
Improvements in Dynamic Programming Beam Search
for Phrase-based Statistical Machine Translation

Richard Zens∗ and Hermann Ney

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6, Computer Science Department

RWTH Aachen University, D-52056 Aachen, Germany
{zens,ney}@cs.rwth-aachen.de

Abstract

Search is a central component of any statistical ma-
chine translation system. We describe the search for
phrase-based SMT in detail and show its importance
for achieving good translation quality. We introduce
an explicit distinction between reordering and lexical
hypotheses and organize the pruning accordingly. We
show that for the large Chinese-English NIST task al-
ready a small number of lexical alternatives is sufficient,
whereas a large number of reordering hypotheses is re-
quired to achieve good translation quality. The result-
ing system compares favorably with the current state-
of-the-art, in particular we perform a comparison with
cube pruning as well as with Moses.

1. Introduction

We address the search problem for phrase-based statis-
tical machine translation [1, 2, 3]. Search is the task
of finding the target language sentence that maximizes
the posterior probability given the source sentence. It is
computationally expensive and requires an efficient and
fine-tuned algorithm. Here, we will describe such an al-
gorithm in more detail than typically found in the liter-
ature. We will describe the problem in depth and show
the exact dynamic programming (DP) recursion, details
of pruning and rest score estimation as well as the ac-
tual algorithm. The resulting system compares favor-
ably well with the current state-of-the-art. We will also
show that it is important to focus on alternative reorder-
ings, whereas on the other hand already a small number
of lexical hypotheses is sufficient. To investigate this,
we will explicitly distinguish reordering and lexical hy-
potheses and analyze the search space. We also per-
form a comparison with cube pruning and we achieve
the same performance with a simpler implementation.

∗Richard Zens is now affiliated with Google Inc., 1600 Am-
phitheatre Parkway, Mountain View, CA 94043; zens@google.com.

2. Problem definition
Search is the task of finding the target language sen-
tence eI

1 that maximizes the posterior probability given
the source sentence fJ

1 :

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1|fJ
1)

}
Here, we are considering a phrase-based approach with
a segmentation sK

1 into K phrases (which includes re-
ordering). Assuming a log-linear model with compo-
nents hm(·) and scaling factors λm, we obtain:

êÎ
1 = argmax

I,eI
1

{
max
K,sK

1

M∑
m=1

λmhm(eI
1, s

K
1 ; fJ

1)

}

We have to carry out a maximization over all possi-
ble target sentences eI

1 and over all possible segmenta-
tions sK

1 . As enumerating all target sentences is infea-
sible, we are facing a hard optimization problem. Nev-
ertheless, we can exploit the structure of the models.
We can interpret the search as a sequence of decisions
(ẽk, bk, jk) for k = 1, . . . ,K. At each step we decide
on a source phrase f̃k identified by its start and end po-
sitions sk = (bk, jk) and the corresponding translation
ẽk. To ensure that there are no gaps and no overlap,
we keep track of the set of source positions that are al-
ready translated (‘covered’). We will call this the cov-
erage set C ⊆ {1, . . . , J}. We can represent the search
space as a graph where the arcs are labeled with the de-
cisions (ẽ, j, j′) and the states are labeled with the cov-
erage sets C. The initial state is labeled with the empty
coverage set. The goal state is labeled with the full cov-
erage C = {1, . . . , J}. Each path through this graph
represents a possible translation of the source sentence,
which is obtained by concatenating the target phrases ẽ
along the path. Note that there are multiple paths repre-
senting the same translation with different phrase seg-
mentations.

moku
- 198 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

Some models do not have dependencies that cross
phrase boundaries and can be computed for each phrase
pair without context. In other words, these model scores
depend only on a single arc in the graph. We will use
qTM(ẽ|j, j′) to denote the weighted sum of all phrase
model scores of an arc (ẽ, j, j′). This score consists
of phrase-based models, word-based models, word and
phrase penalty. Other models, however, take the context
outside the phrase pair into account. Thus, their scores
do depend on the decisions taken so far. Although in
principal, these models could depend on the whole de-
cision sequence, in practice, the models depend only
on a small subset of the information. The n-gram lan-
guage model (LM), for example, depends on the last
(n − 1) words of the target sentence and the distortion
model (DM) depends on the end position of the previ-
ous source phrase. Therefore, we distinguish the states
according to the LM history and the end position of the
last phrase. The score of this LM expansion weighted
with the LM scaling factor is denoted as qLM(ẽ|ẽ′). We
use qDM(j′|j) to denote the weighted score of a jump
from source position j to source position j′.

