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Abstract
The NTT Statistical Machine Translation System employs a
large number of feature functions. First,k-best translation
candidates are generated by an efficient decoding method
of hierarchical phrase-based translation. Second, thek-best
translations are reranked. In both steps, sparse binary fea-
tures — of the order of millions — are integrated during
the search. This paper gives the details of the two steps and
shows the results for the Evaluation campaign of the Interna-
tional Workshop on Spoken Language Translation (IWSLT)
2007.

1. Introduction

This paper presents NTT Statistical Machine Translation
System evaluated in the evaluation campaign of International
Workshop on Spoken Language Translation (IWSLT) 2007.
Our system is composed of two steps: First,k-best transla-
tion candidates are generated using an efficient decoder for
hierarchical phrase-based translation [1]. Next, the large k-
best translation is reordered using a reranking voted percep-
tron [2]. Both systems employ a large number of sparse fea-
tures — of the order of millions — to achieve a state of the
art performance [3].

The large number of parameters are trained using an ef-
ficient online training algorithm: The decoder employs an
online large-margin training method [4] that has been suc-
cessfully applied in dependency parsing [5] or joint label-
ing/chunking [6]. The reranker uses a reranking voted per-
ceptron which gave significant improvement in the last year’s
IWSLT 2006 evaluation [2]. Both systems are tuned using
approximated BLEU as an objective function that scales the
sentence-wise BLEU to a document-wise BLEU. Domain
mismatch is handled by a simple task adaptation scheme by
selecting training data that resembles a test set [7]. In order
to handle the ASR’s error prone input, we decoded all then-
best translations and let the reranker choose the right trans-
lation by treating the individually translated list as a single
k-best list combined with the ASR’sn-best list’s confidence
measures.

This paper is organized as follows: The overview of our
decoder is presented in Section 2. We will describe the fea-
ture functions experimented in [3] together with additional

features. The reranking system is described in Section 3.
The reranker is biased to use a slightly different feature set
to avoid over training. Both systems share the same online
training algorithm, but differ in that the decoder’s parame-
ters are updated based on the dynamically generated candi-
date list, whereby the reranking training is based on a fixed
translation candidate list. Section 4 presents the resultsfor
the evaluation campaign of IWSLT 2007.

2. Machine Translation System

We use a linear feature combination approach [8] in which
a foreign language sentencef is translated into another lan-
guage, for example English,e, by seeking a maximum solu-
tion:

ê = argmax
e

w
⊤ · h(f, e) (1)

whereh(f, e) is a large-dimension feature vector.w is a
weight vector that scales the contribution from each feature.
Each feature can take any real value, such as the log of then-
gram language model to represent fluency, or a lexicon model
to capture the word or phrase-wise correspondence. Under
this maximization scenario, our system composed of two
steps: The first step is a decoder that can efficiently gener-
atek-best list of candidate translations in a left-to-right man-
ner [1] based on the hierarchical phrase-based translation[9].
The second step rerank thek-best list using a reranking voted
perceptron[2].

2.1. Hierarchical Phrase-based Translation

We use the hierarchical phrase-based translation approach,
in which non-terminals are embedded in each phrase [9]. A
translation is generated by hierarchically combining phrases
using the non-terminals. Such a quasi-syntactic structurecan
naturally capture the reordering of phrases that is not directly
modeled by a conventional phrase-based approach [10]. The
non-terminal embedded phrases are learned from a bilingual
corpus without a linguistically motivated syntactic structure.

Based on hierarchical phrase-based modeling, we
adopted the left-to-right target generation method [1] which
performed better than a phrase-based system in the last year’s
evaluation[2]. This method is able to generate translations ef-



ficiently, first, by simplifying the grammar so that the target
side takes a phrase-prefixed form, namely a target normal-
ized form:

X →
〈

γ, b̄β,∼
〉

(2)

whereX is a non-terminal,γ is a source side string of arbi-
trary terminals and/or non-terminals.b̄β is a corresponding
target side wherēb is a string of terminals, or a phrase, and
β is a (possibly empty) string of non-terminals.∼ defines
one-to-one mapping between non-terminals inγ andβ.

