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Abstract
In this paper, we propose a new method for training trans-

lation rules for a Synchronous Context-free Grammar. A
bilingual chart parser is used to generate the parse forest,
and EM algorithm to estimate expected counts for each rule
of the ruleset. Additional rules are constructed as combina-
tions of reliable rules occurring in the parse forest. The new
method of proposing additional translation rules is indepen-
dent of word alignments. We present the theoretical back-
ground for this method, and initial experimental results on
German-English translations of Europarl data.

1. Introduction

Statistical machine translation has dramatically improved
over the last few decades. Phrase-based and syntax-based
systems are probably the most commonly adopted ap-
proaches. Although they implement various modeling tech-
niques to improve performance on different languages, do-
mains, or user scenarios, they usually share the same basic
pattern for generating rules: starting with word alignments,
and using heuristic approaches to extract phrase pairs. These
approaches are very successful in handling local linguistic
phenomena, but handling longer distance dependencies can
be more difficult. One of the reasons might be that, to avoid
combinatorial explosion, and to achieve reasonable model
size, these heuristics usually apply constraints, such as limi-
tations of the phrase length or non-terminal span, sometimes
too restrictive to extract some good rules. Another reason
is the deterministic nature of those heuristics that does not
allow to recover from errors in the word alignment.

In this work, we learn rules for hierarchical phrase based
MT systems directly from the parallel data. The main contri-
bution of this paper is a new method for proposing translation
rules which is independent of bilingual word alignments.

Let us have an example of a German-English sentence
pair from the Europarl corpus [1].

(1) GER: die herausforderung besteht darin diese systeme
zu den besten der welt zu machen
ENG: the challenge is to make the system the very
best

We can see that the pairs of long sequences (diese sys-
teme ... der welt, the system ... best) and (zu machen, to

make) are swapped. It would be nice to generate rules that
can handle long distance reorderings, still with a reasonably
low number of terminals, for example:

(2) X → 〈besteht darinX1 zuX2, is toX2X1〉,

There are 127 sentence pairs out of 300K of the training data
that contain this pattern, but this rule was not extracted into
the baseline ruleset using the conventional approach [2]: ei-
ther because of word alignment errors, or because the maxi-
mum span for rule extraction is lower than 11 words.

We want to learn new rules by combining existing rule
usages. Thus we might combine:

(3) X → 〈besteht darin, is〉
X → 〈X1 zuX2, to X2X1〉

to get the rule (2).
Our approach, as shown in Figure 1, consists of bilingual

chart parsing (BCP) of the training data, combining rules
found in the chart using arule arithmetic to propose new
rules, and using EM to estimate rule probabilities.

The paper is structured as follows: In Section 1, we ex-
plain our main motivation, summarize previous work, and
briefly introduce the formalism of hierarchical phrase-based
translation. In Section 2, we present details of bilingual chart
parsing. The mathematical background for EM algorithm is
presented in Section 3. In Section 4, we describe additions to
the baseline ruleset that extend the grammar coverage during
the EM training. The main topic of this work, the method for
generating new translation rules is described in Section 5. In
Section 6, we present results on German-English translation
of Europarl corpus. Finally, we conclude in Section 7.

1.1. Related work

In many previous works, the EM algorithm was used to esti-
mate probabilities of translation rules:

Wu [3] uses EM to directly estimate joint word alignment
probabilities of Inversion Transduction Grammar (ITG).

Marcu and Wong [4] use EM to estimate joint phrasal
translation model (JPTM). The translation process is de-
scribed as simultaneous generation of both languages. First,
a bag of bilingual phrase pairs, so-calledconceptsis gener-
ated, then these phrases are permuted to create a sentence
pair. The search space of this method is huge, so Birch et
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Figure 1: Enriching SCFG rules from bilingual chart pars-
ing.

al. [5] reduce it by using only concepts that match the high-
confidence GIZA++ alignments. Similarly, Cherry and Lin
[6] use ITG for pruning.

May and Knight [7] use EM algorithm to train tree-to-
string rule probabilities, and use the Viterbi derivations to
re-align the training data.

