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Abstract

This paper describes the MIT-LL/AFRL statistical MT
system and the improvements that were developed during the
IWSLT 2008 evaluation campaign. As part of these efforts,
we experimented with a number of extensions to the standard
phrase-based model that improve performance for both text
and speech-based translation on Chinese and Arabic transla-
tion tasks.

We discuss the architecture of the MIT-LL/AFRL MT
system, improvements over our 2007 system, and experi-
ments we ran during the IWSLT-2008 evaluation. Specifi-
cally, we focus on 1) novel segmentation models for phrase-
based MT, 2) improved lattice and confusion network decod-
ing of speech input, 3) improved Arabic morphology for MT
preprocessing, and 4) system combination methods for ma-
chine translation.

1. Introduction
During the evaluation campaign for the 2008 International
Workshop on Spoken Language Translation (IWSLT-2008)
our experimental efforts centered on 1) improved statistical
modeling for phrase-based MT, specifically, better modeling
for sparse data, and 2) experiments with system combination.

In this paper we describe improvements over our 2007
baseline systems and methods we used to combine outputs
from multiple systems. For a more full description of the
2007 baseline system, refer to [1].

The remainder of this paper is structured as follows. In
section 2, we present an overview of our baseline system and
the minor improvements to this standard statistical MT ar-
chitecture that we incorporate. In sections 3, 4, 5, 6, and 7
we describe improved statistical modeling of phrases using
segmentation probabilities, better Arabic morphological pro-
cessing, improved handling of speech input and our imple-
mentation of MT system combination. Section 8 describes
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the systems we submitted for this year’s evaluation and their
results.

1.1. IWSLT-2008 Data Usage

We submitted systems for Chinese-to-English (Challenge
Task), English-to-Chinese and Arabic-to-English language
pairs. In each case, we used data supplied by the evalua-
tion for each language pair for training and optimization. For
the Chinese-to-English task, some of our systems made use
of lexicon data from CEDICT [2] as parallel training data.
These data are used to extract word/character alignments
which are then expanded using slightly modified versions
of standard heuristics. Phrases are extracted and counted,
and the resulting phrase table is then used for decoding and
rescoring. Language models are trained using the English
side of each language pair, and some systems made use of
a rescoring language model trained with LDC English Gi-
gaword Corpus [3] and ISI’s automatically extracted parallel
corpus (Chinese-English) [4] with vocabulary limited to the
training set. This process is described in detail in section 2.

Using the supplied development bitexts, we employ a
minimum error rate training process to optimize model pa-
rameters with a held-out development set. The resulting
models and optimization parameters can then be applied to
test data during decoding and rescoring phases of the trans-
lation process.

2. Baseline System
Our baseline system implements a fairly standard SMT archi-
tecture allowing for training of a variety of word alignment
types and rescoring models. It has been applied successfully
to a number of different translation tasks in prior work, in-
cluding prior IWSLT evaluations. The training/decoding pro-
cedure for our system is outlined in Table 1. Details of the
training procedure are described in [5].

2.1. Phrase Table Training

To maximize phrase table coverage, we combine multi-
ple word and character alignment strategies, extending the
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Training Process
1. Word and character segment (Chinese-only) training

corpus
2. Compute GIZA++, Berkeley and Competitive Linking

Alignments (CLA) for segmented data [6] [7] [8]
3. Extract phrases for all variants of the training corpus
4. Split word-segmented phrases into characters
5. Combine phrase counts and normalize
6. Train language models from the training corpus
7. Train TrueCase models
8. Train source language repunctuation models

Decoding/Rescoring Process
1. Decode input sentences use base models
2. Add rescoring features (e.g. IBM model-1 score, etc.)
3. Merge N-best lists (if input is ASR n-best)
4. Rerank N-best list entries

Table 1: Training/decoding structure

method described in [6]. For all language pairs, we com-
bine alignments from IBM model 5 (see [9] and [10]) with
alignments extracted using the competitive linking algorithm
(CLA) described in [7] and the Berkeley Aligner [8]. Phrases
were extracted from both types of alignments and combined
in one phrase table. This was done by summing counts of
phrases extracted from alignment types before computing the
relative frequencies used in the our phrase tables.

Additionally, for Chinese-to-English translation, both
word and character segmentation were used for training
CLA, Berkeley and GIZA alignment models. Phrases were
then extracted from all six alignments and combined. Word
segmented phrases were resegmented into characters before
counting.

