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Abstract
This paper describes the ICT Statistical Machine Translation
systems that used in the evaluation campaign of the Interna-
tional Workshop on Spoken Language Translation (IWSLT)
2009. For this year’s evaluation, we participated in the
Challenge Task (Chinese-English and English-Chinese) and
BTEC Task (Chinese-English). And we mainly focus on one
new method to improve single system’s translation quality.
Specifically, we developed a sentence-similarity based devel-
opment set selection technique. For each task, we finally sub-
mitted the single system who got the maximum BLEU scores
on the selected development set. The four single translation
systems are based on different techniques: a linguistically
syntax-based system, two formally syntax-based systems and
a phrase-based system. Typically, we didn’t use any rescor-
ing or system combination techniques in this year’s evalua-
tion.

1. Introduction
This paper describes the statistical machine translation
systems of Institute of Computing Technology, Chinese
Academy of Sciences(ICT-CAS) for the evaluation campaign
of the International Workshop on Spoken Language Transla-
tion (IWSLT) 2009.

For this year’s evaluation, our group participated in three
tasks:

1. BTEC task, Chinese-English direction;

2. Challenge task, Chinese-English direction;

3. Challenge task, English-Chinese direction.

For each task of IWSLT 2009, the final submition is one
of the four single systems who achieved a maximum BLEU
score on development set. The four different systems are
listed below:

1. Silenus, a linguistically syntax-based system that con-
verts source-forest into target-string with tree-to-string
rules acquired from packed forests;

2. Bruin, a formally syntax-based system that imple-
ments a maximum entropy based reordering model on
BTG rules;

3. Chiero, a formally syntax-based system that employs
hierarchical phrases;

4. Moses, a phrase-based open source system 1.

This paper is organized as follows: Section 2 gives an
overview of our four SMT systems, Section 3 describes data
preparation. In Section 4, we will report the experiments and
results. Finally, Section 5 gives conclusions.

2. Single Systems Overview
2.1. Silenus

Silenus [1, 2] is a linguistically syntax-based SMT system,
which employs packed forests in both training and decod-
ing rather than single-best trees used in conventional tree-to-
string model [3, 4].

Informally, a packed parse forest, or forest in short, is
a compact representation of all the derivations (i.e., parse
trees) for a given sentence under a context-free grammar [5].
Silenus searches for the best derivation (a sequence of tree-
to-string rules) d∗ that converts a source tree T in the forest
into a target string s among all possible derivations D::

d∗ = arg max
d∈D

P (d|T ) (1)

We extract rules from word-aligned bilingual corpus with
source forests F (Figure 1 (a)) in two steps:

(1) frontier set computation (where to cut), and

(2) fragmentation (how to cut).

Basically, we compute the frontier set according to
GHKM [6] algorithm. We highlight the nodes in frontier set
by gray shades in Figure 1(a).

1http://www.statmt.org./moses/
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Figure 1: Forest-based Rule Extraction and Translation

The fragmentation step is formalized by a breadth-first
search (BFS) algorithm. The basic idea is to visit each fron-
tier node v, and keep a queue open of growing fragments
rooted at v. We keep expanding incomplete fragments from
open , and extract a rule if a complete fragment is found .
Each fragment in open is associated with a list of expan-
sion sites (exps being the subset of leaf nodes of the current
fragment that are not in the frontier set (recall that expansion
stops at frontier-set nodes). So each initial fragment along
hyperedge h is associated with

exps = tails(h) \ fs.

A fragment is complete if its expansion sites is empty, oth-
erwise we pop one expansion node v′ to grow and spin-off
new fragments by following hyperedges of v′, adding new
expansion sites, until all active fragments are complete and
open queue is empty.

Five probabilities will be computed for each rule r, where
lhs(r) denotes the left-hand-side of r, and rhs(r) denotes
the right-hand-side of r, while the root(lhs(r) denotes the
root node of the tree-fragment lhs(r).

P (f(r|lhs(r)) =
f(r)∑

lhs(r′)=lhs(r) f(r′)
(2)

P (f(r|rhs(r))) =
f(r)∑

rhs(r′)=rhs(r) f(r′)
(3)

P (lex(lhs(r)|rhs(r))) (4)

P (lex(rhs(r)|lhs(r))) (5)

P (f(r|root(lhs(r))))

=
f(r)∑

root(lhs(r′))=root(lhs(r)) f(r′)
(6)

When computing the lexical translation probabilities de-
scribed in [7], we only take the terminals into account. If
there are no terminals, we set the feature value to 1.