Huang and Zhou [8] use EM to estimate conditional rule
probabilitiesP (α|γ) andP (γ|α) for Synchronous Context-
free Grammar. We further improve their approach by using
additional rules in the bilingual parsing and EM training.

Galley et al. [9] define minimal rules for tree-to-string
translation, and (similarly to ourrule arithmetic) merge them
into composed rules. The EM is used to estimate rule
weights. While in their method, word alignments are used
to define all rules, our method proposes new rules indepen-
dently of word alignments.

1.2. Formally syntax-based models

Our baseline model follows the Chiang’s hierarchical model
[2, 10, 11] based on Synchronous Context-free Grammar.
The rules have form

X → 〈γ, α,∼〉, (4)

whereX is the only non-terminal in the grammar,γ andα

are source and target strings with both terminals and non-
terminals, subject to the constraint that there is always a one-
to-one correspondence∼ between those non-terminals. The
∼ is often represented by co-indexing corresponding non-
terminals. Rules with terminals only are calledphrasalrules,
while rules with non-terminals areabstractrules. We limit
the number of non-terminals in each rule to no more than
two, thus ensuring the rank of SCFG is two. The set of rules,
denoted asR, are automatically extracted from a parallel
corpus [2, 10] with word-alignments obtained from GIZA++
[12]. Finally, an implicitgluerule is embedded with decoder
to allow for translations that can be achieved by sequentially

linking sub-translations generated chunk-by-chunk:

X → 〈X1X2, X1X2〉. (5)

X is also the start symbol.
All rules in R are paired with statistical parameters (i.e.,

weighted SCFG), which combines with other features to
form the models using a log-linear framework. The decoder
tries to maximize:

P (D) ∝ PLM (e)λLM×
∏

i

∏
X→<γ,α>∈D φi(X →< γ, α >)λi , (6)

where the set ofφi(X →< γ, α >) are features defined over
given production rule, andPLM(e) is the language model
score on hypothesized output, theλi is the feature weight.

The baseline model follows Chiang’s hierarchical model
[2]: conditional probabilitiesP (γ|α) and P (α|γ); lexical
weights [13]Pw(γ|α) andPw(α|γ); word counts|e|; rule
counts|D|; abstraction penalty (to account for the accumu-
lated number of non-terminals inD); target n-gram language
modelPLM(e); and the glue rule penalty to learn preference
of non-terminal rewriting over serial combination through
Eq. (5).

We note, however, that these parameters are often poorly
estimated due to the scarceness of data and the usage of in-
accurate heuristics. We try to alleviate this problem by EM
training in Section 3.

2. Bilingual chart parsing

In this section, we describe the algorithm for bilingual pars-
ing and present our implementation details necessary for a
substantial speedup of the original algorithm [8], allowing
for model extensions further mentioned in Section 4.

In bilingual parsing, we are interested in finding all syn-
chronous derivationsΦ of the sentence pair(eM

1 , fN
1 ) using

rules fromR. A bilingual chart parser, a parallel version of a
CYK parser is capable of doing it. The algorithm is described
in Fig. 2.

1. RSpans := precompute(R,e, f)
2. for i, j, k, l in bottom-up order, such that
3. 1 ≤ i ≤ j ≤ M ,
4. 1 ≤ k ≤ l ≤ N

5. for ρ ∈ RSpans(i, j, k, l)
6. switch ρ.n

7. case0:
8. tijkl.push(ρ)
9. case1:
10. if (filled(tρ.bp1))
11. tijkl.push(ρ)
12. case2:
13. if (filled(tρ.bp1)&filled(tρ.bp2))
14. tijkl.push(ρ)

Figure 2: Bilingual chart parser for SCFG.
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The chartT is a set ofcells tijkl such that1 ≤ i ≤
j ≤ M and1 ≤ k ≤ l ≤ N}. Each celltijkl represents all
parses with span(i, j, k, l), i.e. over the pair of subsequences
(ej

i , f
l
k). Line 2 iterates all cellstijkl in a bottom-up order,

thus it is granted that parses for all subspans have been com-
puted before visitingtijkl . In each step, we try to apply all
rulesr ∈ R that could generate(ej

i , f
l
k). In our implemen-

tation, we use the structureRSpansijkl to provide access to
all rules with matching terminal sequences, and to appropri-
ate non-terminal spans. In the figure, we useρ as a “syntactic
sugar”:ρ.r denotes the synchronous rule,ρ.n is the number
of non-terminals in the rule, andρ.bp1 = (i′, j′, k′, l′) and
ρ.bp2 = (i′′, j′′, k′′, l′′) are spans of the non-terminals.