2.2. Language Model Training

During the training process we built n-gram language mod-
els for use in decoding/rescoring, TrueCasing and repunctu-
ation. In all cases, the SRI Language Modeling Toolkit [11]
was used to create interpolated Kneser-Ney LMs. Additional
class-based language model were also trained for rescoring.
Word classes used for this model were derived in an unsuper-
vised manner using bigram context information. Some sys-
tems made use of 3- and 7-gram language models for rescor-
ing that were trained with the English Gigaword corpus.

2.3. Optimization, Decoding, and Rescoring

Our translation model assumes a log-linear combination of
phrase translation models, language models, etc.

logP (E|F) ∝
∑
∀r

λrhr(E,F)

To optimize system performance we train scaling factors,
λr, for both decoding and rescoring features so as to mini-

mize an objective error criterion. This is done using a stan-
dard Powell-like grid search using a development set [12].

A full list of the independent model parameters that we
used in our baseline system is shown in Table 2. All systems
generated N-best lists that are then rescored and reranked us-
ing either a MAP or an MBR (Minimum Bayes Risk) crite-
rion.

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P̂ (E) – 4-gram language model

Rescoring Features
P̂rescore(E) – 5-gram LM

P̂class(E) – 7-gram class-based LM
PModel1(F|E) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

This system serves as the basis for a number of the
contrastive systems submitted during this year’s evaluation.
Contrastive systems differ in terms of their rescoring con-
figuration (e.g. language models, MBR) and the data used
to train them (some system made use of additional lexicon
data). Each of the contrastive systems was used as a com-
ponent for system combination. The combined output for
each of the Chinese-to-English and Arabic-to-English tasks
was submitted as our primary system. Detailed differences
of each submitted system can be found in section 9.

The moses decoder [13] was used for our baseline sys-
tem and for confusion network decoding. Two other de-
coders were also used: 1) a direct-lattice decoder (used for
ASR input in Arabic and Chinese) and 2) an internally devel-
oped phrase-based decoder that supports forced-alignment
(used for systems that use segmentation models).

3. Phrase Segmentation Models
During this evaluation we developed improved segmentation
models that allow for better scoring of phrases during de-
coding. Consider the following phrase-based model for the
translation of a source sentence F to a target sentence E:

P (E|F) ∝ P (E) ∗ P (F|E) (1)

≈ P (E) ∗ max
(f,e)k

1
∈seg(F,E)

p((f , e)k1) ∗
k∏
i=1

p(fi|ei)(2)

where seg(F,E) denotes the set of possible segmentations
of sentences F and E and a single segmentation (f , e)k1 can
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be decomposed into phrase pairs (fi, ei) for i = 1..k. In
the standard model the segmentation probability p((f , e)k1) is
assumed to be uniform across all possible segmentations and
target sentences; as such, the model simplifies to the standard
phrase-based model:

P (E|F) ≈ P (E) ∗ max
(f ,e)k

1∈seg(F,E)

k∏
i=1

p(fi|ei) (3)

During decoding, all possible translations E and segmen-
tations (f , e)k1 are jointly searched to find:

E∗ = arg max
E

P (E) ∗ P (E|F) (4)

The assumption of uniform segmentation leads to over-
estimation of likelihoods for paths that use longer phrases.
To rectify this, most systems incorporate additional features
such as phrase penalties and lexical translation probabilities
in a log-linear model. A typical configuration (one used
by our baseline system) that makes use of these features is
shown below:

P (E|F) ∝ P (F|E)λ1 ∗ LexW (F|E)λ2 ∗ exp(k)λ3 . . . (5)

where k denotes the number of phrases in the segmentation
that was used to compute P (E|F).

We propose to extend the standard model with a non-
uniform model of phrase segmentation. Instead, we assume
that the segmentation of each phrase is independent, such
that:

P ((f , e)k1) ≈
k∏
i=1

p(fi|F) ∗ p(ei|E) (6)

where the phrase segmentation probabilities p(fi|F) and
p(ei|E) are modeled as:

p(fi|F) ≈ EF (fi|λ)
NF (fi)

(7)

p(ei|E) ≈ EE(ei|λ)
NE(ei)

(8)

where F and E denote the training set for which numerator
and denominator counts are collected.

Source and target segmentation probabilities are com-
puted using the EM algorithm over the training data. Specif-
ically, we employ a forced-alignment procedure to compute
the expected number of times each phrase occurs in the train-
ing data. This process is shown in detail below in Table 3.

