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Abstract
In this paper, we describe the machine translation system
developed at the Polytechnic University of Valencia, which
was used in our participation in the International Workshop
on Spoken Language Translation (IWSLT) 2009. We have
taken part only in the Chinese-English BTEC Task. In the
evaluation campaign, we focused on the use of our hybrid
translation system over the provided corpus and less effort
was devoted to the use of pre- and post-processing techniques
that could have improved the results.

Our decoder is a hybrid machine translation system that
combines phrase-based models together with syntax-based
translation models. The syntactic formalism that underlies
the whole decoding process is a Chomsky Normal Form
Stochastic Inversion Transduction Grammar (SITG) with
phrasal productions and a log-linear combination of proba-
bility models. The decoding algorithm is a CYK-like algo-
rithm that combines the translated phrases inversely or di-
rectly in order to get a complete translation of the input sen-
tence.

1. Introduction
The Phrase-based Machine Translation (PBT) approach has
been demonstrated to be one of the best approaches in
translation of similarly structured language pairs (Spanish-
English, French-Italian...) [1]. The main advantages of PBT
systems are that the phrase pairs can be extracted easily from
a word alignment and the process of decoding is usually fast
and easy. In addition, phrase models usually have high sen-
tence coverage.

One of the weaknesses of the phrase-based models is the
problems they have incorporating syntactic information in
the translation. For instance, most English sentences con-
tain a subject and a verb, but there is no way of including
this information in a traditional phrase-based system. Syn-
tactic motivated reorderings are also very difficult to include
in phrase-based systems.

Another common approach within the field of SMT is the
so called Syntax-based Machine Translation (SBT). This ap-
proach is characterized by the use of syntactic information in
the process of MT. For pairs of languages with a high number
of reorderings (Spanish-German, Chinese-English...) SBT

seems to be a very interesting solution. The strength of SBT
systems is that outputs tend to be syntactically well formed
and the reordering can be influenced by syntactic context [2].
However, SBT systems usually have poor sentence coverage.

Hierarchical MT systems [3] combine phrases (with
gaps) for translation and a syntax-based decoding algorithm.
Some of them even use linguistically motivated information
[4]. The result of this combination is a very large set of rules
(parameters) that, in most cases, must be pruned for practi-
cal issues. The number of rules produced by a hierarchical
translation system is very high, which makes the training and
decoding processes slow.

For these reasons, we present a decoding system that also
uses phrases for translation and a syntax-based decoding,
but has easier and faster algorithms for training and decod-
ing. The syntactic formalism that underlies the whole decod-
ing process is a Chomsky Normal Form Stochastic Inversion
Transduction Grammar (SITG) with phrasal productions and
a log-linear combination of probability models instead of a
single probability.

The rest of the paper is structured as follows: Section 2
presents the theoretical framework that underlies the whole
translation process. Section 3 explains the translation algo-
rithm followed by the decoder, and Section 4 gives some de-
tails of the process. Section 5 shows the training algorithms
used to obtain the phrasal ITG. Section 6 present the experi-
ments carried out, and, finally, Section 7 presents the conclu-
sions of the paper.

2. Theoretical framework
Inversion Transduction Grammars (ITG) [5] are a special
kind of Synchronous Grammar whose parse algorithms have
polynomial complexity. This fact leads us to the use of ITG
as the main model for the translation process. An ITG is a
tuple (N ,Σ,∆, S,R) where N is the set of non-terminals,
S ∈ N is the root non-terminal, Σ is the input alphabet, ∆
is the output alphabet, and R is a set of rules. Rules can be
divided into two sets: syntactic rules and lexical rules. Syn-
tactic Rules have the form A→ [BC] or A→ 〈BC〉, where
A, B, and C are non-terminals. The brackets that enclose
the right part of the rule mean that the two non-terminals
are expanded in the same order in the input and output lan-
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guages, whereas the rules with pointed bracketing expand the
left symbol into the right symbols in direct order in the input
language and in reverse order in the output language. Lexi-
cal rules have the form A → x/y where x ∈ {Σ ∪ ε} and
y ∈ {∆ ∪ ε}. It must be noted that x or y can be the empty
string, denoted by ε, but not both in the same production.

