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Abstract
The NTT Statistical Machine Translation System consists
of two primary components: a statistical machine trans-
lation decoder and a reranker. The decoder generates k-
best translation canditates using a hierarchical phrase-based
translation based on synchronous context-free grammar. The
decoder employs a linear feature combination among sev-
eral real-valued scores on translation and language models.
The reranker reorders the k-best translation candidates using
Ranking SVMs with a large number of sparse features. This
paper describes the two components and presents the results
for the evaluation campaign of IWSLT 2008.

1. Introduction
This paper presents NTT Statistical Machine Translation
(SMT) System evaluated in the evaluation campaign of the
International Workshop on Spoken Language Translation
(IWSLT) 2008. The system is composed of two steps: First,
k-best translation candidates are generated by a hierarchi-
cal phrase-based statistical machine translation decoder, with
linear feature combination among several scores on trans-
lation and language models. Next, these candidates are
reordered and the top-best candidate is chosen, according
to approximated BLEU. The reranker is based on Ranking
SVMs [1] with a large number of sparse binary features.

A large number of sparse features has been success-
fully applied to SMT in both decoding [2] and rerank-
ing [3, 4]. In this year’s IWSLT evaluation, we employ
Ranking SVMs with fast optimization algorithm [5] for
reranking, and introduce three new types of sparse fea-
tures: alignment-independent word pairs, skip bigrams, and
context-dependent features. Since this year’s challenge task
focuses on translating utterances in dialogues, we incorpo-
rate rich information available from the dialogue context into
the reranker.

In the evaluation on the IWSLT 2008 Chinese-to-English
challenge task, our primary submission achieved 32.12% for
ASR 1-best and 38.47% for clean in BLEU. However, in the
official evaluation, an SVM hyperparameter was not opti-
mized. We fixed it and finally achieved 37.41% for ASR
1-best and 44.38% for clean in a post-evaluation experiment
using source-target word pair and target-side skip bigram
features; Our context-dependent features did not effectively

work in the experiments, because they failed to capture use-
ful context information in the current condition. We discuss
these features using distinctive examples between reranker
selections and decoder 1-bests.

This paper is organized as follows: Section 2 briefly de-
scribes our SMT decoder. Section 3 describes our rerank-
ing component and sparse features for reranking. Section 4
presents the results for the evaluation campaign of IWSLT
2008, followed by discussion in Section 5.

2. Machine Translation Component
2.1. Statistical Machine Translation

We use a linear feature combination approach [6] in which
a foreign language sentence f is translated into another lan-
guage, for example English, e, by seeking a maximum solu-
tion:

ê = argmax
e

w> · h(f, e) (1)

where h(f, e) is a feature vector. w is a weight vector that
scales the contribution from each feature. Feature weights
(i.e. elements of w) are optimized based on minimum error
rate training [6].

2.2. Hierarchical Phrase-based Approach

Our SMT component employs the hierarchical phrase-based
approach [7], in which the translation model is based on
a stochastic synchronous context-free grammar (SCFG). A
translation is generated by hierarchically combining phrases
using non-terminals. Each production rule of SCFG takes the
following form.

X → 〈γ, α,∼〉 (2)

In the notation above, X is a non-terminal symbol, γ is a
source-side string of terminal and non-terminal symbols, and
α is a target-side one. γ and α share the same number of
non-terminals whose one-to-one mapping is defined by ∼.
Such a quasi-syntactic structure can naturally capture the re-
ordering of phrases that is not directly modeled by a con-
ventional phrase-based approach [8]. The non-terminal em-
bedded phrases are learned from a bilingual corpus without
a linguistically motivated syntactic structure.

Our decoder and rule extraction procedure is based on
Hiero [7]. The decoder is an in-house developed CKY-based
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one. Rules in forms of (2) are extracted using phrase pairs
obtained by the phrase extraction algorithm [8]. The phrase
extraction uses many-to-many word alignment, derived from
heuristics on one-to-many word alignment in both directions
[9, 10]. Using the extracted phrases, SCFG production rules
are accumulated by finding “holes” in extracted contiguous
phrases:

• For a phrase pair (f̄ , ē), a rule X → 〈f̄ , ē〉 is extracted.

