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Abstract

This paper presents a novel automatic sentence segmentation
method for evaluating machine translation output with pos-
sibly erroneous sentence boundaries. The algorithm can pro-
cess translation hypotheses with segment boundaries which
do not correspond to the reference segment boundaries, or
a completely unsegmented text stream. Thus, the method is
especially useful for evaluating translations of spoken lan-
guage. The evaluation procedure takes advantage of the edit
distance algorithm and is able to handle multiple reference
translations. It efficiently produces an optimal automatic seg-
mentation of the hypotheses and thus allows application of
existing well-established evaluation measures. Experiments
show that the evaluation measures based on the automatically
produced segmentation correlate with the human judgement
at least as well as the evaluation measures which are based
on manual sentence boundaries.

1. Introduction

Evaluation of the produced results is crucial for natural lan-
guage processing (NLP) research in general and, in particu-
lar for machine translation (MT). Human evaluation of MT
system output is a time consuming and expensive task. This
is why automatic evaluation is preferred to human evaluation
in the research community. A variety of automatic evaluation
measures have been proposed and studied over the last years.
All of the wide-spread evaluation measures like BLEU [1],
NIST [2], and word error rate compare translation hypothe-
ses with human reference translations. Since a human trans-
lator usually translates one sentence of a source language
text at a time, all of these measures include the concept of
sentences, or more generally, segments1. Each evaluation al-
gorithm expects that a machine translation system will pro-
duce exactly one target language segment for each source
language segment. Thus, the total number of segments in the
automatically translated document must be equal to the num-
ber of reference segments in the manually translated docu-
ment.

In case of speech translation, the concept of sentences is
in general not well-defined. A speaker may leave a sentence

1Throughout the paper, we will use the term “segment”, by which we
mean a sequence of words that may or may not have proper punctuation.

incomplete, make long pauses, or speak for a long time with-
out making a pause. A human transcriber of speech is usu-
ally able to subjectively segment the raw transcriptions into
sentence-like units. In addition, if he or she was instructed
to produce meaningful units, each of which has clear seman-
tics, then these sentence-like units can be properly translated
into sentence-like units in the target language.

However, an automatic speech translation system is ex-
pected to translate automatically recognized utterances. In
the few speech translation evaluations in the past, an auto-
matic speech recognition (ASR) system was forced to gen-
erate segment boundaries in the timeframes which had been
defined by a human transcriber. This restriction implied that
a manual transcription and segmentation of the test speech
utterances had to be performed in advance. We argue that
this type of evaluation does not reflect real-life conditions.
In an on-line speech translation system, the correct utterance
transcription is unknown to the ASR component, and seg-
mentation is done automatically based on prosodic or lan-
guage model features. This automatic segmentation should
define the initial sentence-like units for translation. In addi-
tion, some of these units may then be split or merged by the
translation system to meet the constraints or modelling as-
sumptions of the translation algorithm. Under these more re-
alistic conditions the automatic segmentation of the input for
MT and thus the segment boundaries in the produced trans-
lations do not correspond to the segment boundaries in the
manual reference translations. Therefore, most of the exist-
ing MT error measures will not be applicable for evaluation.

In this paper, we propose an algorithm that is able to find
an optimal re-segmentation of the MT output based on the
segmentation of the human reference translations. The algo-
rithm is based on the Levenshtein edit distance algorithm [3],
but is extended to take into account multiple human reference
translations for each segment. As a result of this segmenta-
tion we obtain a novel evaluation measure –automatic seg-
mentation word error rate (AS-WER).

The paper is organized as follows. In Section 2, we re-
view the most popular MT evaluation measures and discuss
if and how they can be modified to cope with automatic seg-
mentation of MT output. Section 3 presents the algorithm
for automatic segmentation. In Section 4, we compare the
error measures based on automatic segmentation with the er-
ror measures based on human segmentation and show that the



new evaluation measures give accurate estimates of transla-
tion quality for different tasks and systems. We conclude the
paper with Section 5, where we discuss the applications of
the new evaluation strategy and future work.