There are two major problems with the use of ITG:

1. As stated by Wu, ITGs cannot represent all possible
permutations of words that may occur during trans-
lation. However, in [6], the authors state that only a
small percentage of human translations cannot be rep-
resented by an ITG transduction .

2. Grammars of this kind do not take into account direct
multi-word (or phrasal) transduction. An ITG gets the
transduction of a segment of words only by combining
the transductions of its constituents.

In order to at least partially overcome such problems, we
present a phrasal extension of ITG: the so-called Phrasal ITG
(PhITG). PhITG has already been used in the literature [7].
PhITGs are very similar to ITG; the only difference is that the
lexical rules can produce strings directly instead of a single
word in each of the languages. This changes the definition
of lexical rules. A lexical rule now has the form A → x/y
with x ∈ (Σ)∗ and y ∈ (∆)∗. One side of the lexical produc-
tion (x or y) can be the empty string, but not both. Figure 1
shows two different PhITG-parsings for a given pair of sen-
tences in English and Spanish. In part b) the non-terminal
NP produces a phrase translation.

Figure 1: Two different Phrasal ITG parsings for a pair of
sentences English-Spanish.

Formally, for any bilingual strings u = (us/ut), v =
(vs/vt), where us, vs ∈ (N ∪ Σ)∗ are the source part,
and ut, vt ∈ (N ∪ ∆)∗ are the target part, we say that u
directly yields v, written as u ⇒ v if there exists a rule
(α → βs/βt) in R such that u = (us1αu

s
2/u

t
1αu

t
2) and

v = (vs1β
svs2/v

t
1β

tvt2). We write u r=⇒ v, when the appli-
cation of the rule r = α→ βs/βt produces v from u.

In order to get a unified framework, we always substi-
tute the most left non-terminal. For any u, v, u ⇒∗ v,
we say that u yields v, if there exist r1, r2, . . . rk such that
u

r1=⇒ u1
r2=⇒ u2

r3=⇒ . . .
rk=⇒ v. Each of the ordered sets of

rules {r1, r2, . . . rk} that is used to produce v from u is called

derivation from u to v. If u yields v following the derivation
D, we express it as u D=⇒ v. We say that a non-terminal A
yields a bitext x/y when A ∗=⇒ x/y. The bilingual language
generated by the PhITG is the set of bilingual sentences x/y
such that S ∗=⇒ x/y.

In a way similar to the way that Stochastic ITGs assign
a probability to each of the rules, we can assign a loglin-
ear combination of probability models [8] to the rules of a
PhITG. The models used are:

Direct Translation Probability: Probability of the target
sentence given the source sentence: h1 = Pr(t|s)

Inverse Translation Probability: Probability of the source
sentence given the target sentence: h2 = Pr(s|t)

Lexical Direct Probability: Probability of translation of
the source sentence words into the target sentence
words using an IBM1 translation model: h3 =
PrIBM (t|s)

Lexical Inverse Probability: Probability of translation of
the target sentence words into the source sentence
words using an IBM1 translation model: h4 =
PrL(s|t)

N-gram Language Model: Probability of the target sen-
tence using a n-gram language model: h5 = PrLM (t)

Syntactic Probability: Probability of the rules of the
derivation: h6 = PrR(D).

Word Penalty Factor: This feature is used to model the
length of the output: h7 = exp(|t|), with |t| being
the number of words of the target sentence.

Phrase Penalty Factor: This feature is used to control the
number of phrases used in the translation.

The probability of a derivation D is, then:

Pr(D) ∝
∏
i

hi(D)λi (1)

where hi(D) is the set of features over derivations described
above and λi are feature weights. Note that from the deriva-
tion D we can get the source language and the target lan-
guage strings, s and t respectively.

