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Abstract
In this paper we describe the statistical machine transla-
tion system developed at ITI/UPV, which aims especially
at speech recognition and statistical machine translationin-
tegration, for the evaluation campaign of the International
Workshop on Spoken Language Translation (2007).

The system we have developed takes advantage of an im-
proved word lattice representation that uses word posterior
probabilities. These word posterior probabilities are then
added as a feature to a log-linear model. This model includes
a stochastic finite-state transducer which allows an easy lat-
tice integration. Furthermore, it provides a statistical phrase-
based reordering model that is able to perform local reorder-
ings of the output.

We have tested this model on the Italian-English corpus,
for clean text, 1-best ASR and lattice ASR inputs. The results
and conclusions of such experiments are reported at the end
of this paper.

1. Introduction

This paper describes the statistical machine translation
(SMT) system developed at ITI/UPV for the evaluation cam-
paign of the International Workshop on Spoken Language
Translation (2007). The system proposed aims especially at
speech recognition and statistical machine translation inte-
gration.

Although different approaches to speech input translation
have been investigated [1, 2, 3], there is still a big gap be-
tween the translation performance from the correct text and
from an automatic speech recognizer (ASR). The most sim-
ple approach performs the two processes in a serial manner:
first, an input utterance is decoded into a sentence using a
conventional ASR, and afterwards, this sentence is translated
using atext-to-texttranslator. The main drawback of this ap-
proach is that the output of an ASR can contain misrecog-
nized words and, consequently, the quality of the translated
sentences decreases. In order to circumvent this problem,
different solutions have been proposed [4, 5, 6]. In [4] N-best
lists have been used for improving the quality of the trans-
lated sentences. In [5] the translation process is performed
using as input a word lattice and acoustic recognition scores.
In [6] the translation process is performed using confusion

networks and posterior probabilities. All these approaches
try to exploit a set of the most probable hypotheses instead
of only the best one.

The use of stochastic finite-state transducers provides a
fully integrated recognition-translation architecture in which
the source and target sentences are obtained simultaneously
[1, 3]. However, the experimental results are not consistently
better than serial approach [3].

In our system, we propose the use of an improved word
lattice representation for speech-to-speech translationfol-
lowing a semi-coupled architecture integrated in a log-linear
model. Instead of using acoustic recognition scores [5] we
use the word posterior probabilities computed over the word
lattice, which take into account different word cooccurrences
in the same interval of time while preserving the lattice struc-
ture.

2. A review to speech translation

In this section, a review of the formulation defined in [3] is
presented. The problem of speech-input statistical translation
can be formulated as:
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1 is the most probable
translation of the speech utterance. The maximization is per-
formed over all possible target sentenceseI

1 and all possible
lengthsI.

The process can be stated as:~xT
1 → fJ

1 → eI
1 where

fJ
1 is the input decoding of~xT

1 , andeI
1 is the corresponding

translation offJ
1 . Consequently, Eq. 1 can be decomposed

by:

arg max
I,eI

1

Pr(eI
1|~x

T
1 ) = arg max

I,eI

1

∑

fJ

1

Pr(eI
1, f

J
1 |~x

T
1 ) (2)

with the practical assumption thatPr(xT
1 |e

I
1, f

J
1 ) does not

depend on the target sentenceeI
1, Eq. 2 can be decomposed

by:

arg max
I,eI

1

Pr(eI
1|~x

T
1 ) =

arg max
I,eI

1

∑

fJ

1

Pr(eI
1, f

J
1 )Pr(~xT

1 |f
J
1 ) (3)



We approximate the sum over all possible source lan-
guage sentences by the maximum. The purpose is to asso-
ciate a source sentence to the input utterance whose transla-
tion is the target sentence searched for. From Eq. 3,

arg max
I,eI

1

Pr(eI
1|~x

T
1 ) ≈

arg max
I,eI

1

max
fJ

1

Pr(eI
1, f

J
1 )Pr(~xT

1 |f
J
1 ) (4)

Pr(eI
1, f

J
1 ) refers to the translation model andPr(~xT

1 |f
J
1 ) is

modeled by acoustic models (typicallyHidden Markov Mod-
els(HMM)).

3. System description

3.1. Log-linear model

Recently, log-linear models [7] have become very popular in
SMT. Their success relies on the fact that different sources
of knowledge can be easily integrated into the model. Fol-
lowing the well-founded maximum entropy framework, the
posterior probabilityPr(eI

1|f
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As the denominator, which represents a normalization

factor, only depends on the source sentencefJ
1 and the

acoustic vectors~xT
1 , they can be dropped from Eq. 5 in the

search algorithm. The resulting decision rule remains as fol-
lows:
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It must be noted that Eq. 4 can be expressed in terms of
Eq. 6 forM = 2, λ1 = λ2 = 1, and
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The next subsection is devoted to explain the set of differ-
ent features that have been included in the log-linear model.