2. Current MT Evaluation Measures

Here, we analyze the most popular MT evaluation measures
and their suitability for evaluation of translation output with
possibly incorrect segment boundaries. The measures that
are widely used in research and evaluation campaigns are
WER, PER, BLEU, andNIST.

Let a test document consist ofk = 1, . . . , K candidate
segmentsEk generated by an MT system. We also assume
that we haveR reference translation documents. Each ref-
erence document has the same number of segments, where
each segment is a translation of the “correct” segmentation
of the manually transcribed speech input2. If the segmenta-
tion of the MT output corresponds to the segmentation of the
manual reference translations, then for each candidate seg-
mentEk, we haveR reference sentences̃Erk. Let Ik denote
the length of a candidate segmentEk, andNrk the reference
lengths of each reference segmentẼrk. From the reference
lengths, an optimal reference segment lengthN∗

k is selected
as the length of the reference with the lowest segment-level
error rate or best score [4].

With this, we write the total candidate length over the
document asI :=

∑
k Ik, and the total reference length as

N∗ :=
∑

k N∗
k .

2.1. WER

The segment-level word error rate is defined as the Leven-
shtein distancedL(Ek, Ẽrk) between a candidate segment
Ek and a reference segment̃Erk, divided by the reference
lengthN∗

k for normalization.
For a whole candidate corpus with multiple references,

the segment-level scores are combined, and theWER is
defined to be:

WER :=
1

N∗
∑

k

min
r

dL

(
Ek, Ẽrk

)
(1)

In this paper, we also evaluate MT outputat document level.
When evaluating at document level, we consider the whole
candidate document and the documents of reference transla-
tions to be single segments (thus,K is equal to 1 in Eq. 1).
This is different from the usual interpretation of the term
which implies the average over segment-level scores.

Word error rate on document level without segmentation
into sentences is often computed for the evaluation of ASR
performance. In ASR research, where there is a unique ref-
erence transcription for an utterance, such document-level

2Here, the assumption is that each segment has the same number of ref-
erence translations. This is not a real restriction since the same translation
can appear in several reference documents.

evaluation is acceptable. In machine translation evalua-
tion, many different, but correct translations are possible;
thus, multiple references are commonly used. However, the
document-levelmultiple-referenceWER calculation is not
possible. According to Eq. 1, such a calculation will always
degenerate to a single-reference WER calculation, since the
reference document with the smallest Levenshtein distance
to the candidate document will be selected.

2.2. PER

The position independent error rate [5] ignores the ordering
of the words within a segment. Independent of the word
position, the minimum number of deletions, insertions and
substitutions to transform the candidate segment into the
reference segment is calculated. Using the countsner, ñerk

of a worde in the candidate segmentEk, and the reference
segment̃Erk, respectively, we can calculate this distance as

dPER

(
Ek, Ẽrk

)
:=

1
2

(∣∣Ik−Nrk

∣∣ +
∑

e

∣∣nek−ñerk

∣∣
)

This distance is then normalized to obtain an error rate, the
PER, as described in section 2.1.

CalculatingPER on document level results in clearly too
optimistic estimates of the translation quality since, e. g. the
first word in the candidate document will be counted as cor-
rect if the same word appears as a last (e. g. 500th) word in
a reference translation document. Another approach would
be to “chop” the candidate corpus into units of some length
and to computePER on these units. The unit length may be
equal to the average reference segment length for all units in
the corpus, or may be specific to individual reference units.
However, experimental evidence suggests that the resulting
estimates of translation quality are rather poor. The length of
the (implicit) segments in the candidate translations may sub-
stantially differ from the length of the reference sentences.
Consequently, meaningful sentence-like units are necessary
for thePER measure.

2.3. BLEU and NIST

BLEU [1] is a precision measure based onm-gram count
vectors. The precision is modified such that multiple refer-
ences are combined into a singlem-gram count vector. Mul-
tiple occurrences of anm-gram in the candidate sentence are
counted as correct only up to the maximum occurrence count
within the reference sentences. Typically, them-grams of
sizem = 1, . . . , 4 are considered. To avoid a bias towards
short candidate segments consisting of “safe guesses” only,
segments shorter than the reference length are penalized with
a brevity penalty.

