training corpus
Ensure: res contains the pair of phrases

1: Initialization
2: res← {}
3: for i : 1→ |T | do
4: res← res ∪ (Ei, Ci)
5:

6: Applying compositionality
7: repeat
8: if (E1, C1) ∈ res then
9: if (E2, C2) ∈ res then

10: if C2 = C1α or C1 = C2α then
11: if E2 = E1β or E1 = E2β then
12: res← res ∪ (β, α)
13: until convergence ofres

prel(t|s) =
|(t, s)|
|t|

(5)

pibm(t|s) = (|S|+ 1)−|T |
|T |∏
i=1

∑
j∈[0,|S|]

p(ti|sj) (6)

6. Corpora

During this exercise, we only used the corpora made avail-
able by the organizers, the characteristic of which are re-
ported in Table 2. No pre-processing was done to try to
reinforce the parallelism between the two languages. Nei-
ther did we try to account for class of tokens such as num-
bers or dates. We did not change either the tokenization pro-
vided, but did convert the English into lowercase. Punctua-
tion marks were left as is in the corpora, but removed after
translation, as required by the organizers. The TRAIN cor-
pus was split into TRAIN-Q and TRAIN-A corpus, gathering
interrogative and affirmative sentences respectively. See sec-
tion 7.5 for the motivations behind this split.

The CSTAR corpus contains 506 Chinese sentences with

Table 1: Frequency distribution of pairs of phrases observed
in the training corpus for different values ofminLength
and maxLength. A ratio of 2.0 was applied. %f1, %f2
and %f3+ stand for the percentage of parameters (pairs of
phrases) seen 1, 2 or at least 3 times in the TRAIN corpus.
%p = 1 stands for the percentage of parameters that have a
relative frequency of 1.

min max |model| %f1 %f2 %f3+ %p = 1
1 8 166 481 90.6 4.9 4.5 74.6
2 8 153 512 92.7 4.3 3.0 78.5
2 4 73 369 87.0 7.1 5.9 68.7

15 to 16 English reference translations2. It was available four
weeks before the official test and was used to gain some ex-
pertise on the phrase-based models.

Table 2: Main characteristics of the corpora used in this
study.

Chinese English
corpus |pair| tokens words tokens words

TRAIN 20 000 182 904 7 643 188 935 7 181
TRAIN-A 11 884 112 000 6 456 116 343 6 008
TRAIN-Q 8 116 70 904 4 024 72 592 3 900
CSTAR 506 3 515 870 – –
TEST 500 3 794 893 – –

7. Experiments

In this section, we summarize the experiments we did with
the above described phrase-based acquisition methods. We
ran the decoder on the CSTAR corpus. The best parameter
setting would be the one we would use for translating the
official test set. As discussed in few moments, many things
have been tried, some useful, some not, and much script code
has been churned out, with some inevitable bugs (recall that
we devoted one month for the full exercise).

Repeating the experiments with a less stringent schedule
(that is, after the official test), we detected and corrected sev-
eral bugs. The results that are reported here are mainly those
we measured after the competition (after correcting the few
bugs we found), but we also report in section 7.6 the results
of the translations we officially submitted.

One of the goal of the IWSLT exercise was to evaluate
the salience of different evaluation metrics. For our own pur-
pose, we computed a subset of those metrics: the BLEU3

and NIST scores using themtevalscript. We also computed
MWER andMSER measures with an in-house tool as follow:

MWER(TS
1 , RN

1 ) =
100
S

S∑
i=1

min
r∈[1,N ]

ed(Ti, R
r
i ) (7)

MSER(TS
1 , RN

1 ) =
100
S

S∑
i=1

δ

(
min

r∈[1,N ]
ed(Ti, R

r
i )

)
(8)

with

δ(x) =
{

0 if x = 0
1 otherwise

(9)

whereTS
1 is the set ofS candidate translations to be eval-

uated,Ti being the candidate translation of theith source

2For some reasons, a few sentences had only 15 translations. Therefore,
the reference we consider in this study is constituted only of the first 15
translations provided for each source sentence.

3For readability reasons, we report BLEU% scores, that is, the BLEU
score multiplied by 100.
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sentence,RN
1 stands for the set ofN reference translations

to theS source sentence;Rr
i being therth reference transla-

tion of theith source sentence.
ed(a, b) is the classicedit distancebetweena and b

(counting 1 for insertion, substitution and deletion) normal-
ized by the total number of operations involved to mapa into
b (counting as well the identity operation).