The states in the search space can be identified by
a triple (C, ẽ, j), where C denotes the coverage set, ẽ
denotes the LM history, and j denotes the end position
of the last source phrase. We will use the following
terms:

• Coverage hypothesis C. A coverage hypothesis
is identified by the coverage C.

• Lexical hypothesis (ẽ, j). A lexical hypothesis
is identified by the LM history ẽ and the source
sentence position j.

The number of coverage hypotheses indicates how many
alternative reorderings are investigated during the search.
The number of lexical hypotheses per coverage hypoth-
esis indicates the lexical alternatives that are taken into
account. The score of an expansion of a state (C, ẽ, j)
with a phrase pair (ẽ′, j′′, j′) is computed as

qTM(ẽ′|j′′, j′) + qLM(ẽ′|ẽ) + qDM(j′′|j) (1)

The successor state is (C∪{j′′, . . . , j′}, ẽ⊕ẽ′, j′). Here,
ẽ′⊕ ẽ denotes the LM history after expanding the given
history ẽ′ with the phrase ẽ. Also, we have to ensure
that there is no overlap, i. e. that C ∩ {j′′, . . . , j′} = ∅.

The search problem can be reformulated as finding
the optimum path through this search graph. The size
of the search graph is exponential in the source sentence
length. It has been shown in [4] that the search problem
is NP-hard. Here, we use two techniques to address this
problem: dynamic programming [5] and beam search
[6]. Using DP, we can reduce the number of paths that

we have to explore in the search graph without giving
up optimality. The idea of beam search is that at each
step, we expand only the promising hypotheses and dis-
card hypotheses that are unlikely to lead to the optimum
solution. In contrast to DP, beam search may result in
suboptimal solutions.

3. Dynamic programming

The DP solution described in this section is based on the
algorithm for single-word based models of [7]. Here,
we use a phrase-based version of this approach. The
idea is that the search proceeds synchronously with the
number of the already translated source positions. The
resulting algorithm is similar to [8].

During the search, the translation is generated phrase
by phrase, i. e. the search is monotonic in the target
language. To permit reordering, the processing on the
source side may be non-monotonic. Thus, we can jump
forth and back within the source sentence. We avoid re-
peated computations by traversing the search graph in
a topological order. Thus, before we process a node,
i. e. expand the hypothesis, we have to make sure that
we have visited all predecessors. We call the number
of covered source positions of a hypothesis its cardinal-
ity c. We can easily guarantee the topological order by
processing the nodes according to their cardinality.

As mentioned, the states of the search graph can
be identified by a triple (C, ẽ, j) with the coverage set
C, the LM history ẽ and the end position j. We use
the auxiliary quantity Q(C, ẽ, j) to denote the maxi-
mum score of a path leading from the initial state to the
state (C, ẽ, j). The DP recursion equations are shown in
Fig. 1. The computational complexity of the algorithm

is in O
(∑J

c=1 Ls ·
(

J
c

)
· J · V n−1

e · E
)

which can

be simplified to O(J ·Ls ·E ·V n−1
e · 2J) by taking into

account that
∑J

c=0

(
J
c

)
= 2J . Here, Ve is the vocabu-

lary size of the target language and n is the order of the
LM, E denotes the maximum number of target phrases
per source phrase.