The NIST score [2] extends theBLEU score by tak-
ing information weights of them-grams into account. The
NIST score is the sum over all information counts of the
co-occurringm-grams, which are summed up separately for
eachm = 1, . . . , 5 and normalized by the totalm-gram
count. As inBLEU, there is a brevity penalty to avoid a bias



towards short candidates. Due to the information weights,
the value of theNIST score depends highly on the selection
of the reference documents.

Both measures can be computed at document level. How-
ever, as in the case ofPER, the resulting scores will be too
optimistic (see Section 4), since incorrectm-grams appear-
ing in one portion of a candidate document will be matched
against the samem-grams in completely different portions in
the reference translation document.

3. The Algorithm

The main idea of the proposed automatic re-segmentation
algorithm is to make use of the Levenshtein alignment be-
tween the candidate translations and human references on
document level. The Levenshtein alignment between the
sequence of candidate words for the whole document and
a sequence of reference translation words can be found by
backtracing the decisions of the Levenshtein edit distance al-
gorithm. Based on this automatic alignment, the segment
boundaries of the reference document can be transferred to
the corpus of candidate translations.

3.1. Notation

More formally, given a reference document
w1, . . . , wn, . . . , wN with a segmentation into
K segments defined by the sequence of indices
n1, . . . , nk, . . . , nK := N , and a candidate document
e1, . . . , ei, . . . , eI , we find a Levenshtein alignment be-
tween the two documents with minimal costs and obtain
the segmentation of the candidate document, denoted by
i1, . . . , ik, . . . , iK := I, by marking words which are
Levenshtein-aligned to reference wordswnk

.

This procedure has to be extended to work with multiple
reference documentsr = 1, . . . , R. To simplify the algo-
rithm, we assume that a reference translation of a segmentk
has the same length across reference documents. To obtain
such a set of reference documents, we apply a preprocess-
ing step. First, for each segment, the reference translation
with the maximum length is determined. Then, to the end of
every other reference translation of the segment, we attach
a number of “empty word” symbols$ so that the segment
would have this maximum length. In addition, at each seg-
ment boundary (including the document end) we insert an
artificial segment end symbol. This is done to make the ap-
proach independent of the punctuation marks, which may not
be present in the references or do not always stand for a seg-
ment boundary.

After this transformation, each reference document has
the same length (in words), given by:

N := K +
K∑

k=1

max
r

Nr,k

3.2. Dynamic Programming

The proposed algorithm is similar to the algorithm for speech
recognition of connected words with whole word models [6].
In that dynamic programming algorithm, there are two dis-
tinct recursion expressions, one for within-word transitions,
and one for transitions across a word boundary. Here, we
differentiate between the alignment within a segment and the
recombination of hypotheses at segment boundaries.

For the within-segment alignment, we determine the
costs of aligning a portion of the candidate translation to a
pre-defined reference segment. As in the usual Levenshtein
distance algorithm, these are recursively computed using the
auxiliary quantityD(i, n, r) in the dynamic programming:

D(i, n, r) = min{D(i− 1, n− 1, r) + 1− δ(ei, wnr),
D(i− 1, n, r) + 1, D(i, n− 1, r) + 1}

Here, given the previously aligned words, we determine what
possibility has the lowest costs: either the candidate wordei

matches the wordwnr in the r-th reference document, or it
is a substitution, an insertion or a deletion error. A special
case here is when a reference translation that does not have
the maximum length has already been completely processed.
Then the current wordwnr is the empty word$, and it is
treated as a deletion with no costs:

D(i, n, r) = D(i, n− 1, r), if wnr = $.

The index of the last candidate word of the previous segment
is saved in a backpointerB(i, n, r); the backpointer of the
best predecessor hypothesis is passed on in each recursion
step.

