
Improving Statistical Machine Translation by Paraphrasing the Training Data

Francis Bond,1 Eric Nichols,2 Darren Scott Appling,3 Michael Paul11 National Institute of Information and Communications Technology2 Nara Institute of Science and Technology3 Georgia Institute of Technology
bond@ieee.org,eric-n@is.naist.jp

darren.scott.appling@gatech.edu,Michael.Paul@nict.g o.jp

Abstract

Large amounts of training data are essential for training
statistical machine translations systems. In this paper
we show how training data can be expanded by para-
phrasing one side. The new data is made by parsing
then generating using a precise HPSG based grammar,
which gives sentences with the same meaning, but mi-
nor variations in lexical choice and word order. In ex-
periments with Japanese and English, we showed con-
sistent gains on the Tanaka Corpus with less consistent
improvement on theIWSLT 2005 evaluation data.

1. Introduction

Data-driven machine translation systems such as EBMT
and SMT learn how to translate by analyzing aligned
bilingual corpora. In general, the more data available
the higher the quality of the translation. Unfortunately,
there are limits to how much bilingual data exists. In
this paper, we propose a method for increasing the amount
of parallel text by using a precise, wide-coverage gram-
mar to paraphrase the text in one language.

The novelty in this work is that we are using a hand-
crafted grammar to produce the paraphrases, thus adding
a completely new source of knowledge to this system.
The paraphrases are both meaning preserving and gram-
matical, and thus are quite restricted. Possible changes
include: changes in word order (Kim sometimes goes�Kim
goes sometimes), lexical substitution (everyone�everybody),
contractions (going to�gonna) and a limited number
of corrections (the the! the).

We give an example of paraphrasing in (1). The
grammar treats all of these sentences as semantically
equivalent.

(1) このことから、会社には事故の責任が無
いことになる。

It follows from this that the company is not re-
sponsible for the accident.

It follows that the company isn’t responsible for
the accident from this.

It follows that the company is not responsible
for the accident from this.

That the company isn’t responsible for the acci-
dent follows from this.

We next introduce some related work, then the re-
sources we use in this paper. This is followed by a de-
scription of the method and the evaluation. Finally we
discuss the results and how we plan to extend the re-
search.

2. Related Work

Automatic generation and use of paraphrases has been
of considerable interest to the MT community in recent
years. Because the paraphrase is n alternate representa-
tions o the same meaning it it can be derived from pre-
existing training corpora and automatically aligned with
the same target training sentence in a bilingual corpora.
Including generated paraphrases as additional training
data gives an SMT system the ability to make a richer
model and thus positively affecting model quality dur-
ing evaluation.

There are several areas where paraphrases can be
readily introduced into standard phrase-based SMT sys-
tems: source and target sides and even during the pa-
rameter tuning phase as references. Work has been done
to extract paraphrases from bilingual corpora [1] and to
extract paraphrase patterns as in [2]. By pivoting on tar-
get language phrases, source phrases and potential para-
phrases can be found; for extracting patterns the task
extends to a generalization of phrases with slots instead
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of words. [3] found that it is possible to translate un-
known source words by paraphrasing them and then do
a translation on the paraphrase. The classic example of
the pivot approach from [3] follows:

(2) what is more, the relevant cost dynamic is com-
pletely under control

im übrigen ist die diesbezügliche kostenentwick-
lung völlig unter kontrolle

(3) wir sind es den steuerzahlern die kosten schuldig
unter kontrollezu haben

we owe it to the taxpayers to keep the costs
in check

By holding the german phraseunter kontrolleas
a pivot the English phraseunder controlcan be para-
phrased asin check. [2] extend the pivot approach to
general patterns by using part of speech as a constraint
to slots in their patterns, an example follows:

(4) all the members of[NNPS 1]

all members of[NNPS 1]

The slot part of speech [NNPS1] constraints the
paraphrase to ensure correct match ups when filling in
to make real phrases. Other research involving mono-
lingual corpora, was done in [4] who paraphrased noun
phrases, after first parsing sentences to identify the noun
phrases. Sentence variants are generated as paraphrases
when appropriately structured noun phrases are found.
Only six grammar transformation rules were used and
there was no lexical paraphrasing per se. The paper also
presented a result that paraphrasing entries in the phrase
table does not compare to the impact of adding para-
phrase directly to the training corpus. As for the BLEU
scores, they only ever achieve an increase of about 1
BLEU point and this is on limited corpora sizes.