7.1. From word-based models to phrase-based models

The first experiment we conducted was to compare the per-
formance of a word-based translation engine to the perfor-
mance ofPharaoh seeded with a FPBM acquired by the ap-
proach described in section 4.1 (ratio = 2, maxLength =
8, andminLength = 1). Each parameter of this model was
estimated by relative frequency.

The word-based SMT engine is an extension to a trigram
language model of the inverted dynamic programming ap-
proach described in [17]. This decoder which is designed for
an IBM model 2 had been implemented before the IWSLT
exercise. The performance of both the word-based and the
phrase-based engines are reported in Table 3.

As can be observed, the performances of both decoders
do elicit differences, notably on the NIST score, but not as
much as we would have expected at first, especially if we
consider the simplicity of the word-based model (WBM) em-
bedded into our word-based engine.

As a raw check that our word-based engine was not too
buggy, we ran thePharaoh decoder with the transfer pa-
rameters of the IBM model 2 converted into the appropriate
format. The results are reported in line 3 of Table 3.

Table 3: Performances measured on the CSTAR corpus of the
word-based engine (line 1), and the phrase-based engine (line
2). Line 3 shows the performance of thePharaoh decoder
fed with an IBM model 2 transfer model

engine NIST BLEU% MWER MSER

ibm2+3g 5.0726 26.57 60.56 94.47
Pharaoh 5.5646 26.16 59.70 94.27
wbm byPharaoh 4.8417 15.54 64.95 97.63

7.2. Tuning the decoder parameters

One important thing we learned is that significant improve-
ments — as measured by the automatic metrics we computed
— can be obtained by tuning the engine adequately. What we
call tuning here is the choice of the decoder parameters (or
meta parameters) we can control via the built-in options of
Pharaoh . This is done without modifying the model them-
selves (translation or language models), but finding the ap-
propriate value of:λlm, the weight given to the language
model (see equation 1);λω the word penalty (see equation
1); λφ, the weight given to the translation model (see equa-

tion 2), andλd, the weight given to the distortion model: (see
equation 2).

Since we had only a few parameters to tune, we applied
a poor man’s strategy: a) sample uniformly the range of each
parameter, b) generate all the combinations of parameter val-
ues, and c) translate the full test corpus with all these con-
figurations generated. Clearly, there are more clever ways to
tune the decoder, but we had at our disposal around 30 pro-
cessors, and thanks to the decoder speed, it was manageable
to tune the decoder for a set of models within a few hours of
computation4. We made the arbitrary choice of optimizing
the performance as measured by the NIST metric.

We report in Table 4 the influence of tuning for a
translation model obtained by the FPBMs used in the pre-
vious experiment (relative frequency estimator,ratio =
2,maxLength = 8,minLength = 1).

The first line of this table shows the performance we ob-
tained with the default configuration ofPharaoh . The third
line shows the configuration of the decoder which yields the
largest NIST score. Clearly, tuning is very important, since
we obtained a relative gain over the default configuration
(line 1) of 23%. If we had to tune only one parameter, then
the word penalty would be the one to tune, since it brings
alone a relative improvement of 14%, which represents 61%
of the higher gain observed. The performance of the decoder,
tuned for the word penalty only is reported in the second line
of Table 4.

From now on, the performance reported for a given set of
models are those obtained after tuning the NIST metric.

Table 4: Performances measured on the CSTAR corpus with-
out tuning (line 1), after tuning the word penalty weight (line
2), and after the tuning of all the parameters (line 3).

λd λφ λw λlm NIST BLEU% MWER MSER

1 1 0 1 5.5646 26.16 59.70 94.27
1 1 -1.5 1 6.3470 25.63 58.93 94.27
.2 .9 -1.5 .8 6.8401 28.44 56.25 94.07

7.3. Merging different FPBMs

We observed that merging a FPBM with a word-based model
enlarges its coverage. Merging two FPBMs (a word-based
model can be seen as a special case of a FPBM)p1(t|s) and
p2(t|s) was done by copying the parameterspi(t|s) whens
was not in the other model. In cases both models hads in
common, the union of the target phrases associated tos by
both models was considered. In cases where both models had
the same pair of phrases(s, t), its score was averaged over
the two models. The parameters were finally normalized so

4Actually, an important part of the tuning process is devoted to comput-
ing the NIST scores with theMTEVAL script, as well as loading the parame-
ters intoPharaoh
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that
∑

t p(t|s) = 1,∀s.
Table 5 shows (line 2) that merging the FPBM described

above (ratio = 2,minLength = 1,maxLength = 8)
with a word-based model resulting from IBM training yields
a relative improvement over the phrase-based model alone
of 3.7%. Extending the resulting model with the pairs of
phrases obtained by the methodology described in section
4.2 only slightly improves the performance (line 3). Actu-
ally this gain is probably due to the fact that the TRAIN and
TEST corpora share some source sentences, and that the sec-
ond phrase acquisition method includes the pairs of sentences
of the training corpus as parameters.

