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Abstract 
The MIT-LL/AFRL MT system is a statistical phrase-based 
translation system that implements many modern SMT 
training and decoding techniques.  Our system was designed 
with the long term goal of dealing with corrupted ASR input 
for Speech-to-Speech MT applications.  This paper will 
discuss the architecture of the MIT-LL/AFRL MT system, 
and experiments with manual and ASR transcription data that 
were run as part of the IWSLT-2005 Chinese-to-English 
evaluation campaign.1 

1.  Introduction 
In recent years, the development of statistical methods for 
machine translation has resulted in high quality translations 
that can be used in real applications with increasing 
confidence.  Specific advancements include: 

 
• Extracting word alignments from parallel corpora [1] [2] 

• Learning and modeling the translation of phrases [4] [5] 

• Combining and optimizing model parameters [6] [7] [8] 

• Decoding and rescoring techniques [9] [10] 

Our system draws from these advances and implements a 
number of these techniques including log-linear model 
combination and minimum error rate training to translate 
foreign language sentences.  We developed our system during 
preparation for IWSLT-2005 to serve as a platform for future 
research.  Most of the components of our system have been 
developed in-house in order to facilitate future 
experimentation. 

 
In subsequent sections, we will discuss the details 

translation system including our alignment and language 
models and methods we’ve implemented for optimization and 
decoding.  The basic translation training and decoding 
processes are shown in Figure 1.  We start with a word 
alignment extracted from a training set using GIZA++.  These 
alignments are expanded and phrases are counted to form the 
phrase translation model.  Language models are then trained 
from the English side of training set (and possibly with other 
English texts, if available). 

 
Using development bitexts separated from the training set, 

we then employ a minimum error rate training process to 
                                                           
1 This work is sponsored by the United States Air Force Research Laboratory 
under Air Force Contract FA8721-05-C-0002.   Opinions, interpretations, 
conclusions and recommendations are those of the author and are not 
necessarily endorsed by the United States Government. 

optimize model parameters utilizing a held out development 
set. These trained parameters and models can then be applied 
to test data during decoding and rescoring phases of the 
translation process. 

Figure 1: Basic Statistical Translation Architecture 

2. Translation Models 
The basic phrase-translation model we employ is described in 
detail [4] and [5].  We use GIZA++ [1], [3] and [4] to 
generate alignments between foreign language and English 
language words/tokens in both directions (f-to-e and e-to-f). 
An expanded alignment is then computed using heuristics that 
interpolate between the intersection and union of these 
bidirectional word alignments as detailed in [4] and [5].  Then 
phrases are extracted from the expanded alignments to build 
the phrase model. We introduced two minor modifications to 
this basic process in our system:  
 
1. Prior to iterative expansion of intersection alignment, 

we first add points that are unaligned in both the 
source and target language sentences that otherwise 
fit the standard inclusion criteria. 
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2. We introduced a target phrase length factor during 
phrase extraction that limits target phrases to 
Length(source) * TargetLengthFactor. 

 
The combination of these two enhancements provided a 

two point improvement in BLEU score on the IWSLT-2004 
development set in the supplied data condition.  

 
We extract translation models for both translation 

directions (i.e. P(f|e) and P(e|f)).  In addition to these models, 
we add lexical weights extracted from the expanded alignment 
process in both translation directions [5] and a fixed phrase-
penalty [11]. 

3. Distortion Model 
For this evaluation we used a simple distortion model that 

was described by Koehn et al in [5] and shown here: 
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where 1−iFinalW  is the position of the final word of the 

previous phrase and iFirstW  is position of the first word of 
the current phrase.  Although simple, we found this model to 
be very effective for the Chinese-to-English task.  Additional 
constraints on distortion can be chosen to limit the phrase 
reordering during search, however we chose not to limit 
distortion when decoding on the IWSLT05 test data. 

4. Language Models 
We used the SRI language modeling toolkit to build language 
models [12].  A trigram language model is used during initial 
decoding.  Two additional language models are introduced 
during rescoring and minimum error rate training: a four-gram 
language model, and a 5-gram class-based language model.  
All of these models were trained with modified Knesser-Ney 
interpolation as suggested by Goodman and Chen in [13] and 
[14]. 

5. Minimum Error Rate Training 
Our system employs minimum error rate training to optimize 
parameter weights for each of the individual model 
components that are summarized in table 1.  Many different 
optimization strategies have been proposed for combination 
of log-linear models (see [6], [7], [8] and [15] for further 
details).  The algorithm we used is a variation of the method 
described by Och in [7].  In particular, we optimize each of 
these parameters assuming log-linear combination as given by 
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where Mλ  represents individual model weights and 

),( efh M
 represents the feature function associated with 

estimates from each individual translation/language model. 
 