The hypotheses are recombined at reference segment
boundaries. This type of recombination allows for two con-
secutive candidate segments to be scored with segments from
different reference documents. Assuming that a boundary for
thek-th segment is to be inserted after the candidate wordei,
we determine the reference which has the smallest edit dis-
tanceD(i, nk, r) to the hypothesized segment that ends with
ei. We memorize this locally optimal reference in a back-
pointerBR(i, k):

D(i, n = nk, r) = min
r′=1,...,R

D(i, n− 1, r′)

BR(i, k) = r̂ = argmin
r′=1,...,R

D(i, n− 1, r′)

BP (i, k) = B(i, n− 1, r̂)

In a backpointerBP (i, k), we save the index of the last word
of the hypothesized segmentk − 1, which was propagated
in the recursive evaluation. Note that in contrast to speech
recognition, where any number of words can be recognized,
the number of segments here is fixed. That is why the back-
pointer arraysBR andBP have the second dimensionk in
addition to the dimensioni (which corresponds to the time
frame index in speech recognition).



The algorithm terminates when the last word in each ref-
erence document and candidate corpus is reached. The opti-
mal number of edit operations is then given by

dL = min
r

D(I, N, r)

With the help of the backpointer arraysBP and BR, the
sentence boundary decisionsi1, . . . , iK are recursively back-
traced fromiK = I, together with the optimal sequence of
reference segmentŝr1, . . . , r̂K . These reference segments
can be viewed as a new single-reference documentÊ that
contains, for each segment, a selected translation from the
original reference documents. LetN̂ be the number of words
in Ê. Then the automatic segmentation word error rate (AS-
WER) is given by:

AS-WER=
dL

N̂

3.3. Complexity of the Algorithm

Since the decisions of the algorithm in the recursive eval-
uation depend, in each step, only on the previous words
ei−1 andwn−1, the memory complexity can be reduced with
the so called “one column” solution. Here, for each refer-
ence document indexr = 1, . . . , R, we keep only an ar-
ray A of lengthN . The elementA[n] in this array repre-
sents the calculation ofD(i−1, n, r) and is overwritten with
D(i, n, r) based on the entryA[n− 1] which holds the value
D(i, n − 1, r) and on the value of a buffer variable which
temporarily holdsD(i − 1, n − 1, r). Thus, the total mem-
ory complexity of the algorithm isO(N · R + I · K): two
arrays of sizeI × K are required to save backpointers with
optimal segmentation boundaries and sequences of reference
segments.

The time complexity of the algorithm is dominated by
the product of the reference document length, the candi-
date corpus length and the number of references, i. e. it is
O(N · I ·R).

Experimentally, our C++ implementation of the algo-
rithm using integer word indices and costs is rather efficient.
For instance, it takes 2-3 minutes and max. 400 MB of mem-
ory on a desktop PC to align a corpus of 20K words using
two reference documents with 2643 segments.

4. Experiments

To assess the novel evaluation measure and the effect of
automatic segmentation for the candidate translations, we
performed the following experiments. First, we calculated
scores for several automatic evaluation measures –WER,
PER, BLEU, NIST– using the available candidate transla-
tion documents with manual segmentation3. This segmenta-
tion corresponds to the segmentation of the source language
document and the segmentation of the reference translations.

3The scores were calculated using the internal C++ implementations, but
preprocessing of the hypotheses was done as in the NIST MT evaluation [7].

Table 1: Corpus statistics.

TC-STAR BTEC CE
Source language Spanish Chinese
Target language English English
Segments 2643 500
Running words 20164 3632
Ref. translations 2 16
Avg. ref. length 7.8 7.3
Candidate systems 4 20
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Figure 1: Pearson’s correlation coefficients for the human
adequacy judgements (IWSLT task).

Then, we removed the segment boundaries from the candi-
date translations and determined the segmentation automati-
cally using the Levenshtein distance based algorithm as de-
scribed in Section 3. As a consequence of the alignment
procedure we obtained the AS-WER. In addition, using the
resulting automatic segmentation which corresponds to the
segmentation of the reference documents, we recomputed the
other evaluation measures. In the following, we denote these
measures by AS-PER, AS-BLEU, and AS-NIST.