The improvement observed by merging the WBM with
the FPBM is somehow surprising considering the very harsh
way we did the merging. We tried a cleaner linear combina-
tion of both models without better improvements.

Table 5: Performances of the merged model measured on
the CSTAR corpus. SBPM stands for the string-based phrase
model extracted by the approach described in section 4.2.

config |p| NIST BLEU% MWER MSER

FPBM 6.8401 28.44 56.25 94.07
+ WBM 7.0766 31.38 54.88 93.28
+ SPBM 7.0926 31.78 54.56 92.69

7.4. Scoring phrases with IBM model 1

We report in this section the influence of the way a pair of
phrases is scored within the translation model. The base-
line model we consider here is the merged FPBM of the last
section (line 3 of Table 5), a model of 306 585 parameters
trained by relative frequency. Rating these parameters by
equation 6 yields a relative improvement in the NIST score
of 3% (line 2 of Table 6).

For a given set of phrase parameters,Pharaoh allows to
provide several scores, in which case, a specific weight must
be given to each model. We tuned a model with two scores,
one computed by relative frequency, the other one computed
by equation 6. Thus, the tuning of the decoder was involving
5 parameters. The result of this experiment can be seen in
line 3 of Table 6. A slight increase of the NIST metric as
well as an improvement in BLEU% score can be observed.

Inspecting the last model, we observed that around half
the parameters (150 127) where set to 1 by each score. This
is due to the fact that up to now, we systematically normal-
ized the parameters so that the stochastic constraints hold.
We tried a last model where the IBM model 1 score was not
normalized in the cases where only one target phrase was as-
sociated to a given source sentence (we also tried with less
success a model where no normalization was carried out at
all for the IBM score). The result of this experiment is shown
in line 4 of Table 6: an improvement is observed on the NIST

score, but at the detriment of the word error rate.

Table 6: Influence of the function used to score a parameter.
relfreq stands for the relative frequency estimator,ibm
for the IBM model 1 scoring (equation 6), andpn-ibm for
the partially normalized IBM score.

model NIST BLEU% MWER MSER

relfreq 7.0926 31.78 54.56 92.69
ibm 7.3067 32.98 53.86 92.49
relfreq&ibm 7.3118 34.48 52.73 91.90
relfreq&pn-ibm 7.4219 34.6 53.02 91.70

7.5. Specific models

Based on the observation that around 40% of the training sen-
tences were interrogatives, we investigated whether splitting
the training corpus into two parts (interrogative sentences
versus affirmative ones) and training separately on these two
corpora could lead to some improvements. Splitting the cor-
pus was done by explicitly looking for the presence (or ab-
sence) of the question mark word at the end of the Chinese
sentences.

At translation time, the sentences ending with the ques-
tion mark were translated first with the specificquestioncon-
figuration. The other sentences were translated with theaf-
firmativeconfiguration. The two translation sets were then
merged appropriately to get a final translation of the source
test corpus.

We first tried to train two different translation models.
None of the trials we made resulted in an improvement. The
fact thatPharaoh does not lend itself to combining differ-
ent translation models that do not have the exact same set
of parameters might be a reason for our lack of success in
this experiment. We found however that combining a spe-
cific language model with the one trained on the full corpus
leads to a slight improvement.

This time, we conducted separately two tunings — one
for affirmative sentences, one for questions — over the 6 pa-
rameters now controlling the decoder: two parameters for
the language models (one for the specific model, one for
the general one), two parameters for the translation model
(one for the relative frequency score, one for the IBM score),
one parameter for the distortion model, and one for the word
penalty. The best improvement on the NIST score is reported
in line 4 of Table 7. We observe that it is not correlated with
improvements in the other metrics.

7.6. The translations we submitted before the deadline

According to the experiences we conducted on the CSTAR

corpus, we identified several variants that we wanted to sub-
mit. They are enumerated in increasing order of their ex-
pected merit as estimated by the NIST metric5.