• For a rule X → 〈γ, α〉 and a phrase pair (f̄ , ē)
s.t. γ = γ1f̄γ2 and α = α1ēα2, a rule X →
〈γ1Xk γ2, α1Xk α2〉 is extracted.

where boxed indices k indicate one-to-one mapping between
non-terminals.

2.3. Decoder features

Features used in our machine translation component are real-
valued scores derived from the translation and language mod-
els. These features are those used as baseline features in our
IWSLT 2006 evaluation [3]:

• Hierarchical phrase translation probabilities

• Lexical translation probabilities in phrase pairs

• Word-based insertion/deletion penalties

• Word 5-gram language model scores

• Reordering penalties

• Length penalties on both words and hierarchical
phrases

3. Reranking Component
Our reranking component is based on Ranking SVMs [1].
Each decoder k-best translation candidate is represented by a
feature vector, and the reranker chooses the best-scored can-
didate over k vectors.

3.1. Ranking SVMs

Ranking SVM is a variant of support vector machines
(SVMs) for the purpose of ranking samples, not classifica-
tion. However, its optimization problem is equivalent to that
of a classification SVM on pairwise difference vectors (see
details in [1]). In our reranking component, we do not de-
fine the whole rank order over k-best translation candidates
but only distinguish the best candidate among the rest. The
best candidate is chosen based on approximated BLEU [3],
which will be explained in 3.2. If more than one (ktop) can-
didates has the same value of approximated BLEU, all of
them are regarded as the best candidates. In this setting, only
ktop(k − ktop) pairwise difference vectors between the best
candidates and the rest ones are used as training data.

We employs Pegasos1, a fast optimization algorithm for
linear-kernel SVMs. It uses only k samples to calculate sub-
gradient for optimization, so learning time of Pegasos does
not depend on the training data size [5].

3.2. Approximated BLEU

We use approximated BLEU [3] to choose the best trans-
lation candidates, for optimizing the reranker in terms of
BLEU [11]. The approximated BLEU is independently cal-
culated on each translation candidate for each sentence in
reranker training data during pre-processing, although orig-
inal BLEU required document-wise calculation and is not
suitable for sentence-level reranking.

Given 1-best translation outputs for T input sentences
OT

1 = {e1
1, ..., e

T
1 }, the approximated BLEU on i-best trans-

lation candidate for t-th input sentence et
i is calculated by

substituting et
1 with et

i, i.e. the BLEU on the sentence set
{e1

1, ..., e
t−1
1 , et

i, e
t+1
1 , ..., eT

1 }.

3.3. Reranker features

We use a large number of sparse binary features for rerank-
ing, as well as a real-valued feature (decoder score).

3.3.1. Word alignment features

We use source-target word pairs extracted by separately run-
ning IBM Model 1 in both direction [4]. In addition to
source-target word unigram pairs, we used pairs of target-
side word bigram and their corresponding source-side words
in terms of the word alignment. We also include POS-based
features, target-side word surfaces are replaced with their
POS tags in the word alignment features above. Target-side
(English) POS tags are automatically annotated by Brill Tag-
ger.

3.3.2. Word pair features

Since the word alignment features highly depends on IBM
Model 1 word alignments, the features are influenced by
word alignment errors. As alignment independent features,
we use all possible word unigram and bigram pairs between
source-side words and target-side words. We also use POS-
based features in the same way as the word alignment fea-
tures.

3.3.3. Target-side skip bigram features

We use target-side skip bigrams, which are allowed to skip
up to two words, as features. POS-based skip bigrams are
also used.

3.3.4. Context-dependent word pair features

To define context-dependent features, we simply use bag-of-
words of both source- and target-side words in the previous

1http://ttic.uchicago.edu/˜shai/code/index.html
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sentence. Target-side context words are extracted from k-
best translation candidates. For each pair of context word in
the bag-of-words and current target-side word, context word
pair feature is defined.

4. Evaluation

We present evaluation results of our system on IWSLT 2008
Chinese-to-English challenge task, for field-experiment data
in tourism domain.

4.1. Setup

Training and development data came from only IWSLT sup-
plied data for Chinese-to-English challenge task shown in
Table 1, and no extra data resources were used. Chinese sen-
tences are re-tokenized by our in-house developed tool [12].