3.2. Features

3.2.1. Word posterior probabilities

A word latticeG is a directed, acyclic, weighted graph. The
nodes correspond to discrete points in time. The edges are
triplets [w, s, e], wherew is the hypothesized word from
nodes to nodee. The weights are the acoustic recognition
scores associated to the word lattice edges. Any path from
the initial to the final node forms a hypothesisfJ

1 .
Given the acoustic observations~xT

1 , the posterior prob-
ability for a specific word (edge)[w, s, e] can be computed

by summing up the posterior probabilities of all hypotheses
of the word lattice containing the edge[w, s, e]:
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The probability of the sequence of acoustic observations
P (~xT

1 ) can be computed by summing up the posterior prob-
abilities of all word lattice hypotheses:
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These posterior probabilities can be efficiently computed
based on the well-knownforward-backwardalgorithm [8].

The posterior probability defined in Eq. 7 does not per-
form well because of a wordw can occur with slightly differ-
ent starting and ending times. This effect is represented inthe
word lattice by different word lattice edges and the posterior
probability mass of the word is scattered among the different
word segmentations (see Figure 1).

To deal with this problem, we have considered a method
proposed in [8]. Given a specific word (edge)[w, s, e] and
a specific point in timet ∈ [s, e], we compute the posterior
probability of the wordw at timet by summing up the pos-
terior probabilities of the word lattice edges[w, s′, e′] with
identical wordw and for whicht is within the interval time
[s′, e′]:

Pt(w | ~xT
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∑
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P ([w, s′, e′] | ~xT
1 ) (9)

Based on Eq. 9, the posterior probability for a specific
word [w, s, e] is computed as the maximum of the frame
time posterior probabilities:

P ([w, s, e] | ~xT
1 ) = max

s≤t≤e
Pt(w | ~xT

1 ) (10)

The probability computed by Eq. 10 is in the interval
[0, 1] since, by definition, the sum of the word posterior prob-
abilities for a specific point in time must sum to one (this
property can be appreciated in the Figure 1). However, it
must be noticed that the resulting lattice does not represent a
real probability distribution. Figure 1 shows an example of
the word lattice with the word posterior probabilities com-
puted following the Eq. 7. Figure 2 shows the same word
lattice after Eq. 10 is computed.

We will use these posterior probabilities to compute the
conditional probability of the acoustic signal given a source
hypothesis:

Pr(fJ
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J
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wheresj andej are the starting and the ending time, respec-
tively, of the source wordwj .

Hence, the word posterior feature is given by:
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Figure 1: Word lattice with the word posterior probabilities.
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Figure 2: Word lattice after the frame posterior probabilities
are computed.

3.2.2. Statistical finite-state transducers

The joint probability distributionPr(eI
1, f

J
1 ) in Eq. 4 can

be adequately modelled by means of a statistical finite-state
transducer (SFST). SFSTs have been thoroughly studied
[9, 10] and several approaches to infer SFSTs from corpora
have been proposed in recent years [11, 12, 13].

We have used the Grammatical Inference and Alignments
for Transducer Inference (GIATI) technique for inferring the
SFST [14]. This technique uses a finite sample of bilingual
pairs (parallel corpus) for inferring the SFST in three steps:

1. Building training strings. Each training pair is trans-
formed into a single string from an extended alphabet
to obtain a new sample of strings. The transformation
of a parallel corpus into a corpus of single sentences is
performed with the help of statistical alignments: each
word (or substring) is joined with its translation in the
output sentence, creating anextendedsymbol.

2. Inferring a (stochastic) regular grammar. Typically,
a smoothedn-gram is inferred from the sample of
strings obtained in the previous step.

3. Transforming the inferred regular grammar into a
transducer. The symbols associated to the grammar
rules are transformed into source/target symbols by ap-
plying an adequate transformation.