If eventual non-teminal spans are filled, i.e.tρ.bp1 and
tρ.bp2 are not empty, it means thatρ.r can generate(ej

i , f
l
k)

and we add this hypothesis to the chart celltijkl.
Finally, if the root cellt1,M,1,N is not empty, we know

that the sentence pair can be generated by the rulesetR, and
all derivations can be accessed from the chart by following
the backpointersρ.bpi.

The implementation of the loop on line 5 of algorithm 2
is critial for the system speed. It would be very inefficient
to try all rules fromR and all possible non-terminal spans.
Fortunately, it is possible to construct source and target pre-
fix trees to represent all sequences of terminals and up to 2
non-terminals (while remembering their spans) for any given
sentence pair, remembering the non-terminal spans. Thus
it is possible to quickly retrieve all the rules relevant to the
sentence pair and to access them efficiently through the data
structureRSpans.

3. Estimating rule probabilities

Let C be a training corpus of sentence pairse = eM
1 and

f = fN
1 of source and target sentences.

For each sentence paire, f , the ’E’ step of the EM al-
gorithm will enumerate all possible derivationsΦ, and will
calculate the expected countc(r) that each ruler was used to
produce the corpusC:

c(r) =
∑

e,f∈C

∑

φ∈Φ

P (r, φ|e, f), (7)

where P (r, φ|e, f) is the probability of the ruler in the
derivation φ given the sentence paire, f . The expected
counts are then used in the ’M’ step to update and normal-
ize rule probabilities:

P (r) =
c(r)∑

r′∈R:L(r′)=L(r)c(r
′)

, (8)

whereL(r) denotes the left-hand side of the ruler. The im-
plementation is trivial in our case, since the set of left-hand
sides is{X}.

The expected counts can be computed using inside prob-
abilitiesβijkl(X) and outside probabilitiesαijkl(X) defined
as follows:

βijkl(X) = P (X ⇒∗ e
j
i ; f

l
k) (9)

αijkl(X) = P (S ⇒∗ ei−1
1 , X, eM

j+1; f
k−1
1 , X, fN

l+1) (10)

In other words, theβijkl(X) represents the probability of de-
riving the two parallel sequencese

j
i andf l

k fromX , while the
αijkl(X) is the probability of all derivations of the remain-
ing parts of the sentence paire, f , which are not spanned by
X . Since there is only one non-terminal symbolX , we can
omit it from the following text.

The inside probabilities from the Eq. (9) can be also de-
fined recursively as:

βijkl =
∑

ρ∈tijkl

P (ρ.r)
∏

(i′j′k′l′)∈ρ.bp

βi′j′k′l′ , (11)

and they can be computed dynamically during the chart pars-
ing in Fig. 2. Since both algorithms visit the chart cells in the
same ordering, it is actually preferable to parse and compute
the inside probabilities in one turn. The inside probability
can also be used as a measure for pruning low probability
hypotheses.

The outside probabilities can be computed recursively by
iterating the chart in top-down ordering, starting from the
root cell

α1,M,1,N := 1, (12)

and propagating the probability mass as

αρ.bp1+ = P (ρ.r)αijkl (13)

for hypotheses with one non-terminal, and

αρ.bp1+ = P (ρ.r)αijklβρ.bp2 (14)

αρ.bp2+ = P (ρ.r)αijklβρ.bp1 (15)

for hypotheses with two non-terminals.
Finally, the contributions to the rule expected counts are

computed as

c(ρ.r)+ =
P (ρ.r)αijkl

∏ρ.n

i=1 βρ.bpi

β1,M,1,N

, (16)

and probabilitiesP (ρ) normalized using Eq. (8).
In general, EM algorithm prefers shorter derivations with

longer rules, since the derivation probability is the product of
rule probabilities. We take the modeling approach similar to
[7] and normalizeP (r) by csize(s)

s−1, wheres is the total
number of terminals on source and target sides of ther, and
csize corresponds to the distribution of rule lengths in the
training data.