5At the time of the exercise, the performance of the QA-model we had
was significantly higher than that of other variants we considered.
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Table 7: Performances of the merged model measured on the
CSTAR corpus. A and Q stand for the performance mea-
sured on the subset of respectively affirmative and interroga-
tive sentences of the test corpus.

config NIST BLEU% MWER MSER

relfreq&ibm 7.3118 34.48 52.73 91.90
A 7.1862 34.21 53.12 91.18
Q 6.4995 34.92 52.12 93.00

specific-lm 7.4702 33.64 53.27 91.90
A 7.3229 33.66 53.08 90.85
Q 6.7010 33.58 53.55 93.50

ibm2+3g our word-based translation engine,

straight the model obtained by the extraction method de-
scribed in section 4.1,

merge the best model obtained by merging word associ-
ations and phrase associations acquired by the two
methods we described,

QA the engine combining a general language model with
one specifically trained on the interrogative (resp. af-
firmative) sentences of the TRAIN corpus,

The variant we submitted for manual evaluation was the
QA one, the last one in this list. We also submitted a trans-
lation involving manual intervention in order to measure
the usefulness of the automatic translations for human post-
editing. One way of measuring the usefulness of a MT sys-
tem is to see whether a post-editor can enhance the amount
of correct translations without seeing the source text being
translated. Therefore, for each source sentence, we presented
a subject6 with translations (produced by the above variants)
from which he produced a final translation. He could do that
by selecting one translation among the generated translations
and enhancing its quality though slight modifications .

Out of the 500 target sentences that were produced in this
way, 423 (84.6%) were just selections of one of the automatic
translations. Out of these 423 translations, 85 (20%) were
produced by the word-based engine (ibm2+3g).

In many cases it was impossible to guess a meaning from
the translations. Particularly and in most cases for longer
sentences, it was hopeless to amend the translation (e.g. very
sorry to have in case two people eight with two suitcases
sit in the difference from here). These translations were just
copied. In other cases, almost any choice of the produced
translations was a priori equally good, as in:

how many minutes on foot ?
how many minutes ?
how many minutes does it take to get to the sta-
tion by taxi ?

6One of the authors of this paper, not familiar with Chinese.

In total, 77 sentences were manually modified. Some ob-
vious errors, such as repetitions of words, missing or addi-
tional articles and incomplete phrases, were corrected and
the word position was adjusted. A one-sentence session is
illustrated in Table 8; the full session can be seen atwww.
iro.umontreal.ca/˜felipe/iwslt/manual .

Table 8: Illustration of themanualexperiment. The user was
presented here with 7 different translations, and produced his
own one out of them.

trans1 take a bath for a twin room .
trans2 please take a bath for a double .
trans3 take a bath of double .
trans4 take one twin room with bath .
trans5 have a bath for double .
trans6 have a twin room with bath , please .
trans7 have a double room with bath , please .
manual please, a twin room with bath .

This submission is calledmanualin Table 9 which shows
the scores that were returned to us by the organizers.

As can be observed in Table 9, the order of merit of the
variants we tried as measured on the CSTAR corpus is close
to the one we observe on the TEST corpus. The exception
is for the QA variant which performed worst on the latter
corpus than themergevariant. We also observed a gain in
performance for themanualversion.

Table 9: Quality of the translations submitted before the
deadline for the TEST corpus. TheQA variant is the one we
submitted for manual evaluation. The figures reported are
rounded versions of the ones reported by the organizers.

config BLEU% NIST GTM WER PER

ibm2+3g 27.27 6.55 62.49 58.12 48.82
straight 30.92 7.52 66.93 56.05 47.90
merge 35.32 8.00 68.60 51.74 43.86
QA 33.89 7.85 68.55 53.24 45.14
manual 36.93 8.13 68.42 49.62 42.53

8. Conclusions and future work

We took the opportunity of the IWSLT 2004 shared task to
experiment with phrase-based models. Although FPBMs are
conceptually very simple, we found that many factors must
be considered to get the best out of them, and that a great
amount of time must be spent to monitor the improvements.

Due to lack of time, we studied in this exercise only few
of the factors that can affect the performance. We did not
for example study the impact of word alignment techniques
on our phrase acquisition method. Neither did we test care-
fully the different variants of the phrase extractors we imple-
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mented. Finally, we did not find time to analyse why a given
variant was working better than another very close one.

However, we experienced the importance of adequately
tuning the meta-parameters of the decoder. We also observed
that improvements could be obtained by merging the param-
eters of phrase-based and word-based models.

This work was manageable in a short period of time,
thanks to the availability of thePharaoh decoder. A by-
product that we found useful is that this decoder offers a ref-
erence performance against which we can compare another
decoder. In particular, we verified that our word-based en-
gine had reasonable performances compared toPharaoh
seeded with the same transfer model.

The greatest frustration we had after accomplishing this
work was to contemplate the numerous experiments we
could have done but did not. One bottleneck into a systematic
exploration of phrase-based variants is the tuning required af-
ter each change in any step of the acquisition of a FPBM. We
plan to consider a better way of tuning the parameters toward
a given metric or set of metrics.
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