Apart from the n-gram language model probability of
the target language (PrLM (t)), all the other models can be
computed as the products of functions on the rules used in a
derivation. Then,

hi(D) =
∏

(X→(γ,α))∈D

hi(X → (γ, α)) (2)

If we do not use the language model score, a CYK-like
algorithm can be used to obtain the best or the n-best deriva-
tions. However, the addition of the n-gram language model
is problematic. This problem will be discussed in Section 4.

- 119 -

Proceedings of IWSLT 2009, Tokyo - Japan



3. Translation algorithm
This section describes the basic algorithm for obtaining the
target language sentence t that maximizes the probability
of translation using the translation model described in Sec-
tion 2. Suppose that the n-gram language model is not used.
Now imagine that we know the source sentence s and we
need to know the string in the target language that maximizes
the probability of translation. Let sji be the phrase that con-
tains the source sentence words from position i to j. Then,
we define

δij(A) = max
t

Pr(A ∗=⇒ sji/t) (3)

as the maximum probability of any parse tree that yields the
bilingual string sji/t from the non-terminal symbol A, where
t is any target language sentence.

The recursive algorithm shown in Figure 2 can be used in
order to compute δij(S).

For all A ∈ N and
i, j such that

{
0 ≤ i < j ≤ |s|,
j − i ≥ 1, (4)

δij(A) = max(δ[]ij(A), δ〈〉ij (A),max
t

Pr(A→ sji/t)) (5)

where

δ
[ ]
ij (A) =



max
B,C∈N

i<I≤j

Pr(A→ [BC])δiI(B)δIj(C)

if j − i > 1

0 otherwise

(6)

δ
〈〉
ij (A) =



max
B,C∈N

i<I≤j

Pr(A→ 〈BC〉)δiI(B)δIj(C)

if j − i > 1

0 otherwise

(7)

Figure 2: Algorithm for computing the maximum probability
of all the derivations that yield the sentence pair s/t from the
non-terminal symbol A, given s.

Now we define

τij(A) = argmax
t

(Pr(A⇒∗ sji/t)) (8)

as the target language phrase t that maximizes the probability
of derivation from the non-terminal symbol A to the bilin-
gual string (sji/t). We can obtain τij(A) by means of the
algorithm shown in Figure 3. Thus, a new translation hy-
pothesis can be created through three different processes: a

τij(A) =



t if Pr(A→ sji/t)
is the maximum in (5)

τiI(B)τIj(C)
if Pr(A→ [BC])δiI(B)δIj(C)
is the maximum in (5)

τIj(C)τiI(B)
if Pr(A→ 〈BC〉)δiI(B)δIj(C)
is the maximum in (5)

(9)

Figure 3: Algorithm for obtaining the target sentence that
maximizes the probability over all the derivations given the
source sentence s.

new phrase pair that covers the whole source part, and the
inverse or direct combination of two hypotheses previously
computed. Since we are using a context-free-like model, the
use of these search algorithms guarantees finding the most
likely translation. A simple CYK-like bottom-up algorithm
can be used to compute it.

4. Decoding details
In this section, we give some details of the decoding process,
such as the inclusion of the n-gram language model and some
optimization strategies.

The use of n-gram language models has been demon-
strated to be very useful for PBT systems. However, in con-
trast to the other models, the n-gram language model proba-
bility of a derivation cannot be computed as a product of the
language model probabilities of the rules used in the deriva-
tion (it depends on the context). The most likely translation
of a sentence may use partial hypotheses that were not the
most likely in their respective cells of the CYK chart. Hence,
when including the n-gram language model, the optimality
of the CYK algorithm is no longer guaranteed and using it is
not enough to obtain the most likely translation.

In order to partially alleviate these problems, we need to
use a translation hypotheses stack (from now on referred to as
Agenda) in each cell of the CYK-like chart instead of a sin-
gle hypothesis. The hypotheses of two Agendas can be com-
bined directly or inversely, and the n-gram language model
score of the new resulting hypotheses must be recomputed.
Figure 4 shows an example of the combination of two differ-
ent Agendas. First the decoder uses the direct combination
by means of the rule SN → [ADJ NN], its language model
is recomputed and the new hypotheses enter in the Agenda.
The same happens with the inverse combination with the rule
SN→ 〈ADJ NN〉.