4. Improving the grammar coverage

When trying to parse the EUROPARL corpus, we realized
that many sentence pairs cannot be parsed. Depending on the
method of phrase extraction, the number of unparsable sen-
tences varied from 70% for theuniontype of bilingual align-
ment to 20% forgrow-diag-final. The reasons are: structural
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complexity, OOV translation pairs, and liberal translations in
the training data.

Let us have an example of a German-English sentence
pair:

(17) GER: meine frage betrifft eine angelegenheit die am
donnerstag zur sprache kommen wird und auf die ich
dann erneut verweisen werde
ENG: my question relates to something that will
come up on thursday and which i will then raise again

with the following alignment between the ends of the sen-
tences:

(18)
ich dann erneut verweisen werde

i will then raise again

We can see two examples of swaps–betweenerneutandver-
weisen, and betweendann erneut verweisenandwerde. It
can be seen that either the ruleX → 〈erneutX1, X1 again〉
or X → 〈X1verweisen,raiseX1〉 is needed to parse this sen-
tence pair using short rules. If neither of the two rules were
extracted to the ruleset (because of pruning or word align-
ment error), the sentence pair cannot be parsed.

Another problem we noticed is that some sentence pairs
have a very scarce parse forest, consisting of many “bad”
rules, while the “good” rules are ignored.

(19) GER:nach monatelangen undweltweiten
konsultationen wird nun im donaldson bericht die
ausweitung dieser forschungen zu therapeutischen
zwecken empfohlen
EN: and after consulting world wide for many
months the donaldson report recommends extending
such research for therapeutic purposes

The Example (19) shows a common pattern of errors that
can be observed in the data: An error in word alignment of
low frequency words (here, the less frequent variantworld
wide was not aligned withweltweiten) results in extraction
of an asymmetric phrase pair (X → 〈nach monatelangen
und,and after ... many months〉). This phrase pair can often
be the only rule spanning the low frequency word. In addi-
tion, during the EM training on the same sentence pair, the
parser is forced to use another asymmetric rule to counter-
balance (by coveringweltweiten) this error instead of using
good rules, such asX → 〈konsultationen,consulting〉. As
a result, the EM accumulates expected counts for asymmet-
ric rules instead of good rules. We could better recover from
this alignment error if we could delete eitherweltweitenand
world wide, or weltweiten konsultationen.

Inspired by ITG [3], we extended our ruleset by the fol-
lowing rules, that will provide “backoff” parses and scoring
for the SCFG rules:

(20) 〈X1, X1f〉, 〈X1, fX1〉, 〈X1e, X1〉, 〈eX1, X1〉,

(21) 〈X1X2, X2X1〉.

Figure 3:Proposing new rules from BCP.

Rules (20) enable insertions and deletions, while rule (21)
allows for aligning swapped constituents.

Since insertions and deletions are represented as abstract
rules, they can be applied only at fringes of already parsed
spans. In addition, we require that theX1 non-terminal of a
deletion rule does not span more than 4 words, thus we prune
parses that would delete large sequences of words.

In this paper, we use the termITG rulesfor these rules,
although we are aware of the difference from the original
ITG definition.

After adding the new types of rules, only 0.08% of sen-
tences still cannot be parsed. We found that those sentences
are usually misaligned or they contain incomplete transla-
tions, and skipping them is the best option.

5. Proposing new rules with rule arithmetic

The main idea of this work is to propose new rules inde-
pendently of the bilingual word alignments as shown in the
Fig. 3. We parse each sentence pair using the baseline rule-
set extended by the new rule types (20) and (21). Then we
select themost promisingrule usages and combine each two
of them using therule arithmeticto propose new rules. We
put the new rules into a temporary pool, and parse and com-
pute probabilities and expected counts again, this time we use
rules from the baseline and from the temporary pool. Finally,
we dump expected counts for proposed rules, and empty the
temporary pool. This way we can try to propose many rules
for each sentence pair, and to filter them later using accumu-
lated expected counts from the EM.