4. Beam search

4.1. Pruning

As mentioned before, the complexity of the DP solu-
tion is exponential. To speed up the translation process,
we use a beam search strategy [6] and apply pruning.
We use two variants: threshold pruning and histogram
pruning [9]. Histogram pruning means that we keep the
best N hypotheses. Threshold pruning means that we
keep a hypothesis only if its score is close to the best
one. We use the following pruning strategies:

moku
- 199 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

Q(∅, $, 0) = 0

Q(C, ẽ, j) = max
j′′,j′:{j′,...,j}⊆C

j′≤j<j′+Ls
ẽ′,ẽ′′:ẽ′⊕ẽ′′=ẽ

{
Q(C \ {j′, ..., j}, ẽ′, j′′) + qTM(ẽ′′|j′, j) + qLM(ẽ′′|ẽ′) + qDM(j′′, j′)

}

Q̂ = max
ẽ,j

{
Q({1, ..., J}, ẽ, j) + qLM($|ẽ) + qDM(j, J + 1)

}
Figure 1: Dynamic programming recursion equations for non-monotone search.

Observation pruning. Here, we limit the number
of translation options per source phrase. This is done
before the actual search starts. Let τo denote the obser-
vation pruning threshold and let q(j, j′) denote the max-
imum score of any phrase translation ẽ of the source
phrase fj , . . . , fj′ :

q(j, j′) = max
ẽ

{
qTM(ẽ|j, j′) + qLM(ẽ)

}
(2)

Here, qLM(ẽ) denotes the weighted LM score of target
phrase ẽ without any given history, i. e. we use the uni-
gram score of the first word, the bigram score of the sec-
ond word and so on. We keep a target phrase ẽ as pos-
sible phrase translation of the source phrase fj , . . . , fj′

if:
qTM(ẽ|j, j′) + qLM(ẽ) + τo ≥ q(j, j′) (3)

Additionally, we apply observation histogram pruning
with parameter No. Thus, if there are more than No

target phrases for a particular source phrase, then we
keep only the top No candidates.

Lexical pruning per coverage. Here, we consider
all lexical hypotheses that have the same coverage C.
The hypotheses may differ, for instance, in their LM
history ẽ or the end position of the last phrase j. Here,
we include an estimate for completing the hypothesis
R(C, j). A detailed description of the rest score esti-
mate will be given in Sec. 4.2. Let τL denote the prun-
ing threshold and let Q(C) denote the maximum score
of any hypothesis with coverage C:

Q(C) = max
ẽ,j

{
Q(C, ẽ, j) + R(C, j)

}
(4)

Then, we keep a hypothesis with score Q(C, ẽ, j) if:

Q(C, ẽ, j) + R(C, j) + τL ≥ Q(C) (5)

Additionally, we apply histogram pruning with param-
eter NL. Thus, if there are more than NL hypotheses
for a particular coverage C, then we keep only the top
NL candidates.

Coverage pruning per cardinality. Here, we con-
sider all coverage hypotheses with a given cardinality c.
As defined in Eq. 4, Q(C) is the maximum score of any

hypothesis with coverage C. We will use this value as
score of the coverage hypothesis C. Let τc denote the
pruning threshold, then we keep a coverage hypothesis
with score Q(C) if:

Q(C) + τC ≥ max
C:|C|=c,

ẽ,j

{
Q(C, ẽ, j) + R(C, j)

}
Additionally, we apply histogram pruning with param-
eter NC . Thus, if there are more than NC coverage
hypotheses for a particular cardinality c, we keep only
the top NC candidates. Note that if we prune a cov-
erage hypothesis C, we remove all lexical hypotheses
with coverage C.

4.2. Rest score estimation

During pruning, we compare hypotheses which cover
different parts of the source sentence. Here, it is impor-
tant to use a rest score estimate for completing the hy-
pothesis. Without such a rest score estimate, the search
would first focus on the easy-to-translate part of the
source sentence. This is of course undesirable. We use
the rest score estimation described in [10, 11]. Note
that this rest score estimation is related to the heuris-
tic functions used in A* search algorithms. It is a re-
quirement for the optimality of A* that the heuristic
function is optimistic (or admissible). Here, we do not
have this requirement and in fact for the LM we use a
non-admissible rest score estimate. Nevertheless, the
experiments show that including the LM score estimate
is helpful.