This algorithm could be used to exhaustively search
through the whole space of hypotheses. However, for big
corpora and long sentences, some kind of restriction over the
search space must be applied. When two hypotheses in an
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Figure 4: Inverse and direct combination of two hypotheses.

Agenda have the same target language part, the less likely
hypothesis can be discarded without the risk of losing the
optimality. We call this process hypotheses recombination.

The risk-free hypotheses recombination is usually not
enough. Hence, we also use two kinds of pruning that can
make the decoder lose the most likely translation:

1. Histogram Pruning: Only the nmost likely hypotheses
are stored in each agenda.

2. Beam Pruning: We only store a hypothesis in an
agenda if its probability is greater than γ · Pr(h∗),
where h∗ is the hypothesis with the highest probability
and γ is a real number between 0 and 1.

Both pruning strategies are parameterizable, so there is a
choice between a slow but precise search or a fast and more
inaccurate one.

5. Training the system
In this section, we describe the process of obtaining a
SPhITG from a corpus. In order to obtain an easy process,
to avoid the sparseness of the parameters, and to make the
use of phrasal tables from PBT systems possible, we make a
simplification assumption: we assume that the probability of
all the phrasal rules with more than one word on the source
language side is the same for all the non-terminal symbols,

that is:

Pr(A→ xji/y
l
k) = Pr(xji/y

l
k) when j − i > 1 (10)

This assumption makes it possible to split the training pro-
cess into two parts:

• Training the phrase table that models the phrasal pro-
ductions.

• Training the SITG that models the syntactic and single
word productions.

The first part is the same as the training process of a PBT
system. We followed the first method explained in [9].

In order to get a SITG, we used the following method:

1. Create an initial SITG: We assigned the probability of
alignment of the words of the corpus Pr(s|t) (IBM
models) to the lexical rules of the form A → s/t.
Then, we created all the possible syntactic rules (direct
and inverse) using all the non-terminal symbols and as-
signing a low random probability to them. The gram-
mar was smoothed by adding all the possible rules of
the form A → s/ε and A → ε/t with a low probabil-
ity.

2. Reestimation: With the initial SITG, we applied sev-
eral iterations of the Viterbi reestimation algorithm.
Hence, we parsed the corpus to get the most likely
parse tree for each pair of sentences of the corpus.
Then we reestimated the probabilities of the produc-
tions of the SITG by counting and normalizing the oc-
currences of the rules in all the trees.

3. Assign linguistic information to the non-terminal sym-
bols: We parsed the source part of the corpus with a
linguistic language parser. Then we used the SITG
obtained in step 2 to parse the bilingual corpus. Fi-
nally, we associated the non-terminals of the linguistic
parse trees with the non-terminals of the SITG trees
and reestimated the new probabilities of the rules by
counting and normalizing.

6. Experiments
In this section, we describe the experiments carried out on
the corpus provided. All the results were computed over the
lowercased and tokenized corpus. The phrase tables were
extracted using the training method of Moses software[10]
and the alignments for the initial SITG were computed using
GIZA++ [11]. The weights of the log-linear combination of
models were computed using the Minimum Error Rate train-
ing software ZMERT [12]. The linguistic parse trees for the
SITG training were computed using the Chinese part of the
Stanford Parser [13]. All the configurations in these experi-
ments used a 5-gram language model obtained from the cor-
pus with the software SRILM [14].
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6.1. Data

The experiments described in this section were carried out
using the training and development sets provided for the
Chinese-English BTEC task of the IWSLT evaluation cam-
paign. There were 5 different development sets (devsets 1,
2, 3, 6, and 7). We added devsets 1, 2 and 3 to the training
set, devset6 was used for tuning the system, and devset7 was
used as a blind test set. The statistics of the resulting train-
ing, development and test sets are shown in Table 1. Since
the development set is a multi-reference file, the number on
the English side of the table is, in fact, the number of words
divided by the number of references.