The termmost promisingis purposefully vague—to cover
all possible approaches to filtering rule usages. In our imple-
mentation, we are limited by space and time, and we have
to prune the number of rules that we can combine. We use
expected counts as the main scoring criterion. When com-
puting the contributions to expected counts from particular
rule usages as described by (16), we remember the n-best
contributors, and use them as candidates after the expected
counts for the given sentence pair are estimated.

Therule arithmeticused to combine rules defines the op-
eration ofaddition; the main idea is shown in examples in
Fig. 4:

First , create span projections for both source and target
sides of both rules. Use symbol 0 for all unspanned positions,
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Training Tune Test
Sentence pairs 296,999 1,000 1,000
German tokens 4,210,289 14,179 14,055
English tokens 4,601,538 15,530 15,280

Table 1: Training and test data for German-English transla-
tion

copy terminal symbols as they are, and use symbols -1, -2, -
3, and -4 to transcribeX1 andX2 from the first rule, and
X1 andX2 from the second rule. Repeat the non-terminal
symbol on all spanned positions. In each example in Fig. 4,
lines 1 show the positions in the sentence, lines 2 and 3 show
the rule span projections of the two rules.

Second, merge source span projections (lines 4), record
mappings of non-terminal symbols. We require that merged
projections arecontinuous. In Example (22), two short
phrasal rules are being merged to produce a longer phrasal
rule. On the other hand, merging discontinuous rules as in
Example (23) is not defined.

New abstract rules can be created (among others) by
merging terminal sequences with either a glue or swap rule,
as in (24). We allow substituting non-terminal symbols by
terminals, but we require that the whole span of the non-
terminal is fully replaced. In other words, shortenings of
non-terminal spans are not allowed.

Since insertion and deletion rules are represented as ab-
stract rules with one non-terminal, we can use the same pat-
tern as in example (24) to combine them with other rules. We
restrict combinations with other insertions, deletions, glues
or swaps.

The Example (25) is our motivation example generated
as a combination of a phrasal rule and an abstract rule.

Example (26) is a combination of two abstract rules,
which maps the non-terminalsX1 of the second rule intoX2.

Finally, the Example (27) is the most difficult. The non-
terminal span−1 (representingX1 of the first rule) is re-
placed by source and target terminalsdieseand the and by
a non-terminal sequence of−3. Note that none of the non-
terminal spans is shortened. The remaining span sequences
−3 and−2 are then mapped toX1 andX2.

Third , collect new rule. The merged rule usages (lines 5)
are then generalized into rules, so that they are not limited to
the particular span for which they were originally proposed.

6. Experiments

In the following, we describe the data used for our experi-
ments, the training framework, and we present results.

6.1. Data

We carried out our experiments with German-to-English
translation using the data from the Europarl [1] corpus. The
amounts of training, tuning and testing data are listed in Ta-
ble 1.

The data is a filtered subset, with focus on travel domain.
Our motivation is to improve speech-to-speech translation,
thus all punctuation was removed from the data, and the text
was converted to lower case.

6.2. Training framework

Our training framework is shown in Fig. 1. The baseline rule-
set is obtained from word-level alignments by the baseline
heuristic approach (a).

Additional ITG rules (b) are generated from the training
data: deletion rules for all source words, insertion rules for
all target words, and 1-1 terminal rules for all co-occurring
word pairs.

The baseline and ITG rules are combined and filtered, so
that baseline rules are preferred, while rules only occurring
in the ITG part have much higher costs and serve only as a
backoff to increase the parsability of the training data. Also,
the ITG-only rules arenot used for decoding.

The bilingual chart parsing (c) estimates rule probabil-
ities by EM, and uses rule arithmetic to propose rules that
better explain the training data. The modular architecture
allows for different training setups. In the first setup (EM-
costs), only rule probabilities/costs of abstract rules were es-
timated by 10 iterations of EM. In the second setup (EM-
propose), the new rules were proposed after each iteration
of EM. In the third setup (EM-propose&costs), the proposed
rules were merged with the baseline and ITG rules and the
rule costs were estimated by EM.