Some examples from [4] are as follows:

(5) of members of the Irish parliament

of irish parliament members

of irish parliament’s members

(6) action at community level

community level action

To the extent that paraphrasing techniques are com-
parable to more implicit methods of language to lan-
guage manipulation we explore previous research re-
lated to reordering models where a form of paraphras-

ing does occur in how translation is done. In [5] pro-
posed a reordering model that took into account predicate-
argument structure in Japanese and followed a heuristic
for reordering sentences in the training data as a pre-
processing step. This sort of reordering, while unnatu-
ral to native speakers, is still grammatically correct and
easier to align to English during model training, it is
also a type of paraphrasing. [6] made use of parses of
source sentences and then applied a reordering heuris-
tic as well. [7] also discusses the use altering German
word order to correspond to English word order there is
also some use of annotations on verbs with identifying
prefixes to solve the long distance dependency of Ger-
man verbs types that allow for separation of the prefix
from the verb in the sentence structure.

3. Resources

In this section we describe the major resources used.
For the SMT system we used the open source Moses
system1. For paraphrasing we used the open source En-
glish Resource Grammar. We tested on two Japanese-
English corpora, the Tanaka Corpus and the IWSLT cor-
pus. We chose the Tanaka corpus primarily because of
its easy availability (it is in the public domain). This
will make our results easy to reproduce. We also tested
on the IWSLT corpus, as it has been used in several
competitions, in order to facilitate comparisons with
other systems.

In the spirit of open science, the paraphrased Tanaka
Corpus data and our scripts will be put on line atwww2.
nict.go.jp/x/x161/en/member/bond/data/ .

3.1. Moses

Moses [8] is an open-source toolkit for phrase-based
statistical machine translation with support for factors.
The toolkit is one of the first highly efficient and free
SMT decoders and tool kits; it supports building fac-
tored statistical models. Factors such as part-of-speech,
morphology, and lemmas are applied using translation
models and generation models, two features of moses
which in conjunction with the user specified decoding
steps help to create stories of how one language might
translate best to another.

We used the multi-threaded Giza++ [9] as it fixed a
bug in how probabilities are assigned to low frequency
events. To construct language models, we used the SRILM

1We used the 20080711 public release of Moses.
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Toolkit [10].

3.2. The English Resource Grammar

The LinGO English Resource Grammar (ERG; [11]) is a
broad-coverage, linguistically preciseHPSG-based gram-
mar of English that has been under development at the
Center for the Study of Language and Information (CSLI)
at Stanford University since 1993. TheERG was origi-
nally developed within the Verbmobil machine transla-
tion effort, but over the past few years has been ported
to additional domains and significantly extended. The
grammar includes a hand-built lexicon of around 43,000
lexemes. We are using the development releaseLinGO
(Apr-08) . The ERG and the associated parsers and
generators are freely available from the Deep Linguis-
tic Processing with HPSG Initiative (DELPH-IN:www.
delph-in.net/ ).

Generally, we use the default settings and the lan-
guage models trained in theLOGON project both for
parsing and generation [12]. However, we set the root
condition, which controls which sentences are treated
as grammatical, to berobust for parsing andstrict for
generation. This means that robust rules (for example
a rule to allow verbs not to agree in number with their
subject) will apply in parsing but not in generation. The
grammar will thus parseThe dog barkor The dog barks
but only generateThe dog barks.

3.3. Corpora

We used two corpora, one freely available, and one stan-
dard test set.

3.3.1. Tanaka Corpus

The Tanaka corpus is an open corpus of Japanese-English
sentence pairs compiled by Professor Yasuhito Tanaka
at Hyogo University and his students [13] and released
into the public domain.

