·ONDAZIONE BRUNO KESSLEF

FBK @ IWSLT 2009

Nicola Bertoldi, Arianna Bisazza, Mauro Cettolo, Marcello Federico

FBK - Fondazione Bruno Kessler

Via Sommarive 18, 38123 Povo (TN), Italy

Germán Sanchis-Trilles

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia Camino de Vera s/n, 46022, Valencia, Spain

Main Contributions

- BTEC Arabic-English and Turkish-English:
- Special effort on **linguistic preprocessing** for morphologically rich source languages
- In particular word segmentation and lexical approximation techniques
- Dealing with mismatch in word granularity between source languages and English
- CT English-Chinese and Chinese-English:

Evaluation Results

- Baseline : standard setup for Moses SMT toolkit
- BTEC Turkish-English
- -Best segment. scheme (MS11) dramatically lowers test's OOV, minimizes differences in word granularity between TR and EN, reduces training dictionary size and data sparseness.

	train	ning	devset2			
reprocessing	W		OOV%	H(bits)		

- Focus on language model adaptation
- Mixture of *n*-gram language models, obtained by **clustering** training data
- Mixture weight estimation at the level of single source sentence or complete test set

Linguistic Pre-Processing for Morphologically Rich Languages

• Morphological segmentation of Turkish:

- -vowel harmony (+ other phonological phenomena) \Rightarrow systematic stem and suffix allomorphy
- agglutinative language \Rightarrow huge variety of possible segmentation schemes
- tag notation abstracts from suffix allomorphy. Example: $elim \rightarrow el+P1sg$ ('my hand'), $kolum \rightarrow kol+P1sg$ ('my harm') -our best segmentation scheme MS11 handles nominal \Downarrow case, possessive, copula and verb person suffixes:

Turkish:	Arabic:
Morph. analysis	
(Oflazer, 1994)	
Morph. disambiguation	Morph. segmentation
(Sak & Saraçlar, 2007)	(MADA/AMIRA)
Suffix tags split/removal	
(tested 11 schemes)	
Lexical approximation	Lexical approximation
Preprocessing	pipelines

odam day im	\rightarrow	oda/m/da//yim
('I am in my room')		oda+Noun+A3sg/+P1sg/+Loc/^DB+Verb+Zero+Pres/+A1sg
bayanın çantasını gördüm	\rightarrow	bayanın çantasını gör/düm
('I saw the lady's bag')		bayan+Noun+A3sg+Pnon+Gen çanta+Noun+A3sg+P3sg+Acc gör+Verb+Pos+Past/+A1sg

• Morphological segmentation of Arabic:

- -specific tokenization (arTok): removal of short vowels and normalization of UTF8 characters and digits - comparison of two state-of-the-art segmenters: MADA and AMIRA
 - Example: 'And she will say it to her colleague.

- -MERT on devset1 using gold reference only
- Distortion limit (DL) set to 10, due to high word order mismatch
- -Morph. segmentation yields 5 points BLEU improvement
- -Lexical approx. does not improve in -drop-unknown conditions
- Unlimited distortion results inconsistent across test sets

system	MS11	lex.appr.	DL	devset2	test		
baseline	_	-	10	54.80	51.82		
primary	+	-	10	59.77	56.77		
contrastive1	+	+	10	59.24	56.75		
contrastive2	+	-	∞	59.02	57.04		
BTEC Turkish-English results (%BLEU)							

system	prepr.	lex.appr.	LM	devset7	test
baseline0	_	-	msb	51.87	51.36
baseline1	arTok	-	msb	52.38	51.75
primary	mada	-	msb	54.68	52.23
contrastive1	mada	+	msb	54.52	52.92
contrastive2	amira	-	msb	54.60	53.36
contrastive3	mada	-	kn	53.78	51.92

BTEC Arabic-English results (%BLEU)

• BTEC Arabic-English

- -Training data: train + devsets 2, 3 and 6 (with gold reference only)
- -MERT on devset1 using all references
- -Specific tokenization alone yields around half point BLEU improvement (51.36 to 51.75 on test)
- -Morph. segmentation through MADA yields additional 2.3 points on devset7, but only 0.5 on test
- -AMIRA results inconsistent across test sets
- -Lexical approx. results also discrepant: improvement only on the official test