In the following, we are presenting more details about the
three setups and present the BLEU scores [14] in the Table 2.

6.3. Baseline

The baseline in our experiments is a formal syntax-based
translation model [11]. We train GIZA++ [15] word align-
ments on the sentence-aligned data, and extract phrase pairs
using heuristics grow-diag-final [16]. The phrases were up
to 6 and 8 words long on the source and target sides, respec-
tively. The method of extracting abstract rules is similar to
[2]. The log-linear model combines 9 features, as described
in Section 1.2.

6.4. Using BCP and EM to estimate rule costs

In the first experiment, we were trying to better estimate fea-
tures of the baseline abstract rules.

As discussed in Section 4, to increase the parsability
of the corpus we had to provide additional ITG rules. We
added all word pairs that had an entry in at least one of the
GIZA++ tables of lexical translation probabilities, but were
not present in the baseline phrase table. Then we added dele-
tion and insertion rules for each word from the source and
target vocabularies, and finally, we added the glue and swap
rules. The total number of ITG rules was less than 1M.

We started from the baseline ruleset extended by the ITG
rules, and used EM algorithm to estimate joint probabilities
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GER: 1:die 2:herausforderung 3:besteht 4:darin 5:diese 6:systeme 7:zu8:den 9:besten 10:der 11:welt 12:zu 13:machen

ENG: 1:the 2:challenge 3:is 4:to 5:make 6:the 7:system 8:the 9:very 10:best

(22) Addition
〈5, 5, 0, 0, 0, 0〉 〈6, 6, 0, 0, 0, 0〉 X → 〈diese, the〉
〈6, 6, 0, 0, 0, 0〉 〈7, 7, 0, 0, 0, 0〉 X → 〈systeme, system〉

1: ... 4 5 6 7 ... ... 5 6 7 8 ...
2: ... 0 diese 0 0 ... ... 0 the 0 0 ...
3: ... 0 0 systeme 0 ... ... 0 0 system 0 ...
4: ... 0 diese systeme 0 ... ... 0 the system 0 ...
5: 〈5, 6, 0, 0, 0, 0〉 〈6, 7, 0, 0, 0, 0〉 X → 〈diese systeme, the system〉

(23) * Addition
〈1, 1, 0, 0, 0, 0〉 〈1, 1, 0, 0, 0, 0〉 X → 〈die, the〉
〈6, 6, 0, 0, 0, 0〉 〈7, 7, 0, 0, 0, 0〉 X → 〈systeme, system〉

1: 1 2 ... 5 6 7 1 2 ... 5 6 7 8 ...
2: die 0 ... 0 0 0 the 0 ... 0 0 0 0 ...
3: ... 0 ... 0 systeme 0 0 0 ... 0 0 system 0 ...
4: die 0 ... 0 systeme 0 the 0 ... 0 0 system 0 ...
5: undefined

(24) Addition
〈12, 13, 0, 0, 0, 0〉 〈4, 5, 0, 0, 0, 0〉 X → 〈zu machen, to make〉
〈5, 13, 5, 11, 12, 13〉 〈4, 10, 6, 10, 4, 5〉 X → 〈X1 X2, X2 X1〉

1: ... 5 ... 11 12 13 ... 3 4 5 6 ... 10
2: ... 0 ... 0 zu machen ... 0 to make 0 ... 0
3: ... -3 ... -3 -4 -4 ... 0 -4 -4 -3 ... -3
4: ... -3 ... -3 zu machen ... 0 to make -3 ... -3
5: 〈5, 13, 5, 11, 0, 0〉 〈4, 10, 6, 10, 0, 0〉 X → 〈X1 zu machen, to makeX1〉

(25) Addition
〈3, 4, 0, 0, 0, 0〉 〈3, 3, 0, 0, 0, 0〉 X → 〈besteht darin, is〉
〈5, 13, 5, 11, 13, 13〉 〈4, 10, 5, 5, 6, 10〉 X → 〈X1 zuX2, to X2X1〉