We implemented two variants to estimate the rest
score of a coverage C ⊂ {1 . . . J}. The first variant fol-
lows [12] and estimates the rest score for sequences of
uncovered source positions. The second variant follows
[10] and estimates the rest score for individual uncov-
ered source positions. We define q∗(j, j′) as the maxi-
mum score for translating source positions j . . . j′:

q∗(j, j′) = max
{
q(j, j′), (6)

max
j≤k<j′

{
q∗(j, k) + q∗(k + 1, j′)

} }
This recursive definition takes alternative phrase seg-
mentations into account. The values of q∗(j, j′) can

moku
- 200 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

computed using DP in a straightforward way. To use
this auxiliary function for the rest score estimation of
a hypothesis with coverage C ⊂ {1 . . . J}, we sum up
the rest score estimates for the sequences of uncovered
source positions:

RSeq(C) =
∑

(j,j′)∈C̄

q∗(j, j′) (7)

Here, C̄ denotes the set of sequences of uncovered source
positions. A sequence is only contained in C̄ if it is of
maximum length, formally:

C̄ =
{
(j, j′)|j ≤ j′ ∧ {j . . . j′} ⊆ {1 . . . J} \ C

∧(j = 1 ∨ j − 1 ∈ C) ∧ (j′ = J ∨ j′ + 1 ∈ C)
}

For the second variant, we define q∗(j) as the maximum
score for translating the source position j:

q∗(j) = max
j′≤j≤j′′

q(j′, j′′)
j′′ − j′ + 1

(8)

To estimate the rest score of a hypothesis, we sum this
quantity over the uncovered source positions:

RPos(C) =
∑

j∈{1...J}\C

q∗(j) (9)

The computation of both variants is linear in the sen-
tence length. In addition, we use a rest score estimation
for the distortion model as described in [10]. Thus, we
compute the minimum number of jumps to complete the
hypotheses. The idea is that we jump from the end po-
sition of the current phrase j back to the first uncovered
position. Then, we process the remaining part of the
sentence from left to right and jump over all covered
sequences. The rest score estimate for the distortion
penalty model is:

j0(C) = min{j | 1 ≤ j ≤ J ∧ j 6∈ C}
RDist(C, j) = |j − j0(C) + 1|+ |C| − j0(C) + 1

Here, j0(C) denotes the first uncovered position in the
coverage set C. The jump distance from the current
position j to the first uncovered position j0(C) is |j −
j0(C) + 1|. The number of covered positions to the
right of position j0(C) is |C| − j0(C) + 1. This is the
number of source positions that we have to jump over
to reach the sentence end. An algorithm for computing
this value for a coverage represented as a bit vector is
described in [10]. The effect of including the distortion
rest score is equivalent to the method in [13].

The overall rest score estimate R(C, j) is obtained
as the sum of the distortion and TM/LM rest score esti-
mate:

R(C, j) = λDist ·RDist(C, j) + RSeq(C) (10)

5. Algorithm

We present the search algorithm including pruning in
Fig. 3. The notation and functions used in this algo-
rithm are shown in Fig. 2. We use CONTINUE and
BREAK with the usual C/C++ semantics, i. e. CON-
TINUE will stop the current loop iteration and continue
with the next iteration; BREAK will stop the whole
loop.

The function ‘pruneCardinality c’ applies coverage
and cardinality pruning to all hypotheses with cardinal-
ity c. In the function ‘purgeCardinality c’, we free the
memory (except trace back information) of all hypothe-
ses with cardinality c. For example, the coverage sets
and the LM histories are not needed anymore and the
memory can be reused.

Let E(j′, j) denote the set of phrase translations of
the source phrase f̃ = fj′ , ..., fj . To avoid repeated
computations, we generate the set of possible transla-
tions E(j, j′) for each phrase in the source sentence
before the search along with their phrase model scores
qTM(ẽ|j, j′). The auxiliary quantity Q(C, ẽ, j) is the
maximum score of a partial translation with coverage
C, LM history ẽ and end position of the last source
phrase j. In addition, we store backpointers B(·) to
the previous best decision as well as the maximizing ar-
guments A(·), i. e. the best target phrases. These are
used to trace back the best path when the search is fin-
ished. For each cardinality c, we have a loop over all
possible source phrase lengths l. Here, Ls denotes the
maximum source phrase length. Then, we have a loop
over the possible predecessor coverages C ′ with cardi-
nality c − l. The next loop goes over all possible start
position j, thus effectively we select a source phrase
f̃ = fj , ..., fj+l. We also check the ‘no overlap’ con-
straint in line 5. We generate the new coverage C and
loop over all existing predecessor states ẽ′, j′ in line 7
and over all translation options ẽ′′ in line 10. Eventu-
ally, we compute the score of the expansion in line 12.
If this is better than the existing one, we update this as
well as the backpointer and the maximizing argument.