Professor Tanaka’s students were given the task of
collecting 300 sentence pairs each. After several years,
212,000 sentence pairs had been collected. The sen-
tences were created by the students, often derived from
textbooks, e.g. books used by Japanese students of En-
glish. Some are lines of songs, others are from popular
books and Biblical passages. The original collection
contained large numbers of errors, both in the Japanese
and English. These are being corrected by volunteers,
as part of ongoing activity to provide example sentences

for the Japanese-English dictionary JMDict [14]. Re-
cently, translations in other languages, most notably French,
have been added by the TATOEBA project.2 We give a
typical example sentence in (7).

(7) あの木の枝に数羽の鳥がとまっている。

“Some birds are sitting on the branch of that tree.”
(en)

“Des oiseaux se reposent sur la branche de cet ar-
bre.” (fr)

The version (2007-04-05) we use has 147,190 sen-
tence pairs in the training split, along with 4,500 sen-
tence pairs reserved for development and 4,500 sen-
tence pairs for testing. After filtering out long sen-
tences (> 40 tokens) as part of the SMT cleaning pro-
cess, there were 147,007 sentences in the training set.
The average number of tokens per sentence is 11.6 for
Japanese and 9.1 for English (with the tokenization used
in the SMT).

3.3.2. TheIWSLT Corpus

We also tested our system on theIWSLT 2005 evalua-
tion corpus [15]. This is a subset of theBasic Travel
Expression Corpus(BTEC), which contains tourism-
related sentences similar to those that are usually found
in phrase books for tourists going abroad [16]. Parts of
this corpus were already used in previous IWSLT eval-
uation campaigns [17]. We used the evaluation and de-
velopment data sets of 2004, although only with the first
of the multiple reference translations, for our develop-
ment corpora and the 500 sentenceIWSLT 2005 evalu-
ation set, again with only the first of the 16 references,
as the evaluation corpus.

The IWSLT corpus has 42,682 sentence pairs. The
average number of tokens per sentence is 9.0 for Japanese
and 8.0 for English (with the tokenization used in the
SMT). The sentences are both shorter and more homo-
geneous than those in the Tanaka Corpus.

4. Method

4.1. Paraphrasing

We paraphrase by parsing a sentence to an abstract se-
mantic representation using the English Resource Gram-
mar, and then generating from that using the same gram-
mar. The semantic representation used is Minimal Re-
cursion Semantics (MRS: [18]). We give an example in

2wwwcyg.utc.fr/tatoeba/
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hh1,
h3:person (ARG0 x4fPERS 3;NUM sgg);
h5:every q (ARG0 x4, RSTR h6, BODY h7);
h8: often a 1 (ARG0 e9fTENSE untensedg, ARG1 e2fTENSE presg);
h8: go v 1 (ARG0 e2, ARG1 x4);
h8: to p (ARG0 e10fTENSE untensedg, ARG1 e2, ARG2 x11fPERS 3;NUM pl ; IND +g);
h12: the q (ARG0 x11, RSTR h14, BODY h13);
h15: movie n of (ARG0 x11, ARG1 i16fSF propg)fh6 =q h3, h14 =q h15 g i

Figure 1: Semantic Representation of “Everybody often goes to the the movies.”

Paraphrase Score
Everyone often goes to the movies. 7.7
Everybody often goes to the movies. 7.7
Everyone goes often to the movies. 0.5
Everybody goes often to the movies. 0.5
Everyone goes to the movies often. -0.3
Everybody goes to the movies often. -0.3

Figure 2: Paraphrases of “Everybody often goes to the
the movies.”.

Figure 2 that shows three kinds of paraphrasing. The in-
put sentence is “Everybody often goes to the the movies.”.
It is paraphrased to the MRS shown in Figure 1. From
that, six sentences are generated. The paraphrased sen-
tences show three changes. Firstly, the erroneousthe
the is corrected tothe; secondly,everybodyis option-
ally paraphrased aseveryoneand finally the adverbof-
tenappears in three positions (pre-verb, post-verb, post-
verb-phrase).