1: 1 2 3 4 4 5 ... 11 12 13 1 2 3 4 5 6 ... 10
2: 0 0 besteht darin 0 0 ... 0 0 0 0 0 is 0 0 0 ... 0
3: 0 0 0 0 -3 -3 ... -3 zu -4 0 0 0 to -3 -4 ... -4
4: 0 0 besteht darin -3 -3 ... -3 zu -4 0 0 is to -3 -4 ... -4
5: 〈3, 13, 5, 11, 13, 13〉 〈3, 10, 5, 5, 6, 10〉 X → 〈besteht darinX1 zuX2, is toX2X1〉

(26) Addition
〈3, 13, 5, 13, 0, 0〉 〈3, 10, 4, 10, 0, 0〉 X → 〈besteht darinX1, is X1〉
〈1, 2, 1, 1, 0, 0〉 〈1, 2, 1, 1, 0, 0〉 X → 〈X1 herausforderung,X1 challenge〉

1: 1 2 3 4 5 ... 13 1 2 3 4 ... 10
2: 0 0 besteht darin -1 ... -1 0 0 is -1 ... -1
3: -3 herausforderung 0 0 0 ... 0 -3 challenge 0 0 ... 0
4: -3 herausforderung besteht darin -1 ... -1-3 challenge is -1 ... -1
5: 〈1, 13, 1, 1, 5, 13〉 〈1, 10, 1, 1, 4, 10〉 X → 〈X1 herausforderung besteht darinX2, X1 challenge isX2〉

(27) Addition
〈5, 13, 5, 11, 13, 13〉 〈4, 10, 6, 10, 5, 5〉 X → 〈X1 zuX2, to X2 X1〉
〈5, 11, 6, 11, 0, 0〉 〈6, 10, 7, 10, 0, 0〉 X → 〈dieseX1, theX1〉

1: ... 4 5 6 ... 11 12 13 3 4 5 6 7 ... 10
2: ... 0 -1 -1 ... -1 zu -2 0 to -2 -1 -1 ... -1
3: ... 0 diese -3 ... -3 0 0 0 0 0 the -3 ... -3
4: ... 0 diese -3 ... -3 zu -2 0 to -2 the -3 ... -3
5: 〈5, 13, 6, 11, 13, 13〉 〈4, 10, 7, 10, 5, 5〉 X → 〈dieseX1 zuX2, to X2 theX1〉

Figure 4: Rule arithmetic – addition
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P (γ, α) of all rules. The initial joint probabilities were set
based on co-occurrences. The rule probabilitiesP (r) needed
for scoring during the ’E’ step are combinations of the joint
probability P (γ, α), conditional probabilitiesP (γ|α) and
P (α|γ), and lexical weightsPw(γ|α) andPw(α|γ).

In the ’M’ step, we re-estimated the joint probability
P (γ, α). The joint probability itself was not used as a fea-
ture in the decoder. Instead, we used it to update the con-
ditional probabilitiesP (γ|α) andP (α|γ) for abstract rules.
The phrasal rules used the baseline values ofP (γ|α) and
P (α|γ).

Since insertions would overgenerate the decoder output
and deletions would degrade the translation performance, the
ITG rules were finally removed from the model before tuning
and decoding.

The results of this experiment are marked asEM-costs.
After the first iteration, we were able to improve by 0.68
BLEU on the testset. The improvement in the next iterations
varies from 0.38 to 0.86 BLEU points.

6.5. Using BCP and EM to propose new rules

In the next experiment, we used the model resulting from the
first iteration of EM models with EM-trained probabilities
from the previous experiment. Then we used the approach
described in Section 5 to propose new rules.

After parsing the entire training set, we collected 9M
(non-unique) proposed new rules. This number is too big,
and also the quality varies, some precise filtering is neces-
sary. As the first, we wanted to avoid the problem of over-
fitting that could be caused by selecting long rules, thus we
ignored all proposed rules with more than 8 terminals on ei-
ther side. In order to get rid of noisy rules, often coming
from low quality sentence pairs, we selected only those rules
that were proposed from at least 2 sentence pairs. Finally,
we sorted the rest of the rules by their expected counts, and
selected 100K best rules. We used the expected counts to
estimate the rules joint and conditional probabilities.