Pruning is applied after we generated all hypothe-
ses of the current cardinality c in line 19. Addition-
ally, we apply pruning at earlier stages. We stop the
expansion as soon as we know that the resulting hy-
potheses would be pruned anyway. This is done in the
function ‘x isTooBadForCoverage C’. This way, we
can avoid unnecessary computations and speed up the
search significantly. Therefore, we store for each cover-
age C the score of its best lexical hypothesis. This score
is updated whenever we generate a lexical hypothesis
for coverage C with a better score. For this on-the-fly
pruning to be effective, it is important that promising
candidates are processed first. Therefore, we process

moku
- 201 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

A(C, ẽ, j) maximizing argument of hypothesis (C, ẽ, j)
B(C, ẽ, j) back pointer of hypothesis (C, ẽ, j)
Ls maximum source phrase length
qTM(j, j′) best translation model score for translating source phrase fj , . . . , fj′ ,

i. e. qTM(j, j′) = maxẽ qTM(ẽ|j, j′)
purgeCardinality c free memory of cardinality c except trace back information
pruneCardinality c apply coverage and cardinality pruning to all hypotheses with cardinality c
x isTooBadForCoverage C check if score x cannot survive coverage or cardinality pruning

Figure 2: Notation and functions used in the search algorithm in Fig. 3.

INPUT: source sentence fJ
1 , translation options E(j, j′) for 1 ≤ j ≤ j′ ≤ J , models qTM(·), qLM(·), qDM(·)

0 Q(∅, $, 0) = 0 ; all other Q(·, ·, ·) entries are initialized to −∞
1 FOR cardinality c = 1 TO J DO
2 IF c > Ls THEN purgeCardinality c− Ls − 1
3 FOR source phrase length l = 1 TO min{Ls, c} DO
4 FOR ALL coverages C ′ ⊂ {1, ..., J} : |C ′| = c− l DO
5 FOR ALL start positions j ∈ {1, ..., J} : C ′ ∩ {j, ..., j + l} = ∅ DO
6 coverage C = C ′ ∪ {j, ..., j + l}
7 FOR ALL states ẽ′, j′ ∈ Q(C ′, ·, ·) DO
8 partial score q = Q(C ′, ẽ′, j′) + qDM(j′, j)
9 IF q + R(C, j + l) + qTM(j, j + l) isTooBadForCoverage C THEN CONTINUE

10 FOR ALL phrase translations ẽ′′ ∈ E(j, j + l) DO
11 IF q + R(C, j + l) + qTM(ẽ′′|j, j + l) isTooBadForCoverage C THEN BREAK
12 score = q + qTM(ẽ′′|j, j + l) + qLM(ẽ′′|ẽ′)
13 IF score+R(C, j + l) isTooBadForCoverage C THEN CONTINUE
14 language model state ẽ = ẽ′ ⊕ ẽ′′

15 IF score > Q(C, ẽ, j + l)
16 THEN Q(C, ẽ, j + l) = score
17 B(C, ẽ, j + l) = (C ′, ẽ′, j′)
18 A(C, ẽ, j + l) = ẽ
19 pruneCardinality c

Figure 3: DP beam search algorithm.

the coverage hypotheses in line 4 and the lexical hy-
potheses in line 7 in order of their scores, i. e. the best
ones first. As already mentioned, the translation options
E(·, ·) are sorted once before the search. In particular,
we check the partial scores at the following points:
Line 9: at this point, we have accumulated the score of
the predecessor hypothesis Q(C ′, ẽ′, j′), the distortion
model score qDM(j′, j), the rest score estimate of the
new hypothesis and an optimistic estimate of the trans-
lation model score qTM(j, j + l). If this score is too bad
for the coverage hypothesis C, there is no need to pro-
cess any of the possible phrase translations.
Line 11: at this point, we have computed the score ex-
cept for the LM. If this score is already too bad, there is
no need to compute the LM score.
Line 13: at this point, the full score of the expansion
is known. If we can prune a hypothesis here, we can

directly reuse the memory and there is no need to check
for recombination.