The optimization process attempts to sets parameter 
weights that minimize the overall error rate.  To do this, 

sentences from a development set are used to sample the error 
surface defined by the model parameters listed above and the 
loss function to be minimized.  Each sentence is decoded to 
produce n-best translation output samples and a line search is 
then performed per sentence/model parameter to minimize the 
overall error rate. 

 
This process yields a set of parameter weights for each 

model that can be then used for decoding and rescoring.  The 
training is iterative in that n-best lists are created using the 
new parameters and merged with the existing n-best lists to 
increase the resolution of our sampling for each iteration.  As 
reported by Och [7], this iterative procedure converges after 
6-8 iterations. 

 
Model Weight Parameters 

1 P(f|e) – Forward Translation Model 
2 P(e|f) – Backward Translation Model 
3 LexW(f|e) – Forward Lexical Weight 
4 LexW(e|f) – Backward Lexical Weight 
5 PPen – Constant, per-phrase Penalty 
6 WPen – Constant, per-word Penalty  
7 Dist – Distortion Model 
8 Tri-LM – Trigram Language Model 
9 4-LM – Four-gram Language Model 

10 ClassLM – Five-gram class-based LM 

Table 1: Model Parameters used for minimum error rate 
training 

6. Decoding 
For the IWSLT 2005 results that were submitted, we used 
Philip Koehn’s Pharaoh Decoder [9].  Pharaoh is stack 
decoder with an A-star search heuristic.  We have recreated 
similar results with our own in-house decoder, which was not 
ready before the submission deadline. 
  
     Our in-house decoder utilizes a Viterbi graph search 
algorithm, where the graph is built from left to right a word at 
a time. Each node in the search graph contains a list of back-
pointers to previous nodes, the probabilities for each 
translation option, the trigram/bigram context needed for node 
expansion, and the best path so far.  When creating new 
nodes, the number of nodes can be greatly reduced by using 
bigrams whenever a particular trigram does not exist in the 
language model.  After all possible phrases are added for each 
word, both beam pruning and histrogram pruning are used to 
rid the search graph of unlikely candidate nodes based on the 
best path. 
 
     This search algorithm offers fast decoding and easy 
generation of output word lattices by simply traversing the 
final data structure.  In the case of monotone decoding, this 
search algorithm is capable of real-time decoding one word at 
a time (as from a speech recognizer).   
 
     In order to include distortion in the search, additional 
information needs to be kept for each node including a word 
coverage vector, the distortion probability, and an estimate of 
the future cost.  Nodes are connected to previous nodes only 
if the intersection of the word coverage vectors is empty.  The 



future cost estimate is used so that all nodes can be pruned 
together (A-star search).  This limits the search space enough 
so that unconstrained reordering can be used without running 
out of memory, but there is a possibility that the search will 
not be able to select a final path that covers all input words.  
In the case of a search failure, the search is restarted using 
improved future cost heuristics from the previous pass. 

7. Results 
In this section, we present results from applying the system 
described above to the IWSLT 2005 evaluation.  We present 
results from both manual and ASR transcription conditions in 
the supplied data track for Chinese-to-English translation.   
 

Because the training data in this track is limited to 20,000 
sentence pairs, we employed a number of small modifications 
to the basic phrase-model extraction procedure to minimize 
the number of out-of-vocabulary tokens during decoding.  
These techniques are described in the section below. 

 
For both ASR and manual transcription conditions we did 

not limit distortion and the four-gram and class-based 
language models were applied during rescoring.  For 
efficiency reasons we limited the decoder stack to 350 
hypotheses. 

7.1. Dev Set Experiments 

Two development sets were provided as part of the IWSLT 
2005 evaluation campaign: 
 

• Devset 1: Evaluation data from CSTAR 2003 

• Devset 2: Evaluation data from IWSLT 2004 

We used these tests to construct 3 other dev sets for more 
robust parameter optimization: 
 

• Devset 3: first ½ of Devsets 1 and 2 

• Devset 4: second ½ of Devsets 1 and 2 

• Devset 5: sum of Devset 1 and 2 

For minimum error rate training we held out one of devsets 1-
4 and tested against another devset (without overlap).  
Interestingly, devset sentences were generally longer in set 4 
and, not surprisingly, scores were generally worse.  Devset 5 
was used to optimize final parameters for test set decoding.  
Tables 2 and 3 shows scores from different development run 
configurations. 
 