Second, a translation is generated in a left-to-right man-
ner, similar to phrase-based decoding using Earley-style top-
down parsing on the source side [11, 1, 12]. The basic idea is
to perform top-down parsing so that the projected target side
is generated in a left-to-right manner. The search is guided
with a push-down automaton, which keeps track of the span
of uncovered source word positions. Combined with the rest-
cost estimation aggregated in a bottom-up way, our decoder
efficiently searches for the most likely translation.

The use of a target normalized form further simplifies the
decoding procedure, at the expense for expressiveness. Since
the rule form does not allow any holes in the target side,
the integration with ann-gram language model is straight-
forward: the prefixed phrases are simply concatenated and
intersected with ann-gram.

2.2. Features

2.2.1. Baseline Features

The hierarchical phrase-based translation system employs
standard real valued value features:

• n-gram language model to capture the fluency of the
target side.

• Hierarchical phrase translation probabilities in both di-
rections,h(γ|b̄β) andh(b̄β|γ), estimated by relative
counts,count(γ, b̄β) [9].

• Word-based lexically weighted models ofhlex(γ|b̄β)
andhlex(b̄β|γ) using lexical translation models[9].

• Word-based insertion/deletion penalties that penalize
through the low probabilities of the lexical translation
models [13].

• Word/hierarchical-phrase length penalties.

• Backtrack-based penalties inspired by the distortion
penalties in phrase-based modeling [1].

2.2.2. Sparse Features

In addition to the baseline features, a large number of bi-
nary features are integrated in our MT system [3]. The fea-
tures are designed with decoding efficiency in mind and are
based on the word alignment structure preserved in hierarchi-
cal phrase translation pairs [14]. When hierarchical phrases
are extracted, the word alignment is preserved. If multiple
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Figure 1: An example of sparse features for a phrase transla-
tion.
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Figure 2: Example hierarchical features.

word alignments are observed with the same source and tar-
get sides, only the most frequently observed word alignment
is kept to reduce the grammar size.

Using the word alignment structure inside hierarchical
phrases, we employs following feature set.

• Word pair features directly capture the source/target
word correspondence represented by the word align-
ment, such as(ei, fj+1), (ei+2, fj+2) and (ei+3, fj)
in Figure 1.

In addition to the unigram word pair fea-
ture, bigram word pair features are also used
to capture the contextual dependency, such as
((ei−1, fj−1), (ei, fj+1)), ((ei, fj+1), (ei+2, fj+2))
and((ei+2, fj+2), (ei+3, fj)) indicated by the arrows
in Figure 1.

We assume that the bigram of the word pairs will fol-
low the target side ordering. Extracting bigram word
pair features following the target side ordering implies
that the corresponding source side is reordered accord-
ing to the target side. The reordering of hierarchical
phrases is represented by using contextually dependent
word pairs across their boundaries, as with the feature
((ei−1, fj−1), (ei, fj+1)).

• Insertion/deletion features are integrated in which no
word alignment is associated in the target/source side.
Inserted words are associated with all the words in the
source sentence, such as(ei+1, f1), ..., (ei+1, fJ) for
the non-aligned wordei+1 with the source sentence
fJ
1 in Figure 1. In the same way, we use hierarchical

phrase-wise deletion features by associating each in-



serted source word in a phrase to all the target words
in the same phrase.

• Target bigram features are also included to directly
capture the fluency as in then-gram language model
[15], such as(ei−1, ei), (ei, ei+1), (ei+1, ei+2)... in
Figure 1.

• Hierarchical features capture dependencies the source
words in a parent phrase to the source words in child
phrases, such as(fj−1, fj), (fj−1, fj+1), (fj+3, fj),
(fj+3, fj+1), (fj , fj+2) and(fj+1, fj+2) as indicated
by the arrows in Figure 2. The hierarchical features are
extracted only for those source words that are aligned
with the target side to limit the feature size.

In order to achieve the generalization capability, we in-
troduce normalized tokens for each surface form [3].

• Word class/part-of-speech/named entity. Words are
clustered by mkcls [16]. The part-of-speech (POS) and
named entity (NE) tags are also integrated to capture
linguistic characteristics when taggers are available.

A unique word class is assigned to each surface form.
However, multiple POS/NE are potentially assigned to
each surface word. In our approach, we do not dis-
ambiguate labels, but simply collect a surface word to
multiple tags dictionary. Those tags are integrated by
first running a tagger on the training data. Then, a sur-
face form to POS/NE dictionary is generated by col-
lecting all possible tags for each word.