At the decoding time, we first parse the input sentences
into forests. and then we convert the parse forest into a
translation forest(Figure 1(b)) by pattern-matching. Finally,
Silenus searches for the best derivation on the translation for-
est and outputs the target string.

Beside the features we computed in rule extraction proce-
dure, the additional features used in decoding step are listed
here:

• The number of rules in the derivation;

• The number of words in the target translation;

• The language model score for the target translation;

• The source side parsing probability of the tree tra-
versed by the deviation.

The decoder performs two tasks on the translation forest:
1-best search with integrated language model (LM), and k-
best search with LM to be used in minimum error rate train-
ing. Both tasks can be done efficiently by forest-based algo-
rithms based on k-best parsing [8].

For 1-best search, we use the cube pruning technique [9,
10] which approximately intersects the translation forest with
the LM. Basically, cube pruning works bottom up in a forest,
keeping at most k +LM items at each node, and uses the best-
first expansion idea from the Algorithm 2 of [8] to speed up
the computation.

For k-best search after getting 1-best derivation, we use
the lazy Algorithm 3 of [8] that works backwards from
the root node, incrementally computing the second, third,
through the kth best alternatives. However, this time we
work on a finer-grained forest, called translation+LM for-
est, resulting from the intersection of the translation forest
and the LM, with its nodes being the +LM items during cube
pruning. Although this new forest is prohibitively large, Al-
gorithm 3 is very efficient with minimal overhead on top of
1-best.

For more details, please refer to [1] and [2].
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2.2. Bruin

Bruin is a formally syntax-based SMT system, which im-
plements the maximum entropy based reordering model on
BTG [11] rules. This model considers the reorder as a prob-
lem of classification, where the Maximum Entropy model is
introduced.

To complete the decoding procedure, three BTG rules are
used to derive the translation:

A
[ ]→ (A1, A2) (7)

A
〈 〉→ (A1, A2) (8)

A → (x, y) (9)

The lexical rule (3) is used to translate source phrase y
into target phrase x and generate a block A. The merging
rules (1) and (2) are used to merge two consecutive blocks
into a single larger block in the straight or inverted order.

Three essential elements must be illustrated in Bruin.
The first one is a stochastic BTG, whose rules are weighted
using different features in the log-linear form. The second
is a MaxEnt-based reordering model predicting the orders
between neighbor blocks, whose features are automatically
learned from bilingual training data. The last one is a CKY-
style chart-based decoder with beam search which is similar
to that of Wu [11].

To construct a stochastic BTG, we calculate rule proba-
bilities by the log-linear model. For the two merging rules
straight and inverted, applying them on two consecutive
blocks A1 and A2 is assigned a probability Prm(A)

Prm(A) = ΩλΩ · 4λLM

pLM (A1,A2) (10)

where the Ω is the reordering score of block A1 and A2,
which is calculated by the MaxEnt-based reordering model,
λΩ is its weight. The 4pLM (A1,A2) is the increment of the
language model score of the two blocks according to their
final order, λLM is its weight.

For the lexical rule, applying it is assigned a probability
Prl(A):

Prl(A) = p(x|y)λ1 · p(y|x)λ2 · plex(x|y)λ3

·plex(y|x)λ4 · exp(1)λ5 · exp(|x|)λ6

·pλLM

LM (x) (11)

where p(·) are the phrase translation probabilities in both
directions, plex(·) are the lexical translation probabilities
in both directions, and exp(1) and exp(|x|) are the phrase
penalty and word penalty, respectively.

The feature weights λs are tuned to maximize the BLEU
score on the development set, using minimum-error-rate
training [12].

The MaxEnt-based Reordering Model (MRM) is defined
on the two consecutive blocks A1 and A2 together with their

order o ∈ {straight, inverted} according to the maximum
entropy framework.

Ω = pθ(o|A1, A2) =
exp(

∑
i θihi(o,A1, A2))∑

o exp(
∑

i θihi(o,A1, A2))
(12)

where the functions hi ∈ {0, 1} are model features and the
θi are the weights.

The decoder is built upon the CKY chart-based algo-
rithm. We use cube pruning technology to speed up the de-
coding.

