The LIG Arabic / English Speech Translation System at IWSLT07

Laurent BESACIER,

Amar MAHDHAOUI, Viet-Bac LE

LIG*/GETALP (Grenoble, France) Laurent.Besacier@imag.fr

* Former name : CLIPS

1 Baseline MT system

- -Task, data & tools
- Restoring punctuation and case
- -Use of out-of-domain data
- -Adding a bilingual dictionary

2 Lattice decomposition for CN decoding

- -Lattice to CNs
- -Word lattices to sub-word lattices
- -What SRI-LM does
- -Our algo.
- -Examples in arabic

3 Speech translation experiments

- Results on IWSLT06
- -Results on IWSLT07 (eval)

1 Baseline MT system

- -Task, data & tools
- -Restoring punctuation and case
- -Use of out-of-domain data
- -Adding a bilingual dictionary

Task, data & tools

First participation to IWSLT

- A/E task
- Conventional phrase-based system using Moses+Giza+sri-Im
- Use of IWSLT-provided data (20k bitext) except
 - A 84k A/E bilingual dictionary taken from http://freedict.cvs.sourceforge.net/freedict/eng-ara/
 - The buckwalter morphological analyzer
 - LDC's Gigaword corpus (for english LM training)

Restoring punctuation and case

- 2 separated punct. and case restoration tools built using *hidden-ngram* and *disambig* commands from sri-lm
 - => restore MT outputs

	(1)	(2)	(3)
	train with case	train without	train with restored
	& punct	case & punct	case & punct
dev06	0.2341	0.2464	0.2298
tst06	0.1976	0.1948	0.1876

Option (2) kept

Use of out-of-domain data

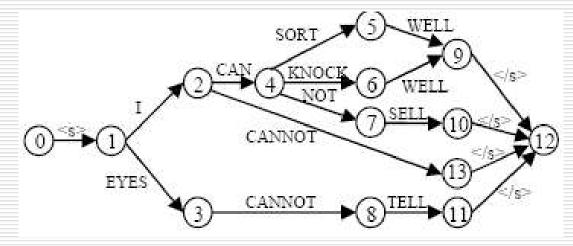
- Baseline in-domain LM trained on the english part of A/E bitext
- Interpolated LM between Baseline and Outof-domain (LDC gigaword) : 0.7/0.3

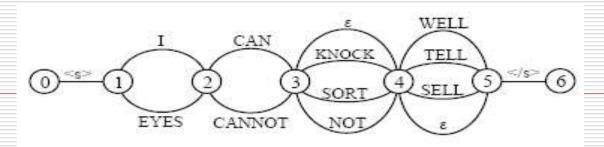
	In domain LM No MERT	Interpolated in- domain and out-of- domain LM	Interpolated in- domain and out-of- domain LM
		No MERT	MERT on dev06
dev06	0.2464	0.2535	0.2674
tst06	0.1948	0.2048	0.2050

Adding a bilingual dictionary

- A 84k A/E bilingual dictionary taken from http://freedict.cvs.sourceforge.net/freedict/eng-ara/
- Directly concatenated to the training data + retraining + retuning (mert)

	No bilingual dict.	Use of a bilingual dict.
dev06	0.2674	0.2948
tst06	0.2050	0.2271

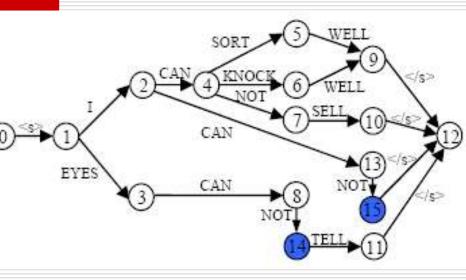


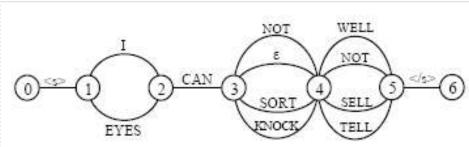

2 Lattice decomposition for CN decoding

- -Lattice to CNs
- -Word lattices to sub-word lattices
- -What SRI-LM does
- -Our algo.
- -Examples in arabic

Lattice to CNs

- Moses allows to exploit CN as interface between ASR and MT
- Example of word lattice and word CN

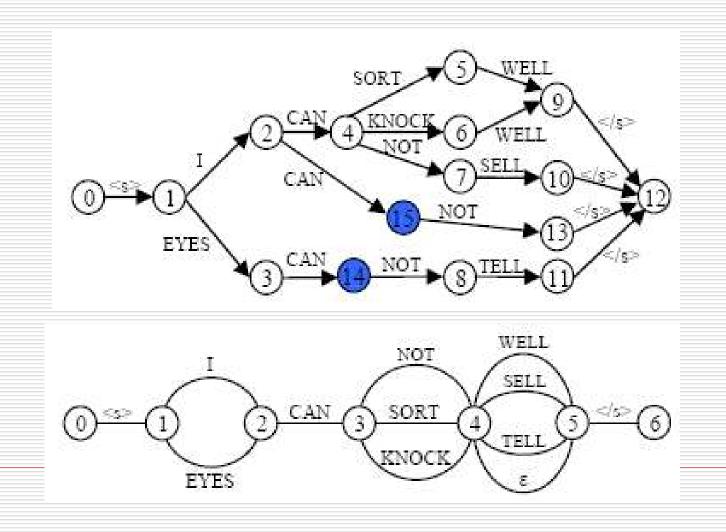



Word lattices to sub-word lattices

- Problem : word graphs provided for IWSLT07 do not have necessarily word decomposition compatible with the word decomposition used to train our MT models
 - Word units vs sub-word units
 - Different sub-word units used
- Need for a lattice decomposition algorithm