• Synsets from WordNet. In order to represent semantic
correspondence, we introduced synset categories for
the English side. The synset mapping is potentially
one-to-many as with the POS/NE features.

• 4-letter prefix and suffix. For instance, the word “vi-
olate” is normalized to “viol+” and “+late” by taking
the prefix and suffix, respectively.

• Digits replaced by a sequence of “@”. For ex-
ample, the word “2007/6/27” is represented as
“@@@@/@/@@”. Since all the numerals are spell-
out, this feature is applicable only to Chinese and
Japanese.

We consider all possible combination of those token types.
For example, an English/Arabic word pair feature (violate,
tnthk) is normalized and expanded to (viol+, tnthk), (viol+,
tnth+), (violate, tnth+), etc. using the 4-letter prefix token
type. As discussed above, the POS/NE/synsets labels are as-
signed by a one-to-many dictionary. Then, each surface form
is expanded to all possible labels, then, all possible features
are extracted.

Algorithm 1 Online Training Algorithm for decoder

Training data:T = {(f t, et)}
T

t=1

m-best oracles:O = {}Tt=1

i = 0
1: for n = 1, ..., N do
2: for t = 1, ..., T do
3: Ct ← bestk(f t;wi)
4: Ot ← oraclem(Ot ∪ Ct; et)
5: w

i+1 = updatewi usingCt w.r.t.Ot

6: i = i + 1
7: end for
8: end for
9: return

P

NT

i=1
w

i

NT

2.3. Training

Algorithm 1 is our generic online training algorithm. The
algorithm is slightly different from other online trainingal-
gorithms [17, 18] in that we keep and update oracle trans-
lations, which is a set of good translations reachable by a
decoder according to a metric, e.g. BLEU [19]. In line 3, a
k-best list is generated bybestk(·) using the current weight
vectorwi for the training instance of(f t, et). Each training
instance has multiple (or, possibly one) reference translations
e

t for the source sentencef t. Using thek-best list,m-best
oracle translationsOt are updated byoraclem(·) for every
iteration (line 4). Usually, a decoder cannot generate transla-
tions that exactly match the reference translations due to its
beam search pruning and OOV. Thus, we cannot always as-
sign scores to each reference translation. Therefore, possible
oracle translations are maintained according to an objective
function. The problem can be resolved by approximately pre-
computing the oracle translations in advance [17]. Liang et
at. [18] presented a similar updating strategy in which pa-
rameters were updated toward an oracle translation found in
Ct, but ignored potentially better translations discovered in
the past iterations.

A new w
i+1 is computed using thek-best listCt with

respect to the oracle translationsOt (line 5). After N iter-
ations, the algorithm returns an averaged weight vector to
avoid overfitting (line 9).

When updating parameters in line 5, we use the Margin
Infused Relaxed Algorithm (MIRA) [4] which is an online
version of the large-margin training algorithm for structured
classification [20] that has been successfully used for depen-
dency parsing [5] and joint-labeling/chunking [6]. Line 5
of the weight vector update procedure in Algorithm 1 is re-



placed by the solution of:

ŵ
i+1 = argmin

w
i+1

1

2
||wi+1 −w

i||2 + C
∑

ê,e′

ξ(ê, e′)

subject to

si+1(f t, ê)− si+1(f t, e′) + ξ(ê, e′) ≥ L(ê, e′; et)

ξ(ê, e′) ≥ 0

∀ê ∈ Ot, ∀e′ ∈ Ct (3)

wheresi(f t, e) =
{

w
i
}⊤
· h(f t, e). ξ(·) is a non-negative

slack variable andC ≥ 0 is a constant to control the influence
to the objective function. A largerC implies larger updates
to the weight vector.L(·) is a loss function, for instance
difference of BLEU, that measures the difference betweenê

ande′ according to the reference translationse
t.

In this update, a margin is created for each correct and in-
correct translation at least as large as the loss of the incorrect
translation. A larger error means a larger distance between
the scores of the correct and incorrect translations. Only ac-
tive features constrained by Eq. 3 are kept and updated, un-
like offline training in which all possible features have to be
extracted and selected in advance.