In Fig. 4, we show an illustration of the search. For
each cardinality, we have a list of coverage hypothe-
ses, here represented as boxes. For each coverage hy-
pothesis, we have a list of lexical hypotheses, here rep-
resented as circles. We generate a specific lexical hy-
pothesis (the filled circle) with cardinality c by expand-
ing shorter hypotheses. The hypotheses with cardinality
c−1 are expanded with one-word phrases, the hypothe-
ses with cardinality c − 2 are expanded with two-word
phrases etc. This differs from e. g. [8, 14] who expand
hypotheses with cardinality c into higher cardinalities.
Our approach has the advantage that all generated hy-
potheses have the same cardinality, which allows for
more efficient recombination and pruning.

moku
- 202 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

c−1c−2 c c+1

Figure 4: Illustration of the search. Hypotheses of car-
dinality c are generated by expanding shorter hypothe-
ses. Boxes represent reordering hypotheses, circles rep-
resent lexical hypotheses.

Table 1: Statistics of the Chinese-English NIST task.
Chinese English

Train Sentence pairs 8 M
Words 249 M 269 M
Vocabulary size 251 K 431 K

Test Sentences 878 3 512
Words 25 K 105 K

6. Experimental results
The experiments were carried out on the large data track
of the Chinese-English NIST task. The corpus statis-
tics are shown in Tab. 1. The 4-gram LM was trained
on about 650 M words. We use modified Kneser-Ney
smoothing as implemented in the SRILM toolkit [15].
The model scaling factors were tuned to maximize the
Bleu score. We report case-insensitive Bleu scores on
the NIST 2002 evaluation set. The reordering limit in
all experiments is 10 words.

Effect of search errors. In Fig. 5, we show the ef-
fect of the search errors. We varied the pruning param-
eters to generate translations of different quality. We
show the Bleu score as a function of the model score
Q(·) of the found translation. We observe a strong cor-
relation between the model score and the Bleu score.
Thus, it is important to find translation hypotheses with
a good model score, i. e. a good search algorithm is im-
portant to achieve high translation quality.

Effect of rest score estimation. In Fig. 6, we show
the effect of the rest score estimation (Sec. 4.2) on the
translation performance. We compare the following vari-
ants of the rest score estimation. We varied the included
models: translation model (TM), language model (LM),

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

-75 -70 -65 -60 -55 -50 -45

B
LE

U
[%

]

Model Score

Figure 5: Effect of search errors. The larger the model
score, the fewer search errors.

Figure 6: Effect of the rest score estimation on the trans-
lation performance.

distortion model (Dist) and we compare whether the
rest scores are computed per position (Eq. 9) or per se-
quence (Eq. 7). For each of the rest score estimates,
we varied the beam size. For (very) large beam sizes,
the rest score estimation is of course not important. For
small and medium beam sizes however, we observe that
a good rest score estimate is important to achieve high
Bleu scores. Using only the translation model for the
rest score estimation does not help much. The curves
are very similar to the one without rest score estimation.
Both, the LM and the distortion model, help to improve
the search results. The rest score estimates based on se-
quences of source position typically outperform the es-
timate based on positions, i. e. with the same beam size
they achieve a higher Bleu score. The rest score esti-
mate based on translation and LM scores for sequences
of source positions in combination with a rest score es-
timate for the distortion penalty model works best. Us-
ing this rest score estimation, we already achieve a very

moku
- 203 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

 32

 33

 34

 35

 36

 37

 38

 39

 1 4 16 64 256

B
LE

U
[%

]

Max. Number of Lex. Hyps per Cov. Hyp.

Max. Cov. Hyps 1
 4

 16
 64

 256

Figure 7: Effect of the number of lexical and coverage
hypotheses.

good Bleu score with a beam size of only 64 hypothe-
ses. Without rest score estimation, we would need about
16 K hypotheses to achieve the same Bleu score.