To support the alignment needed in step 3 of this pro-
cedure, we built a new phrase-based decoder that supports
forced-alignment of a source sentence to a supplied refer-
ence translation. Because of the large number of sentences
that need to be aligned, it is critical that the decoder be imple-
mented with maximum efficiency. Through efficient pruning,
our decoder is able to align IWSLT sentences in < 2.5s (av-
erage) of processing per sentence with unlimited distortion.

1. Train standard phrase-based model
2. Augment phrase model probabilities with initial seg-

mentation probabilities
3. Force align training bitexts and dump lattices
4. Compute phrase-pair expected values using fixed λs

from lattices (E-step)
5a. Reestimate segmentation probabilities using equa-

tions 7 and 8 (M-step)
5b. MER training to optimize model exponents (λs)
6. Repeat 2-5

Table 3: Phrase Segmentation Training Procedure

Special handling of unknown words in the training data
is needed to ensure that training sentences can be properly
aligned. We allow unknown words in the source sentence to
align to all possible target words, but with a heavy penalty.
This forces target words that are legitimate translations of
words in the source sentence to be preferred during the align-
ment process.

Two submitted contrast systems make use of segmen-
tation probabilities for text input decoding in the Arabic
and Chinese tasks respectively: AE-constrast3 and CE-
constrast3. Due to time constraints, these systems were
trained with one iteration of EM training and rescored with-
out additional language models.

4. Arabic Preprocessing
Arabic is a morphologically rich language [14, 15], and vari-
ous work (as described in [16]) has indicated that it can be ad-
vantageous to separate surface tokens into their morpholog-
ical constituents for machine translation. In our system for
IWSLT 2007, we employed a light morphological analysis
procedure we called AP5 [1]. We again used this procedure;
however, we first applied additional text normalization to re-
move various diacritics. Normally, Modern Standard Arabic
is written without short vowels and many other diacritics;
however, some of the training and development sets have un-
usually large numbers of short vowels and diacritics present,
which can lead to data sparsity during statistical training.
These diacritics can also have negative consequences for
our AP5 morphological analysis procedure. To help miti-
gate these negative effects, we investigated the removal of
short vowels, shadda (which denotes consonant gemination),
sukuun (which indicates the absence of a vowel), tanween
(which mark grammatical cases), and tatweel (used to stretch
letters in Arabic typography and which has no grammatical
or semantic meaning).

5. Lexical Approximation for Arabic MT
Initial results on the Arabic-English task showed a higher rate
of OOV words than expected. Rather than pass these words
to the output, we chose to make a last-ditch effort at get-
ting them correct through a lexical approximation technique
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similar to the one presented in [17]. Our version was imple-
mented as a preprocessing step to the phrase table using a list
of OOV words. The top five known word candidates with a
character edit distance less than a threshold from each OOV
are chosen as possible translation candidates. All phrase
table entries containing the translation candidates are repli-
cated with the OOV word in its place. This results in 291k
new phrase entries on dev6 (approx. 25% more phrases).
Although this simplistic approach uses no morphological in-
formation, it yielded a gain of 1.95 BLEU on dev6 during
our development testing and was used on several of our final
component systems.

6. Improved Speech Translation

6.1. Finite State Transducer System

We have successfully implemented a phrase-based transla-
tion system capable of directly translating ASR lattices via
finite state transducers. Finite state transducers (FSTs) pro-
vide a useful framework for natural language processing ap-
plications as the implementation details of graph optimiza-
tion and search are handled through a software library that
operates on a common state machine representation. A de-
tailed explanation our of FST system can be found in [1].

For the Chinese-English task, we used the FST system
only on the ASR input condition. The first system, CE-
constrast7 used only the supplied 20k training data and de-
vsets 1, 2, 4, 5, and 6 with one reference. Alignments from
GIZA++, Berkeley Aligner, and Competitive Linking were
derived from three different Chinese segmentation variants.
Even though the aligners vary significantly in quality, in prior
experiments we found that use of these alignments can im-
prove MT performance. We used the supplied segmenta-
tion, a resegmentation from Lingpipe, and a character seg-
mented version of the data. All phrases were character seg-
mented before counting. Punctuation was added to the input
speech lattices wherever a word/punctuation bigram existed
in the phrase table and the resulting lattice was rescored with
a weighted punctuation language model. The FST system
used a 4-gram language model during decoding, 5-gram and
class 6-gram language models and IBM model1 scores dur-
ing N-best reranking. The final Chinese-English system, CE-
contrast6 differs from the above with the addition of parallel
text from the LDC Chinese-English dictionary.