2.4. Approximated BLEU

We used the BLEU score [19] as the loss function computed
by:

BLEU(E;E) = exp

(

1

N

N
∑

n=1

log pn(E,E)

)

· BP(E,E)

(4)
wherepn(·) is then-gram precision of hypothesized transla-
tionsE = {et}Tt=1 given reference translationsE = {et}Tt=1

and BP(·) ≤ 1 is a brevity penalty. BLEU is computed
for a set of sentences, not for a single sentence. Our algo-
rithm requires frequent updates on the weight vector, which
implies higher cost in computing the document-wise BLEU.
[17] and [18] solved the problem by introducing a sentence-
wise BLEU. However, the use of the sentence-wise scoring
does not translate directly into the document-wise score be-
cause then-gram precision statistics and the brevity penalty
statistics are aggregated for a sentence set. Thus, we use
an approximated BLEU score that basically computes BLEU
for a sentence set, but accumulates the difference for a par-
ticular sentence [2].

The approximated BLEU is computed as follows: Given
oracle translationsO for T , we maintain the best oracle
translationsOT

1 =
{

ê1, ..., êT
}

that is treated as a “bed” doc-
ument. The approximated BLEU for a hypothesized transla-
tion e′ for the training instance(f t, et) is computed over the
bedOT

1 except for̂et, which is replaced bye′:

BLEU({ê1, ..., êt−1, e′, êt+1, ..., êT };E)

The loss computed by the approximated BLEU measures the
document-wise loss of substituting the correct translation êt

Algorithm 2 Online Training Algorithm for Reranker

Training data:T = {(f t, Ct, et)}
T

t=1

1: for n = 1, ..., N do
2: w

n = w
n−1

3: for t = 1, ..., T do
4: R = rerank(Ct;wn)
5: for i = 1, ..., |R| do
6: for j = i + 1, ..., |R| do
7: if L(Rj ,Ri; e

t) > 0 then
8: w

n = updatewn usingRi andRj

9: end if
10: end for
11: end for
12: end for
13: end for
14: return {wn}Nn=1

into an incorrect translatione′. The score can be regarded
as a normalization which scales a sentence-wise score into a
document-wise score.

3. Reranking System

Our reranking system is basically identical to the system pre-
sented in the last year’s IWSLT 2006 evaluation [2] that is
based on the parse reranking method explained in [21]. We
first generaten-best lists of candidate translations from the
decoder, then train reranking model using the development
set with additional features by ranking voted perceptron. Fi-
nally, during the testing, we rerank thek-best list of test data
from the decoder by the parameters for the reranking. A
separately trained reranking model is used for the ASR’sn-
best list. The reranker selects the best translation out of the
mergedk · n-best list generated by translating all the sen-
tences in then-best list.

3.1. Features

The reranking system employs a slightly different feature set
from the baseline decoder. First, we use all the baseline fea-
tures from the decoder. The decoder’s sparse feature param-
eters are treated as a single feature function. Second, we
include only unigram and bigram of word pair features in
Section 2.2.2 to avoid over training. The word pairs are ex-
tracted by separately running IBM Model 1 in both direc-
tions, not directly from the word alignment annotation pre-
served in the hierarchical phrases from the decoder. The sur-
face form is factored using English POS only, but used dif-
ferent algorithm to perform POS tagging to achieve different
types of generalization. We also include various confidence
measures available from the ASR’sn-best and lattice outputs
when reranking ASRk · n translations.

3.2. Training



Table 1: Bilingual data
Arabic-to-English Chinese-to-English Italian-to-English Japanese-to-English

# sentences 832,912 3,268,916 854,871 1,055,144
# words 21,171,984 25,062,213 51,938,862 57,289,887 24,035,970 24,041,843 10,811,003 8,646,894
vocabulary 290,826 132,915 824,720 961,193 117,914 67,262 384,236 254,442
other sources LDC(news) LDC(news,lexicon) EuroParl NiCT, others

Algorithm 3 Decoding Algorithm for Reranker

k-best translation list:(f, C)

Weight vectors:{wn}Nn=1

Votes:V = 0

1: for n = 1, ..., N do
2: î = argmaxi {w

n}⊤ · h(f, Ci)
3: Vî = Vî + 1
4: end for
5: return Cî wherêi = argmaxi Vi

The training algorithm is presented in Algorithm 2. The
major difference from Alg. 1 is that the training data comes
from a statick-best list candidatesCt from the decoder. In
line 4, Ct is reranked byrerank(·) using the current weight
vectorwn for the training instance(f t, Ct, et). Each trans-
lation candidate in the rerankedk-best listR is pair wise
compared in line 5 and 6. The weight vector is updated when
incorrect ranking is found betweenRi andRj indicated by a
loss functionL(·) (line 7 and 8). AfterN iterations, the algo-
rithm returnsN weight vectors{wn}

N

n=1
. When testing, the

best hypothesized translation out ofC is selected by voting
as in Algorithm 3.