The Table 3 presents a sample of new rules proposed dur-
ing this experiment. The table is divided into three parts, pre-
senting rules from the top, middle, and bottom of the 100K
list. The quality of the rules is high even in the middle part
of the table, the tail part is worse.

We were surprised by seeing short rules consisting of fre-
quent words. For exampleumX1 - in orderX . When look-
ing into word-level alignments, we realized that these rules
following the pattern prevent the baseline approach from ex-
tracting the rule.

(28)
GER: um Obj zu V

ENG: to V Obj

Similarly many other rules match the pattern of begin-
ning of a subordinated clause, such asthat is why, or in-
sertions, such asof course, which both have to be strictly

devset testset
baseline

23.852 25.447
EM - costs
iteration 0 24.394 26.122

1 24.365 25.826
2 24.433 25.936
3 24.375 26.047
4 24.409 25.936
5 24.300 26.259
6 24.339 26.197
7 23.985 25.827
8 24.129 26.305
9 23.988 25.940

10 24.079 26.226
EM - propose
iteration 0 24.418 26.122
EM - propose & costs
iteration 0 24.837 26.408

Table 2: BLEU scores on Europarl testset

followed by VSO construction in German, in contrast to the
SVO word order in English.

Finally, we merged the new proposed rules with the base-
line rules. The result of this experiment is marked asEM-
propose. The improvement is 0.68 BLEU points over the
baseline.

6.6. Using BCP and EM to estimate rule costs for pro-
posed rules

The third experiment is a combination of the previous two.
We merged the new proposed rules with the baseline rule-
set and with ITG rules. Then we estimated rule costs the
same way as in the first experiment. We hope that this ex-
periment will help to further distinguish the bad rules added
in the previous step from the good ones. The experiment
is markedEM-propose&costs. The gain from the combined
approaches is 0.96 BLEU.

7. Conclusion

In this work, we proposed a new approach to the transla-
tion rule extraction. We introduced algorithms for efficient
bilingual parsing, estimating rule probabilities, and finally,
we presented a novel method for synthesizing new rules from
the most confident rules within the parse forest. The method
does not use bilingual alignments for learning new rules, and
is complementary to heuristic alignment-based approaches.

We discussed possible reasons why the new method of
learning rules may outperform the baseline method of rule
extraction, especially for a language pair with a different
word order, such as German and English.

We also showed on experiments that each of the two
methods significantly improves the baseline. The improve-
ment is additive, if the two methods are combined.
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1 ...
umX1 in orderX1

natuerlichX1 of courseX1

deshalbX1 this is whyX1

X1 zu koennen toX1

X1 ist it is X1

nach der tagesordnung folgt dieX1 the next item is theX1

herrX1 herr kommissarX2 mr X1 commissionerX2

dieX1 derX2 X1 theX2

im gegenteilX1 on the contraryX1

nach der tagesordnung folgtX1 the next item isX1

X1 dieX2 theX1 theX2

dieX1 die theX1

ausserdemX1 in additionX1

daherX1 that is whyX1

wir X1 nichtX2 weX1 notX2

dieX1 derX2 theX2 X1

deshalbX1 for this reasonX1

umX1 zuX2 to X2 X1

X1 nichtX2 werden X1 not beX2

... 50001
nach der tagesordnung folgt dieX1 ueber the next item isX1 on

dasX1 X1 that for
wird X1 zurX2 X1 to X2

das parlament nimmt den entwurf einer legislativen parliament adopted the draft legislative
sehr it is very

X1 und herren abgeordnetenX2 X1 and gentlemenX2

ich habe nichtX1 i do not haveX1

esX1 thereX1 the
dieX1 von lissabon the lisbonX1

X1 dabei in thisX1

frau kommissarinX1 moechteX2 commissionerX1 would like toX2

... 99991
X1 genehmigt X1 approved the

X1 koennen nicht X1 cannot have
diese for them
auch also needs

dass sich believe
vorgeschlagen have proposed

sieX1 ein youX1

es ist they are
diese vorschlaege gestimmt voted in favour of these proposals

X1 rechnungshof X1 auditors

Table 3: Sample rules proposed from BCP and EM.

We understand that the results presented here must be
verified in other follow-up experiments, and on more lan-
guage pairs.
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