Note that the highest ranked paraphrase is not in this
case the original sentence. The paraphrase is quite con-
servative: sentence initialoftenis not generated, as that
is given a different semantics (it is treated as focused).
There are no open class paraphrases likefilm�movie.
Only a handful of closed class words, typically those
that get decomposed semantically, (likeeverybody�every
person) are substituted.

For the Tanaka Corpus, 87.1% of the sentences could
be parsed and 83.4% paraphrased. However many of
these gave only one paraphrase and it was identical to
the input sentence. Only 53.4% of sentences had at
least one distinct paraphrase; 31.2% had two, 21.2%
had three, dropping down to only 1.1% with ten distinct
paraphrases. The numbers were a few percent higher
for the IWSLT corpus. Parsing was done with PET [19]
and generation with the LKB [20].

4.2. Corpus Expansion

To make the enhanced training data, we add up ton new
sentence pairs, consisting of the unchanged Japanese
sentence, the original English sentence and up ton dis-
tinct paraphrases. Distinct paraphrases are tested in down-
cased form.

If there werem paraphrases, andn � m then we
just add in the topn ranked paraphrases. Ifn > m then
we produced three test sets:� (d)istributed: rotate between the original sentence

and each paraphrase until the data has been padded
out� (f)irst: after all paraphrases have been used, the
first (original) sentence is repeated to pad out the
data� (v)arying: add just the paraphrasesd e0 e1 e2 e0 e1f e0 e1 e2 e0 e0v e0 e1 e2

Table 1: Paraphrase distributions (n = 4;m = 2)

These variations are shown in Figure 1. Both (d andf ) keep the distribution close to the original corpus.d
puts more weight on the paraphrased sentences andf
puts more weight on the original sentence. Forv the
the frequency is distorted — some sentences will be re-
peated many times. Forn � 2, d andf are the same.

5. Evaluation

In this section, we present experimental results on two
different corpora, evaluating phrase-based SMT systems
constructed using Moses for the English!Japanese and
Japanese!English language pairs.

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

moku
- 153 -



Language Corpus Paraphrases Bleu Variance Delta
Pair Added

EJ Tanaka Corpus 0 25.96 �0.71 -
EJ Tanaka Corpus d.2 26.10 �0.74 +0.14
EJ Tanaka Corpus d.4 26.25 �0.71 +0.29
EJ Tanaka Corpus d.6 26.63 �0.72 +0.67
EJ Tanaka Corpus d.8 26.16 �0.71 +0.20
EJ Tanaka Corpus f.2 26.10 �0.77 +0.14
EJ Tanaka Corpus f.4 26.28 �0.73 +0.32
EJ Tanaka Corpus f.6 26.13 �0.68 +0.17
EJ Tanaka Corpus f.8 25.83 �0.65 -0.13

JE Tanaka Corpus 0 18.75 �0.82 -
JE Tanaka Corpus d.2 19.09 �0.74 +0.34
JE Tanaka Corpus d.4 18.42 �0.79 -0.33
JE Tanaka Corpus d.6 18.71 �0.83 -0.04
JE Tanaka Corpus d.8 18.90 �0.77 +0.15
JE Tanaka Corpus f.2 19.09 �0.82 +0.34
JE Tanaka Corpus f.4 18.92 �0.81 +0.17
JE Tanaka Corpus f.6 19.02 �0.80 +0.27
JE Tanaka Corpus f.8 19.19 �0.82 +0.44

Table 2: Results of adding paraphrases to Tanaka Corpus training data

We replicated the baseline in the ACL 2007 Sec-
ond Workshop on Statistical Machine Translation. The
baseline is a factorless Moses system with a 5-gram lan-
guage model.

We followed the online tutorial3 as-is, with the ex-
ception that we used external morphological analyzers
to tokenize our data instead of using the provided scripts.
We used the Tree Tagger [21] for English and MeCab
[22] for Japanese. Part-of-speech information was dis-
carded after tokenization.

All data was tokenized, separating punctuation from
words and converted to lowercase prior to training and
translation. Translations were detokenized and recased
prior to evaluation using the helper scripts distributed
as part of the baseline system for the ACL 2007 SMT
Workshop.