For estimating feature weights in Eq.(1) by minimum er-
ror rate training, we used the development sets 3, 6, and
CT CE with an intermediate phrase-table and word 5-gram
language model trained using the other training and develop-
ment sets (1, 2, 4, and 5). Throughout this experiment we
share the same feature scaling, instead of re-running mini-
mum error rate training for each different setting. For train-
ing Ranking SVMs, we used 100-best outputs for the devel-
opment set CT CE from the decoder with the estimated fea-
ture weights and the models trained using the other training
and development sets (1-6). For the final decoder, we used all
supplied data for training the phrase-table and word 5-gram
language model. Source-side test set perplexity by the final
language model was 56.2, and 13 (0.5%) Chinese words were
not found in the vocabulary. All word 5-gram language mod-
els above were trained by SRILM with modified Kneser-Ney
smoothing.

We compared four methods with varying reranking fea-
tures.

(1) Using 1-best decoder output and did not apply rerank-
ing.

(2) Using the decoder score and word alignment features,
as a baseline of reranking.

(3) Adding the word pair and skip bigram features to the
baseline features above (primary).

(4) Using all features described in 3.3.

The number of distinct features extracted from reranker train-
ing set (DevCT CE) are presented in Table 2.

Our experiments were conducted on clean and ASR 1-
best inputs, without consideration of ASR N-best or word
lattice information. Note that our SMT decoder and reranker
were trained using only supplied clean text data and ASR
transcriptions were not used.

Table 2: The number of distinct reranking features extracted
from reranker training set.

Feature type # features
Word alignment 53,902

(surface unigram) 3,491
(surface bigram) 26,959
(POS unigram) 2,585
(POS bigram) 20,867

Word pair 201,605
(surface unigram) 16,883
(surface bigram) 117,620
(POS unigram) 5,334
(POS bigram) 61,768

Target-side skip bigram 30,803
(surface skip bigram) 28,496
(POS skip bigram) 2,307

Context word pair 87,653
(with source-side context) 19,122
(with target-side context) 68,531

(2) Decoder score + alignment 53,903
(3) + word pair + skip bigram 286,311
(4) + context 373,964

Table 3: Averaged cross-validation results in BLEU (%) be-
tween Dev4 and Dev5.

Reranking Features BLEU
(1) No reranking 24.64
(2) Decoder score + alignment 25.73
(3) + word pair + skip bigram 25.98
(4) + context 25.36
100-best oracle 46.58

4.2. Pre-evaluation results

Our reranker was tuned based on cross-validation between
the development sets 4 and 5 (from IWSLT 2006) 2. The
translation and language models for the cross-validation
were trained on the training and development sets 1,2,3, and
6. In this condition, the reranker achieved better BLEU than
decoder 1-bests as shown in the cross-validation results on
Table 3. The results with context features were slightly worse
than those without them in BLEU, so that we abandoned
these features in our primary setting.

4.3. Official results

Our results in BLEU [11] are presented in Table 4. We
achieved 35.62 % for ASR 1-best input and 42.16 % for clean
input without reranking. Our reranking approach showed
worse results than decoder 1-bests; the primary results were

2These data preserve utterance order and are suit for using context-
dependent features.
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Table 1: Bilingual data statistics. “ppl.” mean test set perplexities on DevCT CE and Test (clean) by word 5-gram language
model trained on each dataset.

Train Dev1 Dev2 Dev3 Dev4 Dev5 Dev6 DevCT CE Test (clean)
# sentences 19,972 506 500 506 489 500 489 246 504
# words 159,507 3,152 3,215 3,494 5,592 5,979 2,926 1,369 2,680Chinese
ppl.(DevCT CE) 74.2 59.7 70.1 71.2 107.9 102.6 64.5 - 30.8
ppl.(Test) 76.7 50.6 52.4 59.4 88.2 85.4 55.8 29.2 -
# sentences 19,972 8,096 8,000 8,096 3,423 3,500 2,934 1,722 n/a

English # words 191,596 68,181 67,850 68,782 47,570 52,587 23,423 14,539 n/a
ppl.(DevCT CE) 23.6 25.8 28.6 27.5 56.2 61.7 30.5 - n/a

Table 4: Official automatic evaluation results in BLEU (%),
with casing and punctuations. The primary submissions are
indicated by †.