Chinese English
Sentences 42,655

Training Words 330,163 380,431
Vocabulary Size 8,773 8,387
Sentences 489

DevSet Words 3,169 3,861
OOV Words 111 115
Sentences 507

Test Words 3,357 -
OOV Words 97 -

Table 1: Statistics for the partitions of the BTEC corpus used.

6.2. Results

For the baseline, we used a PBT system with the same phrase
table as our hybrid system. Three different configurations for
the hybrid decoder were tested:

Configuration 1: The SITG used is the initial one.

Configuration 2: We reestimate the SITG using the Viterbi
reestimation algorithm.

Configuration 3: Reestimated SITG with linguistic non-
terminal symbols.

The results presented were evaluated with respect to the
BLEU machine translation evaluation metric [15]. The re-
sults obtained using the partitions described above are re-
ported in Table 2. These results were obtained after tokeniz-
ing and lowercasing the corpus. The SITG of Configuration
1 did not provide important syntactic information to the sys-
tem, so the decoding process was almost completely driven
by the phrase table and the language model. For that reason,
the results of the PBT and the Configuration 1 were quite
similar. The reestimation of the SITG and the association of
linguistic meaning to the non-terminal symbols significantly
improved the performance of the system (an improvement of
1.73 points in the %BLEU score).

Figure 5 shows the comparison between the output of the
PBT decoder, the output of the hybrid decoder, and one of

System %BLEU
Baseline (PBT) 41.1

Hybrid Decoder (Conf. 1) 41.23
Hybrid Decoder (Conf. 2) 41.79
Hybrid Decoder (Conf. 3) 42.85

Table 2: Results of the experimentation in %BLEU score.

the references. In the first sentence, it can be seen how the
hybrid system output is syntactically better formed than the
PBT output sentence. The reordering of PBT systems is usu-
ally guided by the language model and sometimes by lexical
reordering tables. This information is sometimes not enough.
This fact can be seen in the second sentence. The PBT sys-
tem changed the order of the numbers, while the hybrid sys-
tem learned that numbers should not be inverted. The rules
of the SITG involved in this reordering and their probabili-
ties are shown in Figure 6. Note that the probability for direct
combination is higher than for inverse combination in these
rules.

Pr(QP→ [CD CD]) = 0.147
Pr(QP→ 〈CD CD〉) = 0.046
Pr(QP→ [CD QP]) = 0.284
Pr(QP→ 〈QP CD〉) = 0.061

Figure 6: Rules involved in the reordering of numbers.
QP and CN are non-terminal symbols that mean quantified
phrase and cardinal number, respectively.

Thus, we used Configuration 3 to translate the test of the
evaluation campaign. The official results, in %BLEU, TER,
and NIST scores are shown in Table 3.

System %BLEU TER NIST
case+punc 35.29 41.86 6.04

no case+no punc 35.15 46.96 6.19

Table 3: Official results in %BLEU, TER and NIST scores for
the Chinese-English BTEC task with the evaluation specifi-
cations case+punc and no case+no punc.

7. Conclusions

This paper describes the hybrid translation system presented
by the Polytechnic University of Valencia for the IWSLT
2009 evaluation campaign. The hybrid decoder uses phrase
tables together with SITGs for the translation. The results
show that the use of syntactic information improves the per-
formance of the system. When the system does not use syn-
tactic information, its performance is similar to the PBT sys-
tem results.
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PBT translation this one and what ’s the difference between ?
Hybrid translation what ’s the difference between this with that ?

Reference how is this one different from that one ?
PBT translation please wait a moment . call mr. is three four one four five six seven .

Hybrid translation please wait a moment . call mr. is three six four five seven four one .
Reference just a moment , please . the number for s nicholas is three six four five seven four one .

PBT translation can i go to the front row ?
Hybrid translation is it okay to the front row ?

Reference can i go up to the front ?

Figure 5: Comparison of reference, PBT and Hybrid translation outputs for several sentences.
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