The weight vector update procedure in line 8 is based on
an perceptron algorithm with the update amount scaled by
the loss functionL(·).

w
n = w

n + L(Rj ,Ri; e
t) ·
(

h(f t,Rj)− h(f t,Ri)
)

(5)

As our loss function, we employed the difference of the
approximated BLEU in Section 2.4, but used a set of1-best
translations from the decoder as our bed document, instead of
oracle translations. The idea is to directly measure the gain
or loss by selecting the translation different from the original
1-best translation of the decoder.

4. Evaluation

4.1. Data

The major training data comes from IWSLT supplied data,
a subset of BTEC[22]. We also used common bilingual
data either in the public domain or from the LDC as indi-
cated in Table 1. Additional data for Arabic/English and
Chinese/English comes from a set of LDC bilingual news
data, lexicon and the named entity list. For Italian/English,
a portion of EuroParl [23] was extracted. Additional data
for Japanese/English come from the news data and mis-

Table 2: The source language perplexity for the “clean” de-
velopment and test set.

dev set test set
Arabic-to-English 561.96 214.99
Italian-to-English 277.24 271.39
Japanese-to-English 51.29 13.45
Chinese-to-English 188.49 73.18

cellaneous text data supplied by NiCT [24], together with
textbook-like data, a lexicon and a named entity list in the
public domain1. The corpus statistics is presented in Table
1. Since there exists larger mismatch with the IWSLT con-
dition, we extracted texts that do not contain any digits by
discarding sentences that match the regular expression, “[0-
9]”. We used a development set of 4, 5 and 5b for estimating
parameters both of the decoder and the reranker, since those
data include ASR’s outputs.

Tokenization/tagging are performed by the following
tools: English data is POS tagged by a MaxEnt-based tool
[25] for use in the decoder, and by a rule-based Brill’s POS
tagger for reranking. Arabic data is tokenized by simply iso-
lating Arabic scripts. Italian data is POS tagged by tree-
tagger [26]. Japanese/Chinese texts are POS tagged/NE
chunked [27]. After tokenization, we removed all the punc-
tuation marks in the source side of bilingual data and lower-
cased the texts. The English side of the bilingual data is
case/punctuation preserved.

4.2. Task Adaptation

As discussed in Section 4.1, we extracted bilingual data from
various sources, ranging from in-domain travel related data
to out-of-domain news, miscellaneous texts and lexicons.
Their characteristics are very different from the style in the
IWSLT development and test conditions. Table 2 shows the
development/test set perplexity of the source side language
computed by the trigram of the source part of the IWSLT’s
supplied bilingual texts. Even the development and test data
is different from the IWSLT’s training data.

Therefore, we performed a simple task adaptation
scheme based on [7]. For each sentence in a test/development
set, we sampled 100 sentences from all the bilingual train-
ing data using the source sentence’s ngram precision met-
ric. Thus, the task adapted training data will amount to

1http://www.csse.monash.edu.au/∼jwb/japanese.
html



Table 3: Evaluation results for IWSLT 2007. The primary submissions are indicated by†.
ar-en it-en ja-en zh-en

BLEU NIST BLEU NIST BLEU NIST BLEU NIST
[%] [%] [%] [%]

ASR ASR-1-best + 1-best 36.26† 6.61 28.68† 6.36 35.35† 6.43
ASR-20-best + rerank (devset) 30.37 5.89 26.01 5.85 35.33 6.33
ASR-1-best + rerank (devset+IWSLT)39.09 6.86 28.34 6.31 38.74 6.84

clean 1-best 34.03† 6.50 30.91† 6.73 43.65† 7.56 26.27 5.71
rerank (devset) 34.46 6.41 29.83 6.59 44.59 7.63
rerank (devset+IWSLT) 36.03 6.68 30.68 6.67 45.98 7.88 27.89† 6.04