What SRI-LM does

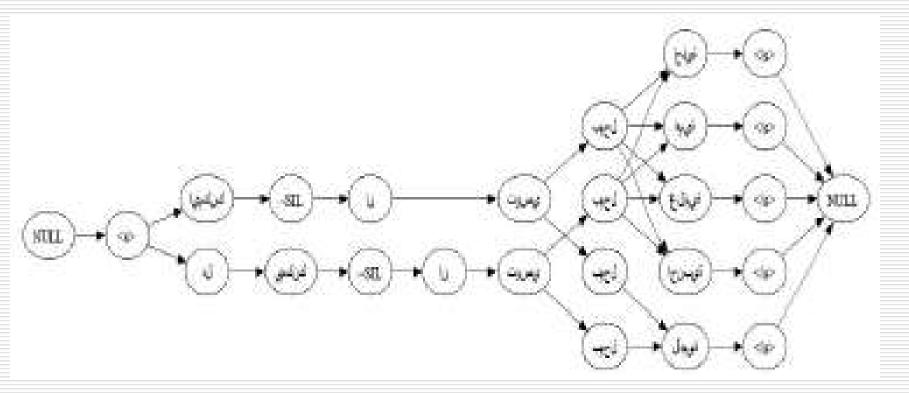
- Example : CANNNOT splitted into CAN and NOT
- -split-multiwords option of latticetool
 - First node keeps all the information
 - new nodes have null scores and zero-duration



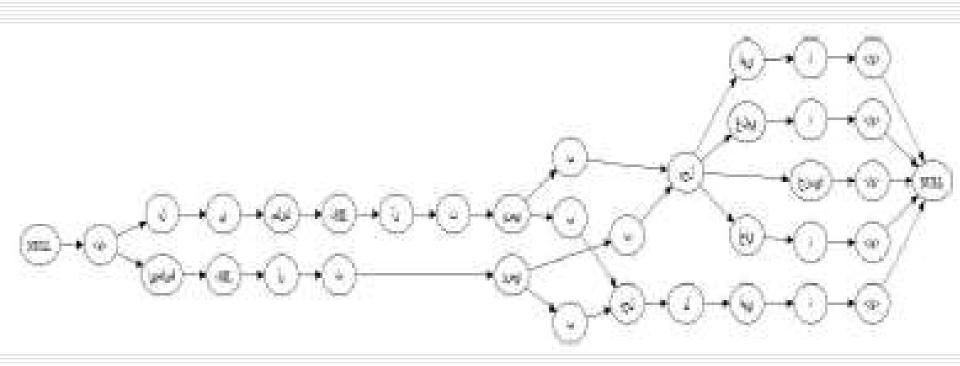
Proposed lattice decomposition algorithm (1)

- identify the arcs of the graph that will be split (decompoundable words)
- each arc to be split is decomposed into a number of arcs that depends on the number of subword units
- the start / end times of the arcs are modified according to the number of graphemes into each subword unit
- so are the acoustic scores
- the first subword of the decomposed word is equal to the initial LM score of the word, while the following subwords LM scores are made equal to 0

Freely available on http://www-clips.imag.fr/geod/User/viet-bac.le/outils/


Proposed lattice decomposition algorithm (2)

13


Examples in arabic

Word lattice

Examples in arabic

Sub-Word lattice

3 Speech translation experiments

- -Results on IWSLT06
- -Results on IWSLT07 (eval)

Results on IWSLT06

Full CN decoding (subword CN as input)

- obtained after applying our word lattice decomposition algorithm
- all the parameters of the log-linear model used for the CN decoder were retuned on *dev06* set
 - "CN posterior probability parameter" to be tuned

17

ASR primary

	(1)	(2)	(3)	(4)
	verbatim	1-best	cons-dec	full-cn-dec
dev06	0.2948	0.2469	0.2486	0.2779
tst06	0.2271	0.1991	0.2009	0.2253

Results on IWSLT07 (eval)

	clean	ASR	ASR
	verbatim	1-best	full-cn-dec
Eva07	0.4135	0.3644	0.3804

AE ASR	
1XXXX	BLEU score = 0.4445
2XXXX	BLEU score = 0.4429
3XXXX	BLEU score = 0.4092
4XXXX	BLEU score = 0.3942
5XXXX	BLEU score = 0.3908
6LIG_AE_ASR_primary_01	BLEU score = 0.3804
6LIG_AE_ASR_primary_01 7XXXX	BLEU score = 0.3804 BLEU score = 0.3756
7XXXX	BLEU score = 0.3756
7XXXX 8XXXX	BLEU score = 0.3756 BLEU score = 0.3679
7XXXX 8XXXX 9XXXX	BLEU score = 0.3756 BLEU score = 0.3679 BLEU score = 0.3644