Prior to evaluation we conducted Minimum Error
Rate Training on each system using the development
data from the target corpus. We used the MERT imple-
mentation distributed with Moses. All results reported
in this paper are post-mert Bleu scores.

3www.statmt.org/wmt07/baseline.html

5.1. Data Preparation

In order to measure the effectiveness of our method, we
evaluated JE and EJ over two data sets: the Tanaka Cor-
pus and theIWSLT 2005 evaluation corpus.

Because our HPSG parsers perform best on data
that is split on the sentence level, wherever possible we
split the corpora into the finest possible sentence pairs.
We used the following algorithm to split theIWSLT
2005 evaluation corpus, observing no errors in the de-
velopment data. Once split, theIWSLT 2005 data con-
sisted of 42,699 training sentences, 1,076 development
sentences, and 543 test sentences. Most of the data in
the Tanaka Corpus has already been split at the sentence
level as part of the JMDict initiative.� For each sentence pair:

– split each sentence on sentence-final punc-
tuation (.?!)

– rejoin split on common English titles
(Mr./Ms./Mrs./Dr.)

– split sentence pairs with same # of src and
tgt sentences into new sentence pairs

– treat sentence pairs with different # of src
and tgt sentences as a single sentence pair
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Language Corpus Paraphrases Bleu Variance Delta
Pair Added

EJ IWSLT05 0 35.63 �2.75 -
EJ IWSLT05 d.2 35.70 �2.88 +0.07
EJ IWSLT05 d.4 35.80 �3.21 +0.17
EJ IWSLT05 d.6 34.17 �2.94 -1.46
EJ IWSLT05 d.8 35.39 �2.88 -0.24
EJ IWSLT05 f.2 35.70 �2.75 +0.07
EJ IWSLT05 f.4 35.82 �2.74 +0.19
EJ IWSLT05 f.6 35.20 �2.95 -0.43
EJ IWSLT05 f.8 35.00 �3.21 -0.63

JE IWSLT05 0 23.75 �2.65 -
JE IWSLT05 d.2 24.36 �2.82 +0.61
JE IWSLT05 d.4 24.21 �2.58 +0.46
JE IWSLT05 d.6 24.06 �2.52 +0.31
JE IWSLT05 d.8 23.60 �2.71 -0.15
JE IWSLT05 f.2 24.36 �2.76 +0.61
JE IWSLT05 f.4 24.34 �2.70 +0.59
JE IWSLT05 f.6 23.78 �2.51 +0.03
JE IWSLT05 f.8 23.24 �2.79 -0.51

Table 3: Results of adding paraphrases toIWSLT 2005 training data

5.2. Results

We compared a baseline of no paraphrases added (d:0)
to systems with progressively larger numbers of new
paraphrased sentence pairs added to the training data.
We tested three distributions (d, f andv). v always gave
results below the baseline, so we do not report them in
more detail.

The results ford andf are summarized in Tables 2
and 3 with 2, 4, 6 and 8 paraphrases. All deltas and
significance results are calculated against the baseline
of no paraphrases (0).

We calculated Bleu score variance and measured
statistical significance with the bootstrap methods out-
lined in [23] using Jun-ya Norimatsu’s MIT-Licensed
Bleu Kit.4 Variance scores are reported withp = 0:05
in Tables 2 and 3. In Tables 2 and 3 results with an im-
provement ofp < 0:10 over the baseline are shown in
bold.

6. Discussion

The results for En!Ja show gains of up to 0.67 Bleu
points on the Tanaka Corpus and 0.19 on theIWSLT

4www.mibel.cs.tsukuba.ac.jp/˜norimatsu/
bleu_kit/

2005 evaluation data. The results for Ja!En show gains
of 0.44 on the Tanaka Corpus and 0.61 on theIWSLT
2005 evaluation data.

There is a statistically significant improvement for
each language pair and paraphrase distribution method
on the Tanaka Corpus, but none on theIWSLT 2005
evaluation data. We hypothesize this is due to the dif-
ference in variance in the two corpora: over� 2.51
(IWSLT ) vs. less than� 0.83 (Tanaka). Changes in
Bleu score that would be significant in the Tanaka Cor-
pus, like +0.61 for JE d.2/f.2 are lost in this variance.