We calculated the evaluation measures on two different
tasks. The first task is the IWSLT BTEC 2004 Chinese-to-
English evaluation [8]. Here, we evaluated translation output
of twenty MT systems which had participated in this pub-
lic evaluation. The evaluation was case-insensitive, and the
translation hypotheses and references did not include punctu-
ation marks. Additionally, we scored the translations of four
MT systems from different research groups which took part
in the first MT evaluation in the framework of the European
research project TC-STAR [9]. We addressed only the condi-
tion of translating verbatim (exactly transcribed) speech from
Spanish to English. Here, the evaluation was case-sensitive,
but again without considering punctuation. The evaluation
corpus statistics for both tasks are given in Table 1.



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

AS-NISTNISTAS-BLEUBLEUAS-PERPERAS-WERWER

C
O

R
R

E
LA

T
IO

N

Figure 2: Pearson’s correlation coefficients for the human
fluency judgements (IWSLT task).
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Figure 3: Kendall’s correlation coefficients for the human
ranking of translation systems (IWSLT task).

In both tasks, we evaluated translations of spoken lan-
guage, i. e. a translation system had to deal with incom-
plete/not well-formed sentences, hesitations, repetitions, etc.
In the experiments with the automatic segmentation mea-
sures, we considered the whole document (e. g. more than
20K words on the TC-STAR task) as a single text stream in
which K segment boundaries (e. g.K = 2643 on the TC-
STAR task) are to be inserted automatically.

For the IWSLT task, a human evaluation of translation
quality had been performed; its results were made publicly
available. We compared automatic evaluation results with
human evaluation of adequacy and fluency by computing the
correlation between human and automatic evaluation at sys-
tem level. We chose Pearson’sr to calculate the correlation.
Figures 1 and 2 show the correlation with adequacy and flu-
ency, respectively. The even columns of the graph show the
correlation for the error measures using automatic segmenta-

Table 2: Comparison of the evaluation measures as calcu-
lated using the correct and the automatic segmentation (TC-
STAR task).

Error System
measure: A B C D

WER [%] 37.4 40.4 41.4 47.9
AS-WER [%] 36.2 39.1 40.0 45.7
PER [%] 30.7 33.7 33.9 40.6
AS-PER [%] 30.6 33.4 33.9 39.7
BLEU [%] 51.1 47.8 47.4 40.6
AS-BLEU [%] 50.9 47.5 47.2 40.6
NIST 10.34 9.99 9.74 8.65
AS-NIST 10.29 9.92 9.68 8.65

Segmentation ER [%] 6.5 8.0 7.8 9.5

tion. It can be observed that the correlation of these measures
with the human judgments regarding adequacy or fluency is
better than when manual segmentation is used.

In addition, the Kendall’sτ for rank correlation [10] was
calculated. Figure 3 shows that the evaluation measures
based on automatic segmentation can rank the systems as
well as the measures based on manual segmentation, or even
better. The improvements in correlation with the automatic
segmentation should not be overestimated since only 20 ob-
servations are involved. Nevertheless, it is clear that the AS-
WER and other measures which can take input with incor-
rect segment boundaries are as suitable for the evaluation and
ranking of MT systems as the measures which require correct
segmentation.

On the TC-STAR task, no human evaluation of transla-
tion output had been performed. Here, in a contrastive exper-
iment, we present the absolute values for the involved error
measures using correct/automatic segmentation in Table 2.
First, it is important to note that re-segmentation of the trans-
lation outputs with our algorithm does not change the ranking
of the four systems A,B,C,D as given e. g. by the word error
rate.

The values for the AS-WER are somewhat lower here
than those for WER, but can also be higher, as the experi-
ments on the IWSLT task have shown. This can be explained
by different normalization. In the case of AS-WER, the Lev-
enshtein distancedL is divided by the length of an optimal
sequence of reference segments. For each segment, a refer-
ence with the lowest number of substitution, insertion and
deletion errors is selected. This optimal reference is deter-
mined when computing Levenshtein alignment for the whole
document. Thus, it is not always the same as in the case of
sentence-wise alignment, where (and this is another differ-
ence) the reference with the lowestnormalizederror count is
selected [4].