Input Reranking features BLEU
ASR 1-best (1) No reranking 35.62

(2) Decoder score + alignment 35.12
(3) + word pair + skip bigram 32.12†

(4) + context 31.19
Clean (1) No reranking 42.16

(2) Decoder score + alignment 40.01
(3) + word pair + skip bigram 38.47†

(4) + context 37.10

3.5% worse in BLEU.

4.4. Post-evaluation results

In the official evaluation, a Pegasos’s regularization hyperpa-
rameter λ (λ = 1/mC, where m is the number of train-
ing samples and C is the soft margin parameter) was not
optimized; we used its default value λ = 0.01. Although
we could increase BLEU with the default value in the pre-
evaluation experiment, it turned to be inappropriate in the
official evaluation.

We conducted another post-evaluation experiment with
the hyperparameter λ that was optimized to maximize BLEU
averaged over two- and three-fold cross-validation 3 on De-
vCT CE. The post-evaluation results in BLEU are presented
in Table 5. We achieved 37.41 % for ASR 1-best input and
44.38 % for clean input with our primary setting. Thus, our
reranking approach worked well with an appropriate SVM
hyperparameter.

5. Discussion
The post-evaluation results show that our reranking approach
can improve translation performance in BLEU. To investi-

3The sentences were grouped based on their dialogue IDs and the groups
were splitted equally into the (two or three) cross-validation datasets.

Table 5: Post-evaluation results in BLEU (%), with casing
and punctuations. (The Pegasos’s hyperparameter λ was op-
timized through cross-validation on DevCT CE.)

Input Reranking features BLEU
ASR 1-best (1) No reranking 35.62

(2) Decoder score + alignment 37.40
(3) + word pair + skip bigram 37.41
(4) + context 36.87

Clean (1) No reranking 42.16
(2) Decoder score + alignment 44.13
(3) + word pair + skip bigram 44.38
(4) + context 42.62

gate how the reranker chose better translation candidate, we
focus on the difference between the features appeared in de-
coder 1-bests and reranker selections in the cross-validation
on DevCT CE. Figures 1, 2, and 3 shows examples of dis-
tinctive features of reranker selections compared to decoder
1-bests, by the rerankers (2), (3), and (4), respectively.

These examples suggest the following:

• Word alignment features (in Fig. 1) captured lexical
correspondence and the reranker (2) chose better trans-
lation candidates than decoder 1-bests in terms of ad-
equacy.

• Bigram and skip bigram features captured target-side
natural word order and bigram pairs captured their
source-target co-occurence, and therefore the reranker
(3) chose slightly better translation candidates than the
reranker (2) in terms of fluency.

• Context features turned out to capture many general
word co-occurence and the reranker (4) failed to dis-
tinguish better translation candidate from others.

Our current context-dependent features are simply de-
fined without dialogue boundaries and may not be useful for
capturing dialogue context. Since utterances in a dialogue are
considered to correlate with each other, we need further fea-
ture engineering to incorporate such correlations into rerank-
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ing. Another problem may be that the data consist of only
one-sided utterances and do not sufficiently hold dialogue
information.

6. Conclusion
We evaluated the NTT Statistical Machine Translation Sys-
tem for the evaluation campaign of IWSLT 2008. The sys-
tem is composed of decoding and reranking components.
The decoder is based on the hierarchical phrase-based ap-
proach and the linear feature combination. The reranker
employs Ranking SVMs and a large number of sparse fea-
tures of alignment-independent word pairs, skip bigrams, and
context-dependent word pairs. Experimental results show
that our reranker effectively works for choosing better trans-
lation candidates than decoder 1-bests. Our future work
involves more effective sparse features, especially context-
dependent ones.
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Figure 1: Examples of distinctive features in the sentences
chosen by the reranker (2) on the cross-validation over De-
vCT CE. ”ST” means source-to-target direction and ”TS”
means target-to-source direction.

Figure 2: Examples of distinctive features in the sentences
chosen by the reranker (3) on the cross-validation over De-
vCT CE.

Figure 3: Examples of distinctive features in the sentences
chosen by the reranker (4) on the cross-validation over De-
vCT CE.
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