For Arabic-English, we used the FST system for both the
ASR and CRR input conditions. Only one system was cre-
ated for Arabic-English, AE-contrast1. Similar to the Chi-
nese condition, we used only the supplied parallel text and
devsets 1, 2, and 4 with one reference. Phrases were ex-
tracted from three different alignment algorithms: GIZA++,
Berkeley Aligner, and Competitive Linking. Input lattices
were repunctuated as in the Chinese-English condition, and
a 4-gram language model was used during decoding followed
by 5-gram, class 6-gram, and IBM model1 N-best reranking.
Preprocessing of the Arabic data consisted of removal of dia-

critics followed by AP5 normalization. The phrase table was
augmented via lexical approximation (section 5) to reduce
the OOV rate.

6.2. Confusion Network Decoding

We applied the confusion network decoding strategy de-
scribed in [1]. During the 2007 evaluation, it was noted that
the multiword splitting method implemented in the SRILM
lattice-tool was suboptimal. During this evaluation,
we preprocessed character segmented lattices (Chinese) and
morphologically preprocessed latttices (Arabic) using the
splitting algorithm described in [18].

7. System Combination
In order to take advantage of the strengths of our various
modeling and decoding techniques, we employ a system
combination technique similar to the one presented in [19].
This is based on the successful ROVER technique used in
automatic speech recognition [20]. In ROVER, individual
words are aligned to minimize edit distance, and confusion
networks are generated from these alignments. A voting al-
gorithm is used to select the best word sequence with the
lowest expected word error rate. In speech recognition, this
process is relatively straightforward given the strict word or-
der defined by the acoustics.

In machine translation, the system combination problem
is compounded by many possible phrase choices and word
orderings between systems. To combat this problem, each
system serves as the skeleton system once, and all other sys-
tem outputs are aligned to it. Confusion networks are gen-
erated for each skeleton alignment and the union of all con-
fusion networks is taken. This final union network is then
scored to find the best output sentence. The advantage of this
technique over simply selecting the best system output is that
the effect of combination can be localized within segments.

In our implementation of this round-robin confusion net-
work scheme, we have added some additional features in-
cluding a language model, word penalty, and a prior prob-
ability on choosing a particular system as the skeleton. To
further improve the combination, we use a weighted voting
scheme. All of these feature weights are optimized on a held-
out set using Nelder-Meade simplex optimization to maxi-
mize the BLEU score.

In order to form the confusion networks, we use align-
ments provided by the translation error rate (TER) scoring
tool [21]. TER performs a string alignment allowing for
word movement via a beam search. Each alignment set is
converted to a confusion network where skipped words are
allowed via NULL arcs. Each individual word, wi, forms an
arc with a posterior probability equal to the normalized sum
of all system weights, λn, that produced word wi. NULL arc
probabilities are also included in this calculation.

Figure 1 illustrates this process for the following ficti-
tious system outputs: “a red car,” “the green auto,” “a car
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Figure 1: System combination confusion network example

green.” The probabilities, assuming equal system weights
and not including language model and word penalties, are
shown on the arcs. The initial arcs from state zero contain
the system prior probabilities for each skeleton alignment.
The highest probability path through this network produces
the sentence “a green car.”

In the final weighted confusion network, the hypothesis
score for word sequenceW is given by:

log(PW) =
Ik∑
i=0

[
log

(∑
n∈wi

λn∑N
l=0 λl

)]
+ λNLen(W)

+ λN+1 log(PLM (W)) + λN+2 log(βk) (9)

where Ik is the number of confusion pairs in the branch with
system k as the skeleton, N is the total number of systems,
and λ0 through λN+2 are the weights optimized by a simplex
minimization procedure. Note that (9) is not log-linear with
respect to the system weights, λn. The main kernel contains
the summation over all confusion sets of the log of the sum
of weighted posteriors and is more easily optimized via non-
gradient based methods. The system priors, βk, are given for
each system to discourage poorly performing systems from
taking the role as the skeleton. For our system we used the
normalized BLEU scores from a held-out data set as system
priors. Additionally, each sentence output is assigned a word
penalty based on the total number of words, Len(W), so
that the sentence length can be properly optimized. Finally, a
language model, PLM (W) is applied to the output sequence.
The language model helps to reject hypotheses due to im-
proper alignments, such as repeated or missing words. This
formulation is similar to the one presented in [22], but here
we have added a separate prior probability for each system
and the word posteriors are computed only with the normal-
ized λn system weights.