The saturation point for EJ tends towards 4 para-
phrases, but peaks slightly later at d.6 for the Tanaka
Corpus. JE is somewhat inconsistent: forIWSLT it
peaks at d.2/f.2, but in the Tanaka Corpus it peaks ini-
tially at d.2/f.2, before dropping off and then surging to
a maximum at f.85.

Overall, we show significant, consistent improve-
ments on the Tanaka Corpus, with less consistent but
overall positive results on theIWSLT 2005 evaluation
data. Our explanation for this difference is that the
Tanaka Corpus is a more difficult and heterogeneous

5These results contrast with earlier experiments using the
20080525svn snapshot of Moses. There was a clearer saturation
point at 4 added paraphrases, although with lower overall Bleu
scores and less statistically significant results.
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data set, as reflected by its overall Bleu scores, enhanc-
ing the effects of new sources of data. Another explana-
tion may be that the IWSLT data already contains many
English paraphrases (there are over 2,500 Japanese sen-
tences with more than one English translation and over
a 1,000 English sentences with multiple Japanese trans-
lations). In contrast for the Tanaka Corpus all the Japanese
sentences are unique, although there are over 9,000 En-
glish sentences with multiple Japanese paraphrases.

Compared to [3] or [4] we are very conservative
in our paraphrasing, and this is probably why we get
a slightly lower improvement in quality. We could do
more extravagant paraphrasing, but would have to re-
train the generation model. At the moment, it expects
fully specified input MRSs, if we were going to allow
variation in, for example, noun phrase structure or open
class lexical variation, then we should treat it as a mono-
lingual translation problem, and also train a transfer
(paraphrase) model. An example of how to do this (for
bilingual transfer (Norwegian-English)) is given in [24].

Our syntactic reordering is not aimed at matching
the target language like [5]. We correspondingly get a
slighter improvement, but can hope to get a similar im-
provement even for different language pairs. Also, our
improvement is still there after MERT training, whereas
theirs did not survive the optimization.

7. Further Work

There are three areas in which we think the current use
of paraphrasing could be improved: (1) we can work
on increasing the cover of the grammar (2) we could
add new classes of paraphrase rules and (3) we could
improve the integration with the SMT process.

To increase the cover of the paraphrasing, we need
to improve the handling of unknown words. Currently,
the grammar can parse unknown words (which brings
the coverage up to almost 95%), but does not pass enough
information to the generator to then generate them. We
are currently working on a fix for this. A more far rang-
ing increase would be to paraphrase the Japanese side
as well. We are also working on this, using Jacy, an
HPSG-based grammar Japanese of the same type as the
ERG [25].

To increase the types of paraphrases we first need to
measure which rules (e.g. lexical variation vs. reorder-
ing have the most effect). We then intend to make use of
the MRS transfer machinery from theLOGON project,
which we already use in an open source Japanese-English

MT system [26]. We can easily write noun phrase rewrit-
ing rules of the type used by [4]. For lexical substitution
we will try using WordNet, after first disambiguating
the input.

Finally, we would like to enhance Moses (primarily
GIZA++) so that input sentences can be weighted. That
way, if we haven paraphrases for one sentence andm
for another, each can just be entered with a weight of1=n and1=m respectively. If we could do this, we could
then experiment with setting a probability based thresh-
old on the number of paraphrases, for example, to select
all paraphrases within� of the probability of the orig-
inal sentence, according to some language model. In
this way we could add only “good” paraphrases, and as
many as we deem good for each sentence.

8. Conclusions

Large amounts of training data are essential for training
statistical machine translations systems. In this paper
we show how training data can be expanded by para-
phrasing one side. The new data was made by parsing
and then generating using a precise HPSG based gram-
mar, which gives sentences with the same meaning, but
minor variations in lexical choice and word order. In ex-
periments with Japanese and English, we showed con-
sistent gains on the Tanaka Corpus with less consistent
improvement on theIWSLT 2005 evaluation data.
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