Another interesting observation is the fact that the values
of the other measuresPER, BLEU, and NIST are not seri-



Table 4: Two examples of automatic vs. manual segmentation.

ORIGINAL SEGMENTATION AUTOMATIC SEGMENTATION MULTIPLE REFERENCES
I can only but that as soon as possibleI can only but that that only leaves me # the only thing left for me to do
invite Mister Barroso as soon as possible invite Mister Barrosoto invite Mister Barroso # is to invite Mr Barroso
but that as soon as possible but that as soon as possible we proposebut as soon as possible # but as soon as possible
we propose a proposal they put to us # a proposal
a proposal on which Parliament on which Parliament a motion on whether Parliament # on which the Parliament

Table 3: Comparison of the BLEU/NIST scores on document
level with the same scores computed using correct and auto-
matic segmentation (TC-STAR task).

Error System
measure : A B C D

BLEU [%] 51.1 47.8 47.4 40.6
AS-BLEU [%] 50.9 47.5 47.2 40.6
BLEU doc. level [%] 55.3 50.5 50.9 47.5
NIST 10.34 9.99 9.74 8.65
AS-NIST 10.29 9.92 9.68 8.65
NIST doc. level 11.57 11.23 11.12 10.89

ously affected by automatic segmentation. This suggests that
Levenshtein distance based segmentation produces reliable
segments not only for calculation of the WER, but also for
calculation of error measures not based on this distance. In
contrast, when we compute BLEU/NIST scores on document
level (see Section 2.3), the obtained values differ dramati-
cally from the values with correct segmentation and overes-
timate the performance of the translation systems (see Ta-
ble 3). Moreover, the difference between systems in terms of
e. g. the BLEU score may be significantly underestimated.
For example, the difference in the BLEU scores at document
level between systems B and D is only 6% (vs. 15% as given
by the BLEU scores using correct segmentation).

Finally, for the introduced error measures with automatic
segmentation, we observe that even if the word error rate is
high (about 50% or more, like for system D at the TC-STAR
evaluation and most of the systems at the IWSLT evaluation),
the difference between the error rates using manual and auto-
matic segmentation is still not very big. Thus, the proposed
algorithm is able to produce an acceptable segmentation even
if the number of matched words between a candidate and a
reference document is small. This statement is supported by
thesegmentation error rate. We define this error rate as the
word error rate between a document with candidate transla-
tions and manual (correct) segmentation andthe samedoc-
ument with automatic segmentation, computed on segment
level. Thus, this error rate is0 if the automatic segmentation
is correct. In Table 2, the segmentation error rate is below
10% for all systems, and degrades only slightly with the de-
grading WER. The robustness of automatic segmentation is

important for evaluating translations of automatically recog-
nized speech which at present usually have high error rates.

Table 4 gives two examples of an automatic segmenta-
tion of a candidate translation for the TC-STAR task. In this
table, the manual segmentation and the two corresponding
reference translations are also shown. Note that the manual
segmentation is not always perfect or at least does not always
correspond to every reference translation; automatic segmen-
tation is sometimes able to correct such discrepancies.

5. Conclusions

In this paper, we described a novel method of automatic sen-
tence segmentation that is used to evaluate machine trans-
lation quality. The proposed algorithm does not require the
MT output to have the same segmentation into sentences or
sentence-like units as the reference translations. Automatic
re-segmentation of candidate translations is efficiently deter-
mined with a modified Levenshtein distance algorithm based
on the segmentation in the multiple reference translations.
This algorithm computes a novel error measure: automatic
segmentation word error rate, or AS-WER. It is also possible
to apply existing evaluation measures to the automatically
re-segmented translations.

Experiments have shown that the AS-WER and other
automatic segmentation measures correlate at least as well
with human judgment as the measures which rely on correct
segmentation. The automatic segmentation method is espe-
cially important for evaluating translations of automatically
recognized and segmented speech. We expect that the pro-
posed evaluation framework can facilitate co-operation be-
tween speech recognition and machine translation research
communities since it resolves the issue of different segmen-
tation requirements for the two tasks.
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