8. Experiments
With each of the enhancements presented in prior sections,
we ran a number of developement experiments in preparation
for this year’s evaluation. This section describes the devel-
opment data that was used for each evaluation track and re-
sults comparing the aforementioned enhancements with our
baseline system. Our experiments focused on the Chinese-

Chinese English

train

Sentences 40 K
Running words 148,219 161,171
Avg. Sent. length 7.42 8.07
Vocabulary 8,407 6,766

dev3
Sentences 506
Running words 3,209 3,271
Avg. Sent. length 6.34 6.46

dev7
Sentences 246
Running words 1,305 1,540
Avg. Sent. length 5.3 6.26

Arabic English

train

Sentences 19,972
Running words 130,650 161,171
Avg. Sent. length 6.54 8.07
Vocabulary 18,121 6,766

dev5
Sentences 500
Running words 4,652 6,332
Avg. Sent. length 9.30 12.66

dev6
Sentences 489
Running words 2,388 3,082
Avg. Sent. length 4.88 6.30

English Chinese

train

Sentences 40 K
Running words 161,171 148,219
Avg. Sent. length 8.07 7.42
Vocabulary 6,766 8,407

dev3
Sentences 506
Running words 3,273 3,209
Avg. Sent. length 6.47 6.34

dev7
Sentences 246
Running words 1,321 1,305
Avg. Sent. length 5.26 5.3

Table 4: Corpus Statistics for All Language Pairs

to-English (CT) and Arabic-to-English (BTEC) tasks1.

8.1. Development Data

Tables 4 describes the development and training set configu-
rations used for each language pair in this year’s evaluation.

8.2. Segmentation Model Experiments

Table 5 shows results of development experiments we ran
in preparation for this evaluation (lower case, with punctu-
ation). As our MER process is subject to significant ran-
dom variability, each BLEU score represents the average of
10 optimization/rescore runs with different random weight
initializations (optimized with dev3 or dev7 respectively).
Though the gains are small, they are consistent despite only

1Unfortunately, due to resource constraints, similar experiments were not
done for the English-to-Chinese (CT) task.

moku
- 73 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.



one EM iteration. More experiments are needed to refine and
assess the performance of these models.

System dev7 dev3

Baseline (no rescore LMs) 39.6 52.9
+ phrase segmentation models 40.3 53.6

Table 5: Segment EM results for Chinese-to-English Task

8.3. Arabic Morphology Experiments

Table 6 shows the results (lower case, with punctuation) of
applying various levels of diacritic normalization as well as
AP5 normalization to the data used in the Arabic-to-English
task (averaged over 10 optimization/rescore runs). The AP5
normalization procedure used in our 2007 system removes
the tanween characters. As such we examined the effect of
other diacritics on MT performance. Comparing the base-
line performance with the removal of all diacritics except the
tanween (without any further AP5 processing), one can see
that the diacritics other than the tanween have a dramatic ef-
fect on performance. Removing them yielded a mean score
of 49.4, significantly better than 42.1, the score of our base-
line with no preprocessing. Further removal of the tanween
yielded approximately one additional BLEU point. Finally,
removal of all diacritics (including the tanween) followed by
the AP5 processing yielded an additional 3.2 BLEU points.
All submitted Arabic systems removed all diacritics and then
applied the AP5 processing.

Preprocessing Method dev6

Baseline (No normalization or AP5) 42.06
Remove diacritics except tanween, no AP5 49.40
Remove all diacritics, no AP5 50.39
Remove all diacritics, apply AP5 53.55

Table 6: A Comparison of Different Arabic Preprocessing
Methods

8.4. Speech Input Experiments

We conducted a number of development experiments to ex-
plore the performance of different speech decoding methods
for both Arabic-English and Chinese-English translation. Ta-
bles 7 and 8 summarize the results of these experiments. All
results are mean BLEU scores (lower-case with punctuation),
averaged over 10 optimization/rescore runs. Note that we ob-
serve consistent gains by utilizing multiple hypotheses (i.e.
lattice, confusion network and 20-best decoding).

8.5. System Combination Experiments

For the Chinese-English task, we optimized our individual
systems on the supplied Challenge Task development set.