Table 4: Post-evaluation results for IWSLT 2007.
Arabic-to-English Italian-to-English Japanese-to-EnglishChinese-to-English
BLEU NIST BLEU NIST BLEU NIST BLEU NIST

[%] [%] [%] [%]
ASR-1best 48.64 6.91 36.71 7.33 43.69 7.16
clean-1-best 48.70 6.84 39.44 7.76 51.42 8.05 35.27 5.93

50,000 sentences for a set of 500 test sentences with du-
plicates. From the sampled data, we generated a hierarchi-
cal phrase translation table and a lexical translation table by
first running an in-house developed HMM-based “alignment
by agreement” word alignment tool [28] in two directions.
Then, hierarchical phrase translation pairs were extracted [1]
after the grow-diag-final word alignment heuristic [10].

The parameters are estimated using the hierarchical
phrase translation table sampled for the development data.
For testing, we used the same parameters, but replaced the
phrase translation table and the lexicon model sampled for
the test data. The ngram language models are separately esti-
mated from the English side of the IWSLT supplied bilingual
data and the sampled bilingual data. The online large-margin
training for our decoder was performed 200 to 300 iterations
using1-oracle1-best constraints. The iterations varies de-
pending on the language pairs.

The reranker was tuned on the1000-best outputs from
the decoder. We used two different data sets. One was
the same development set used for the parameter tuning
for our decoder (devset). In addition to the development
data, we trained the reranking model on the IWSLT sup-
plied data consisting of 20,000 sentences together with the1-
best development data sampled from the larger training data
(devset+IWSLT). We expect that the sampled training data
would produce further benefits in the testing condition.

4.3. Results

Our results in BLEU [19] and NIST [29] are presented in Ta-
ble 3. As discussed in Section 4.2, the closer the test data to
the IWSLT supplied training data, the better the BLEU scores
when the training data size for our reranker is also increased.
However, the larger data did not provide significant improve-
ments for the test data when the testing and the training con-
ditions are different as in the Italian-to-English translation

task. Although we exploited a set of confidence measures
from the ASR’s word lattice structure, we achieved almost
no gains to a simpler 1-best translation method. One of the
strange behavior was observed in the Arabic-to-English task:
The ASR output translation was better than the clean input
translation. We believe that the ASR acts as a normalizer for
the input text, which reduces the gap between the develop-
ment set and the final test set.

Contrary to our previous studies on an Arabic-to-English
translation task [1], our results are considerably lower than
other systems. We believe that this is mainly due to the mis-
match observed between the development and the test con-
ditions. Since our method involves a large number of sparse
features, it is very sensitive to the closeness to the settings.

4.4. Post-Evaluation Results

As indicated by Table 2 and the official results in Table 3,
we hypothesized that our approach was very sensitive to the
style mismatch. Thus we conducted further experiments by
choosing the right development set for training.

We used devset 1 and 2 for estimating parameters. The
devset 3 was held-out as a development test to terminate the
iterations of Algorithm 1. The hierarchical phrase translation
tables were acquired only from the IWSLT supplied data to-
gether with devset 4 and 5. For the Italian-to-English task,
since larger distance was observed in terms of perplexities,
we employed devset 4 and 5 for the parameter estimation.
The devset 5b was used as a development test. The phrase
translation tables was extracted from the IWSLT supplied
bilingual data mixed with devset 1 through 3 and devset 5b.

The results are summarized in Table 4. We translated
ASR-1best and clean data, and employed no reranking for
this set of experiments, since we observed no gains. We
achieved significant improvements by simply selecting the
right development set. It was also observed that longer iter-



ations easily overfit to the development data, hence resulted
in worse performance for the development test and the final
test. We believe that this might be the case for the IWSLT-
style data condition, but will be investigated in our future
work.

5. Conclusion

We evaluated the NTT Statistical Machine Translation Sys-
tem for the evaluation campaign of IWSLT 2007. The sys-
tem consists of two steps, decoding and reranking, by in-
tegrating large number of feature functions, e.g. syntactic
features. Training data is sampled using the test set ngram
precision metrics from the universe of bilingual data from
various sources. The large number of parameters for the de-
coder is tuned to a small development set. Larger training
data is employed for the tuning the reranking model. Our
future work involves more features and a better smoothing
method to avoid over training effects observed in this evalu-
ation.
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