Effect of lexical and coverage pruning. In Fig. 7,
we separated the effect of lexical choice and reorder-
ing. For each curve, we limited the number of coverage
hypotheses and varied the maximum number of lexical
hypotheses per coverage hypothesis. Thus, along the x-
axis we increase the search space by allowing for more
lexical choice, whereas from curve to curve we allow
for more reordering. To be precise: for each curve we
fixed the histogram size for the coverage pruning per
cardinality and we varied the histogram size for the lex-
ical pruning. The overall search space is limited by the
product of the two numbers; we vary the overall search
space between 1 hypothesis and 64 K hypotheses. We
observe that increasing the lexical choice beyond 16 hy-
potheses per coverage hypothesis does not lead to fur-
ther improvements; often only 4 lexical hypotheses are
sufficient. Furthermore, the improvement that achieved
by taking more lexical alternatives into account is be-
tween 1 and 2 Bleu points. If we look at the maximum
number of coverage hypotheses, we see a much big-
ger effect on the Bleu score. There is a considerable
improvement by increasing the number of coverage hy-
potheses up to 64.

Comparison with cube pruning. We compared
our implementation with cube pruning [16, 17]. We
present the translation quality as a function of the num-
ber of LM expansions in Fig. 8. We observe that there
is virtually no difference between cube pruning and our
implementation. In Fig. 9, we compare the actual trans-
lation speed. Again, both systems are very similar. We
conclude that the benefits of cube pruning, i. e. fewer
LM expansions, can be achieved by simpler means as
shown in this work. Note that we did not include the
naive algorithm without on-the-fly pruning. This would

 33

 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 37

 37.5

 100 1000 10000 100000 1e+06

B
LE

U
[%

]

LM Expansions per Source Word

Cube Pruning
This Work

Figure 8: Comparison with cube pruning: translation
quality as a function of the number of LM expansions.

 33

 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 37

 37.5

 0.1 1 10 100 1000

B
LE

U
[%

]

Translation Speed [words/second]

Cube Pruning
This Work

Figure 9: Comparison with cube pruning: translation
quality as a function of the translation speed.

have significantly more LM expansions and would be
much slower, as shown in [17].

Comparison with Moses. We also performed a
comparison with Moses [8], a publicly available de-
coder. We use the same TM, LM, model scaling fac-
tors etc. The lexicalized reordering model is not used in
these experiments as the implementation in Moses dif-
fers slightly from our implementation; thus the results
would not be comparable. One effect of this is that the
results, i. e. Bleu scores, are somewhat worse than the
ones reported in Fig. 7.

To compare the performance, we translated the test
set with varying beam sizes and measured the Bleu score
and the speed. The results are presented in Fig. 10. The
beam size was varied between 1 hypothesis and 4 096
hypotheses, increasing by a factor of 4 from data point
to data point. We observe that we can achieve the same
Bleu score as Moses at a higher translation speed.

We are aware that comparisons of real time transla-
tion speed across implementations are problematic. We
considered a comparison of the number of hypothesis

moku
- 204 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

 31

 32

 33

 34

 35

 36

 37

 38

 0.0625 0.25 1 4 16 64 256 1024

B
LE

U
[%

]

Translation Speed [words per sec]

Moses
this work

Figure 10: Comparison with Moses.

expansions, but we believe that a comparison of the
speed in words per second is more interesting for the
following reasons. First, a comparison of expansions
is problematic as well, because an expansion might be
more expensive in one implementation than in another.
For instance with cube pruning, there is some overhead
for maintaining the priority queues. Second, the over-
all goal is a fast decoder, i.e. to maximize the number
of words per second, independent of the number of ex-
pansions that are performed. Therefore, we report the
speed in words per second. The results indicate that
the presented system is significantly more efficient than
Moses.