• CT English-Chinese

- Development set of CT task used for MERT, then included into training corpus
- Development sets of previous campaigns not included, only their vocabulary

-	139,514	$17,\!619$	6.16	$59,\!435$
MS11	168,135	$10,\!450$	2.54	$57,\!379$

Effect of preprocessing on Turkish data

			wstqwl	lh		lzmy	vlhA	
Baseline:			she-will	l-say-it] [to-	-her-c	colleague]	
MADA:	heavy-weight, based on	w+	s+	tqwl	h	1+	zmylhA	
(Habash & Rambow, 2005)	morphological analysis	[and]	[will]	[she-sa	y-it]	[to]	[her-collea	ague]
AMIRA:	light-weight, based on	w+	st	tqwl	+h	1+	zmyl	+hA
(Diab & al., 2004)	5-characters context	[and]	[she-w:	ill-say]	[it]	[to]	[colleague]	[her]

• Lexical approximation:

replace OOV words in the test with morphologically similar words of the training

- deterministic choice of 1-best replacer

- Turkish: choose word sharing lemma and largest number of suffix tags Example: $cikislar (cik+Verb+Pos^{DB+Noun+Inf3+A3pl}) \rightarrow cikis (cik+Verb+Pos^{DB+Noun+Inf3+A3sg})$
- -Arabic: progressively remove prefix and suffixes from the OOV word until a replacer is found. Example: $tmddy \rightarrow tmdd \rightarrow mdd$, $qmySk \rightarrow qmyS$

Online Language Model Adaptation for Spoken Dialog Translation

• Model adaptation

 $p(\mathbf{e}) = \sum w_i p_i(\mathbf{e})$ LM score is given by either single LM (baseline) or mixture of (smaller) LMs:

-Same system (differently tuned) for ASR and CRR

- Improvements in terms of perplexity are only partially mirrored into translation quality

- Primary run: six dialog clusters, 2step weight estimation

ASR CRR system submission BLEU |BLEU - p/r|p/r baseline contrastive3 32.75 61.7/59.1 40.40 68.4/66.3 33.37 63.2/59.4 40.05 68.5/66.1 primary 2steps contrastive1 33.71 63.3/59.6 40.33 68.8/66.2 contrastive2 33.20 63.2/59.5 39.73 68.1/65.7 SDS

• CT Chinese-English

-Same setup as for English-to-Chinese

		ASR		(CRR
system	submission	BLEU	p/r	BLEU	p/r
baseline	contrastive3	30.01	63.3/63.2	31.82	66.4/67.3
2steps	primary	30.13	63.5/63.4	31.92	66.5/67.8
set	contrastive1	29.92	63.6/62.7	32.15	66.5/67.6
sbs	contrastive2	29.96	64.0/63.6	31.87	66.7/67.6

CT Chinese-English results (%BLEU and precision/recall)

Summary and Future Work

• Clustering using dialog annotations:

- Each dialog is represented as a bag of both source and target words -CLUTO package was employed: direct clustering, cosine distance -2, 4, 6 and 8 clusters
- -One set of LMs for each cluster + additional LM on BTEC+CT data
- On-line weight optimization:
- Set specific weights (over complete source side of test set)
- -Sentence specific weights (one set of weights for each source sentence)
- Two-step weight optimization: See figure.

LM 1 LM 1

LM 2 LM 2

LM M LM M

---- "----

• Specific **linguistic preprocessing** is crucial for morphologically rich languages • TODO: refine our Turkish segmentation schemes by addressing verbal suffixation in a better way • TODO: feed Moses with multiple options for lexical approximation

- Adaptation yields limited gains in BLEU
- Observed big gains in perplexity \rightarrow room for improvement
- TODO: address larger tasks, involving unsupervised clustering and source-to-target weight map

Acknowledgements

This work was supported by the EuroMatrixPlus project (IST-231720), which is funded by the European Commission under the Seventh Framework Programme for Research and Technological Development, and by the Spanish MEC under scholarship AP2005-4023 and grant CONSOLIDER Ingenio-2010 CSD2007-00018.