 Dev 
Test 

1 2 

1  36.64 
2 42.00  

Table 2: Devset 1 and 2 Results 

 Dev
Test 

3 4 

3  42.44 
4 33.84  

Table 3: Devset 3 and 4 Results 

Using devset 2 for development testing, we experimented 
with a number of different configurations of our basic SMT 
system.  Table 4 shows the effect of different preprocessing 
options and training parameters on BLEU scores for devset 2. 

  
Configurations BLEU 

Baseline: char seg., UTF-8, 4x TPF,  
 no opt (hand-tuned weights) 39.12 

+ lexbackoff 40.32 
+ lexbackoff + 2x TPF 40.76 
+ lexbackoff + 2x TPF + Word Seg. 34.12 
+ lexbackoff + 2x TPF + Optimization 40.99 
+ lexbackoff + 2x TPF + extra LMs 41.45 
+ lexbackoff + 2x TPF + extra LMs + 

Optimization 42.00 

Table 4: Model Parameters used for minimum error rate 
training (TPF = Target Phrase Factor devset 1 was used 

for minimum error rate training). 

Applying these settings and the optimization weights used 
for devset 2, we tested against each of the ASR outputs for 
devset 2.  Table 5 shows results from each of ASR engine and 
their corresponding ASR for both 1-best and N-best ASR 
hypotheses: 

 
ASR N-best 

Length 
N-best 

Correct % 
BLEU 

1 1 68.7 26.15 
2 1 80.9 32.30 
3 1 87.3 35.08 
1 20 80.1 28.37 
2 20 91.8 36.90 
3 20 94.5 37.68 

Table 5: Devset 2 results with various ASR transcripts. 

For each of the n-best > 1 conditions we simply decode 
the entire ASR n-best list and merge results before rescoring. 
We did not weight ASR acoustic or language models for this 
experiment, but this remains to be explored in future 
experiments.   

 

7.2. IWSLT 2005 Manual Transcription 

We submitted results using multiple optimization parameters 
from different devsets (devset 5 parameters being primary).  
These results are shown in Table 6.  As expected, optimizing 
with devset 5 yielded the best performance.  Although our 
optimization loss function was based on BLEU-4, our system 
performed reasonably well with other metrics as well 
(METEOR, PER, NIST).  It is also interesting to note that the 
additional 506 sentences of the CSTAR-03 development set 
did not provide us much gain over the IWSLT-04 set alone.  



Better language model rescoring seems to have made the 
biggest difference.  As we did not fully examine language 
model training possibilities, it is possible that further 
improvements in this area may yield even better performance. 
 

Configurations NIST BLEU 
Devset 1 optimization 9.296 44.58 
Devset 2 optimization 9.307 44.83 
Devset 5 optimization (w/o 
additional language models)  9.151 43.44 

Devset 5 optimization 9.311 44.96 

Table 6: Test set scores with various optimization settings 

7.3. IWSLT 2005 ASR Transcription 

Our primary submission for this track used n-best output from 
the ASR system.  As we saw with our devset 2 experiments, 
n-best ASR output gives a gain of 2-3 BLEU points over the 
1-best hypothesis.    
 

Configurations N-best 
Length 

NIST BLEU 

Devset 1 optimization 1 7.211 32.28 
Devset 2 optimization 1 7.208 32.27 
Devset 5 optimization 1 7.222 32.40 
Devset 1 optimization 20 7.633 35.62 
Devset 2 optimization 20 7.557 35.67 
Devset 5 optimization 20 7.555 35.96 

Table 7: Test set scores with various optimization settings 

Again in this condition, our system’s performance was 
quite reasonable, especially with respect to non-BLEU 
metrics.  We expect that more efficient use of ASR model 
parameters (acoustic and language model scores, and perhaps 
lattice posteriors) we could yield even better performance. 

8. Discussion 
From experiments with both the development and test data, it 
is clear that better language modeling can increase the 
performance of phrase-based statistical machine translation 
systems as evidence from [16] and [17] also suggests.  It is 
interesting to note that in the case of Chinese translation, 
distortion models seems to play a major role and, as such, 
further work is needed to design models that account for the 
reordering effects we see in Chinese.  In past experiments, 
this has not necessarily been true, for instance with French to 
English translation monotone decoding often yields better 
performance. 

 
We are just beginning to explore methods for fusing ASR 

and MT systems.  From an anecdotal evaluation of our ASR 
MT results by a native speaker, we found that only 2 of 30 
sampled sentences contained additional errors (relative to MT 
output from manual transcription).  Both this and objective 
evaluation results from this evaluation are encouraging, but it 
is clear that much more work is needed to make the output of 
Speech MT usable.  We expect that joint optimization of ASR 
model parameters and MT model parameters could yield 

better results but careful research is needed to integrate ASR 
and MT parameter appropriately. 
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