7. Conclusions
We have described the search problem for phrase-based
SMT in detail and presented an efficient solution. We
showed that search errors deteriorate the translation re-
sults significantly, thus a good search algorithm is im-
portant. The analysis showed that it is important to fo-
cus the search on alternative coverage hypotheses. On
the other hand, already a small number of lexical hy-
potheses per coverage is sufficient to achieve good trans-
lation quality. The presented method is competitive with
cube pruning, yet much simpler to implement. A com-
parison with Moses showed, that the presented decoder
is significantly faster at the same level of translation
quality.

8. Acknowledgments
This material is partly based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-06-C-0023.

9. References
[1] F. J. Och, C. Tillmann, and H. Ney, “Improved align-

ment models for statistical machine translation,” in
Joint SIGDAT Conf. on Empirical Methods in Nat-

ural Language Processing and Very Large Corpora
(EMNLP), College Park, MD, June 1999, pp. 20–28.

[2] R. Zens, F. J. Och, and H. Ney, “Phrase-based statisti-
cal machine translation,” in 25th German Conf. on Ar-
tificial Intelligence (KI2002), ser. Lecture Notes in Ar-
tificial Intelligence (LNAI), M. Jarke, J. Koehler, and
G. Lakemeyer, Eds., vol. 2479. Aachen, Germany:
Springer Verlag, September 2002, pp. 18–32.

[3] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-
based translation,” in Human Language Technology
Conf. / North American Chapter of the Assoc. for Com-
putational Linguistics Annual Meeting (HLT-NAACL),
Edmonton, Canada, May/June 2003, pp. 127–133.

[4] K. Knight, “Decoding complexity in word-replacement
translation models,” Computational Linguistics,
vol. 25, no. 4, pp. 607–615, December 1999.

[5] R. Bellman, Dynamic Programming. Princeton, NJ:
Princeton University Press, 1957.

[6] F. Jelinek, Statistical Methods for Speech Recognition.
Cambridge, MA: MIT Press, 1998.

[7] C. Tillmann and H. Ney, “Word reordering and a dy-
namic programming beam search algorithm for statis-
tical machine translation,” Computational Linguistics,
vol. 29, no. 1, pp. 97–133, March 2003.

[8] P. Koehn and et al., “Moses: Open source toolkit for
statistical machine translation,” in ACL Poster, Prague,
Czech Republic, June 2007, pp. 177–180.

[9] V. Steinbiss, B.-H. Tran, and H. Ney, “Improvements in
beam search,” in Int. Conf. on Spoken Language Pro-
cessing (ICSLP), September 1994, pp. 2143–2146.

[10] F. J. Och, “Statistical machine translation: From single-
word models to alignment templates,” Ph.D. disser-
tation, Lehrstuhl für Informatik 6, Computer Science
Department, RWTH Aachen University, Aachen, Ger-
many, October 2002.

[11] F. J. Och and H. Ney, “The alignment template ap-
proach to statistical machine translation,” Computa-
tional Linguistics, vol. 30, no. 4, pp. 417–449, Decem-
ber 2004.

[12] P. Koehn, “Noun phrase translation,” Ph.D. disserta-
tion, University of Southern California, 2003.

[13] R. C. Moore and C. Quirk, “Faster beam-search decod-
ing for phrasal statistical machine translation,” in MT
Summit XI, Copenhagen, Denmark, September 2007.

[14] C. Tillmann, “Efficient dynamic programming search
algorithms for phrase-based SMT,” in Workshop on
Computationally Hard Problems and Joint Inference in
Speech and Language Processing, New York City, NY,
June 2006, pp. 9–16.

[15] A. Stolcke, “SRILM – an extensible language model-
ing toolkit,” in ICSLP, vol. 2, Denver, CO, September
2002, pp. 901–904.

[16] D. Chiang, “A hierarchical phrase-based model for sta-
tistical machine translation,” in 43rd Annual Meeting of
the Assoc. for Computational Linguistics (ACL), Ann
Arbor, Michigan, June 2005, pp. 263–270.

[17] L. Huang and D. Chiang, “Forest rescoring: Faster de-
coding with integrated language models,” in 45th An-
nual Meeting of the Assoc. for Computational Linguis-
tics (ACL), Prague, Czech Republic, June 2007.

moku
- 205 -

moku
Proceedings of IWSLT 2008, Hawaii - U.S.A.