An interesting feature of SFSTs is that the maximization
of Eq. 4 can be performed in a fully integrated recognition-
translation manner. This is possible since each transitionof

the SFST is labelled with a source word and its correspond-
ing target translation. Thus, each transition is expanded by
the acoustical representation of the source words. Following
the standard speech recognition searching algorithm over the
SFST, the optimal source and target sentences are obtained
simultaneously. In the current implementation, we have per-
formed an integrated search with the input lattice. The trans-
lation feature function is given by:
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3.2.3. Output penalty

Usually, SMT models produce sentences which differ in
length from the reference sentence. This provokes an im-
portant loss of performance in the BLEU measure since it
heavily penalizes short sentences. To adjust the length of
these sentences, an output word penalty has been added to
the model:
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3.2.4. Output language model

In order to help the fluency an output language model has
been added:
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3.3. Phrase-based local reordering model

The GIATI technique described above is known to have lim-
ited capability to model non-monotonous translations. Hope-
fully, the languages for the task we approached are very
monotonous for non-local relationships. However, they may
have many local inversions. We have addressed this problem
by reordering the target sentence in a similar fashion to the
work by [15].

From the alignments we can define a new target language
er which is obtained by monotonizinge respect tof . Bothe

ander are closely related so that they have the same vocab-
ulary, but differ in the word order. Two new parallel corpus
can be constructed: one fromf ander, the other fromer and
e.

It is important to note that in Eq. 6 the target language is
now monotonized, so the decision rule remains as follows:
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The output sentencêerÎ
1 resulting from the maximization

is not in the appropriate order. Hence, the reordering problem
can be defined as follows:
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1)Pr(êrÎ
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Î
1) (13)

wherePr(eÎ
1) is a target language model, andPr(êrÎ
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is the reordering model. Therefore, the reordering model is
applied to the best translation from the log-linear model ina
serial manner.



4. IWSLT07 evaluation campaign

The experiments were carried out on the Basic Travel Ex-
pression Corpus (BTEC) task [16] for the Italian-English lan-
guage pair. BTEC is a multilingual corpus which contains
sentences related to travel expressions similar to those that
are found in traveler’s phrase books. The statistics for this
task are shown in Table 1. The corpus consists of six devel-
opment sets. However, the experiments were conducted with
three of them:dev4, dev5b. anddev5b. The development sets
were not added to the training data as they did not show to
improve the results. No additional data was exploited during
the experiments.

Table 1:Corpus statistics for training, development, and test.
OOV stands for Out Of Vocabulary words.

Italian English

train
Sentences 19971

Running words 172k 189k

Vocabulary 10, 152 7, 165

dev4
Sentences 489

Running words 4, 831 6, 848
OOV words 224 208

dev5a
Sentences 500

Running words 5, 607 7, 491
OOV words 296 264

dev5b
Sentences 996

Running words 8, 487 11, 968
OOV words 591 611

test
Sentences 724

Running words 6, 420 9, 054
OOV words 542 439

4.1. Practical aspects

4.1.1. Punctuation and case restoration

The evaluation is case sensitive and with punctuation marks.
We followed the approach1 given by the IWSLT06 organizers
instead. First, punctuation and case were removed from the
training. Next, in the postprocess module punctuation and
case were restored, in that particular order, using thehidden-
ngramanddisambigtools [17]. Finally, words after sentence
boundaries2 were capitalized. This method provided the best
results in our experiments.

4.1.2. Sentence splitting in training

Several samples in the training set consist of two or more sen-
tences. Occasionally, after the alignment estimation, some
alignments have crossed sentence boundaries. In principle,

1http://www.slc.atr.jp/IWSLT2006/downloads/
case+punctool usingSRILM.instructions.txt

2We define a sentence boundary as the beginning of the sentenceor any
of these punctuation marks: .?!

this is not desirable since usually each sentence is indepen-
dent from the others. Furthermore, the heuristics used in GI-
ATI to extract bilingual pairs are very sensitive to long align-
ments. Therefore, in order to improve the alignments, the
training sentences were splitted at sentence boundaries when
applicable.

4.1.3. Recognition score scaling

When computing word posterior probabilities, it is nec-
essary to scale properly the acoustic and language model
scores [18]. Otherwise, the resulting probability distribution
would be likely to have a peak on the best recognition sen-
tence, affecting negatively the additive combination of pos-
teriors. In our experiments, this parameter was adjusted to
minimize the word error rate of the source sentence on the
development set.

4.1.4. Lattice pruning

One important aspect to keep in mind when translating word
lattices is that the computational cost increases enormously.
However, most of the hypotheses have very low probabil-
ity and are not worth being explored. In fact, it has been
observed that an appropriate pruning can even benefit trans-
lation results since very unlikely hypothesis will never suc-
ceed.

As it has be shown in [19], lattice pruning by confidence
measures achieve good results. It is for that reason, that we
pruned the word lattices to reduce lattice density by removing
paths which do not reach a threshold. We selected the thresh-
old that, while keeping the translation performance, had a
reasonable lattice density.