ASR Decoding Method dev3

1-Best 42.90
20-Best 46.13
Confusion Network 44.96

Table 7: Comparison of Chinese-to-English ASR Decoding
Methods

ASR Decoding Method dev5

1-Best 25.49
Confusion Network 26.78

Table 8: Comparison of Arabic-to-English ASR Decoding
Methods

Using these optimized system weights, we produced lower-
case 1-best output for all systems on the IWSLT08 evaluation
set and dev3 , which was used to optimize the system com-
bination weights. We chose dev3 because it used the same
speech recognition parameter weights as the Challenge Task,
but it was not clear if the speech output was produced by the
same recognition system. We used the same devsets for our
text input condition.

Due to a last minute bug in the word penalty optimiza-
tion, the system combination favored shorter sentences. We
chose to use only the seven longest reference sets from
dev3 to encourage longer output and possibly lessen the
impact of the brevity penalty. On the ASR system combina-
tion, we dropped the two systems which produced the short-
est output (CE-contrast1 and CE-contrast5) to further reduce
the possible impact of the brevity penalty.

The results for both the ASR and CRR conditions are
shown in Table 9 and Table 10 (mixed-case with punctua-
tion). The results shown for both the dev and eval sets are
for BLEU with case and punctuation. For the ASR condi-
tion, we observed a gain of 2.37 BLEU over the best system
output on the eval set. On the text condition, we lost 0.23
BLEU over the best system. This loss can possibly be at-
tributed to the word penalty bug as well as the swapping of
system ranking between the dev and eval sets. The best sys-
tem on dev3 (CE-contrast4) was not the best system on the
eval set (CE-contrast1), and therefore the optimizer produced
weights that may have favored CE-contrast4 too much.

For the Arabic-English task, we optimized our individual
systems on the supplied dev6 and used dev5 to optimize
the system combination parameters. As there was no appar-
ent consistency across speech recognition systems used to
produce the lattice outputs, we held constant the ASR pa-
rameters for those systems that optimize them specifically
(i.e. our FST decoding system.) The same sets were used for
the text input condition.

The results for the Arabic-English system combination
are shown in Table 11 and Table 12 for the ASR and CRR
conditions respectively (mixed-case, with punctuation). On
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System Description Input dev3 eval

CE-contrast4 Conf. Net 45.80 31.93
CE-contrast3 1-Best 41.70 31.13
CE-contrast2 1-Best 41.65 31.41
CE-contrast7 Lattice 39.70 30.66
CE-contrast6 Lattice 38.84 31.02
Combination – – 34.27

Table 9: System Combination Results for the Chinese-
English ASR Input Condition

System Description dev3 eval

CE-contrast4 53.75 36.91
CE-contrast1 52.92 37.78
CE-contrast3 52.76 35.35
CE-contrast2 52.45 36.51
Combination – 37.55

Table 10: System Combination Results for the Chinese-
English CRR Input Condition

the ASR condition, we achieved a significant gain of 3.29
BLEU, while the CRR condition yielded a gain of 1.44
BLEU.

On both the Arabic-English and Chinese-English data
conditions, we noticed small gains by exploiting multiple
ASR hypotheses through N-best lists, confusion networks, or
lattices. However, the system combination yielded relatively
large gains in both ASR conditions when combining transla-
tion outputs from these very different decoding input types.
Each of these different speech translation systems produce
complementary output that seems to combine well despite
similar BLEU scores.

System Description Input dev5 eval

AE-contrast4 Conf. Net 25.69 45.31
AE-contrast3 1-Best 25.34 45.63
AE-contrast1 Lattice 24.53 44.49
AE-contrast2 1-Best 23.44 44.35
Combination – – 48.92

Table 11: System Combination Results for the Arabic-
English ASR Input Condition

9. Evaluation Summary
As part of this year’s evaluation we experimented with novel
phrase segmentation models, improved Arabic morphologi-
cal processing and methods for combining multiple MT out-
puts. These developments have helped to improve our system
when compared with our 2007 baseline.

Table 13 summarizes each of the systems submitted for

System Description dev5 eval

AE-contrast4 27.95 55.07
AE-contrast3 27.91 54.91
AE-contrast1 26.03 50.81
AE-contrast2 28.25 51.79
Combination – 56.51

Table 12: System Combination Results for the Arabic-
English CRR Input Condition

this year’s evaluation.
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