4.2. Experimental results

As mentioned at the beginning of this section, we partici-
pated in the Italian-English track. For all experiments, two
accuracy measures are reported: BLEU [20] and NIST [21].
The parameters for the development sets were optimized for
BLEU. For the test set, the parameters of thedev5bwere
used owing to the similar conditions of both data sets. Fur-
thermore, we found out later that parameters fromdev5bper-
formed better. The results presented in this section were ob-
tained after the official submission period was over.

Table 2 shows the results for the development and test
sets depending on which features were added to the model
for the clean input. The baseline model is a GIATI trans-
ducer. The feature codes are the following:WP,output word
insertion penalty;OL, output language model;RM, reorder-
ing model. The experiments were run on the clean Italian-
English data.

TheWP feature consistently improves the BLEU for all
development datasets although the NIST scores are worse.
On the contrary, for the test setWP makes the system per-
form worse in terms of BLEU while improving the NIST
score. This fact suggests that the parameters are overfitted.



Table 2:Effect of adding features to the baseline model for the cleaninput. The features are:WP,output word insertion penalty;
OL, output language model;RM, reordering model.

dev4 dev5a dev5b test
BLEU NIST BLEU NIST BLEU NIST BLEU NIST

baseline 36.29 7.59 31.96 7.06 12.53 4.02 22.80 5.49
+WP 37.45 7.35 32.55 6.82 14.07 3.77 22.09 5.56
+OL 37.06 7.42 32.55 6.91 12.63 4.06 22.79 5.52

+WP+OL 38.19 7.20 32.67 6.66 13.44 4.20 21.79 5.56
+RM 37.53 7.95 32.74 7.41 13.94 4.30 23.46 5.74

+WP+OL+RM 38.98 7.81 32.86 7.18 14.34 4.37 23.22 5.86

Table 3:Results for different input conditions.GER represents the best result achievable by using lattices.LAT corresponds to
our integrated approach using word posteriors.

dev4 dev5a dev5b test
BLEU NIST BLEU NIST BLEU NIST BLEU NIST

1BEST 33.53 6.92 26.97 6.12 13.21 4.19 21.50 5.56
LAT 33.69 6.95 27.24 6.14 13.35 4.16 20.57 5.43
GER 34.11 7.02 27.49 6.18 13.90 4.29 22.64 5.77

CLEAN 38.98 7.81 32.86 7.18 14.34 4.37 23.22 5.86

Regarding the reordering model, it may be seen that the im-
provements are consistent in all datasets. Taking into account
that only the single best translation was reordered, we may
expect further improvements from an integrated reordering
model.

Table 3 shows the results for the different input condi-
tions. TheCLEANcondition refers to the correct transcrip-
tion, while the1BESTcondition refers to the single best out-
put from the ASR module. In between, it is theLAT con-
dition, where we applied the method described in Subsec-
tion 3.2.1 to compute word posterior probabilities. We also
have added aGER condition. For this condition, we ex-
tracted from the lattices the sentences which provided the
lower word error rate. This condition represents the upper
limit of using lattices for translation since no better sentence
can be found in the lattice. The different input conditions are
sorted Table 3 in a way that it is easy to notice the improve-
ment in performance as the input quality increases.

In all development sets,LAToutperforms1BESTfor both
measures. Although these improvements are not very im-
pressive, it must be observed that the room for improve-
ment is very small. Although Table 4 shows that recognition
performance ofGERcan be much better, improvements in
BLEU (Table 3) are not that good. Furthermore, it may be
observed that large lattices are more likely to encode better
sentences. Unfortunately, processing large lattices is much
more memory and time consuming. Although our system im-
plements beam search, the heuristics did not show useful for
this particular problem, so we had to apply posterior lattice
pruning as described in Subsection 4.1.4. This issue would
be probably solved with the use of a more elaborated prun-
ing. As a consequence of pruning and parameter overfitting,

lattice translation did not performed as expected, leadingto
scores worse than1BEST.

Table 4:Lattice statistics for the different datasets.GER is
the graph error rate, i.e. the word error rate for the most
accurate sentence in the graph. The last column represents
the number of words per lattice in average.

WER GER N. words (avg)

dev4 22.31 20.38 255.1
dev5a 24.33 22.29 264.8
dev5b 10.29 3.73 2994.1

test 10.70 4.39 2996.6

5. Conclusions

In this work, we have described the ITI/UPV system for
speech recognition and machine translation integration. We
have presented a novel technique to perform this integration
by using word posterior probabilities as a feature to a log-
linear model. Although the system is in an early stage of
development we have shown that it is able to perform im-
provements in translation performance.

There are still a lot of issues to cover. However, we are
encouraged to solve this problems for the next evaluation
campaign.
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