For more details, please refer to [13].

2.3. Chiero

Chiero is a re-implementation of the state-of-the-art hierar-
chical phrase-based model [9].

This model can be formalized as a synchronous context-
free grammar, which is automatically acquired from word-
aligned parallel data without any syntactic information.

X →< γ, α,∼> (13)

Where X is a non-terminal, γ, α are strings of terminals
and non-terminals, and ∼ is one-to-one correspondence be-
tween the non-terminal in γ, α.

Our work faithfully followed Chiang’s [9] work. The
only exception is the condition for terminating cube prun-
ing. Chiang’s [9] implementation quits upon considering the
next item if its score falls outside the beam by more than ε.
However we found that a large number of items will often be
enumerated under this condition in our experiments. So we
further limit the number of items popped from the heap.

Additionally, we also have conducted different experi-
ments on two kinds of k-best lists: the true or counterfeit k-
best lists. For the former method, each hypothesis must store
the information of recombination items when we search for
the single-best translation. Then we use the best-first expan-
sion idea from the Algorithm 2 of Liang Huang[8] to gen-
erate the k-best lists. By contrast, for the latter method, we
just discard the recombination items at single-best searching
time. Experimental results show that the true k-best lists can
get better results even with a less beam size than the coun-
terfeit ones. The main reason may lie in the stable feature
weights tuned on the true k-best lists.

2.4. Moses

Moses is a phrase-based model. It is an open source system 2

and uses beam-search to reduce the searching space. We will
use the default settings for this model in this year’s evalua-
tion.

3. Data Preparation
For this year’s evaluation, we only use the data provided
by the organizer. We first used the Chinese lexical anal-

2http://www.statmt.org./moses/
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ysis system ICTCLAS for splitting Chinese characters into
words and a rule-based tokenizer for tokenizing English sen-
tences. Then,we convert all alphanumeric characters to their
2-byte representation. Finally, we ran GIZA++ and used
the“grow-diagfinal” heuristic to get many-to-many word
alignments.

We used the SRI Language Modeling Toolkit [14] to train
the Chinese/English 5-gram language model with Kneser-
Ney smoothing on the Chinese/English side of the training
corpus respectively.

Regarding to Silenus, we used the Chinese parser of [15]
and English parser of [16] to parse the source and target
side of the bilingual corpus into packed forests respectively.
Then we pruned the forests with the marginal probability-
based inside-outside algorithm [17] with a pruning threshold
pe = 3. At the decoding time, we use a large pruning thresh-
old pd = 12 to generate the packed forest.

3.1. Development Set Selection

Our development set for this year’s evaluation is selected au-
tomatically from all the development sentences according to
the n-gram similarity, which is calculated against the current
test set sentences.

Our method works as follows: First, we gather every n-
gram(up to 10) in the test set into a map W . and assign a
score Sw for each n-gram w in W , which is calculated as

Sw(w) = n · count(w) (14)

where count(w) is the number of occurrence of w in test
set. Then, we assign a sentence score Ss to each candidate
sentence s in development set, which is calculated as:

Ss(s) =
∑

w∈W Sw(w) · counts(w)
length(s)

(15)

where the counts(w) is the number of occurrence of w in s,
and the length(s) is the number of words in s. Finally, we
choose the top k sentences with different thresholds as our
new development set.

4. Experiments
4.1. Results on IWSLT08

We first test our development set selection method on the test
set of IWSLT08. The running single system in this section is
Chiero. The thresholds are integers from 1 to 5.

The final results are shown on Figure2. The bottom
line is the BLEU scores when we tune feature weights on
IWSLT07, while the top line is the performances when we
tune weights on test set of IWSLT08. Then the results of our
dev selection method are shown on the middle line, whose
points are associated with the sentence numbers in each dev
set. So we can conclude that our selection method improves
the performance of our single system.
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Figure 2: The BLEU scores and sentence # of dev selection
with different thresholds.

4.2. Results on IWSLT09

Table 1 gives the BLEU scores (case-insensitive, with punc-
tuations) of our four single systems achieved on the dev sets
we selected, where“BTEC CE” denotes Chinese-English
direction of BTEC task, “CT CE” denotes Chinese-
English direction of challenge task, and“CT EC” denotes
English-Chinese direction of challenge task.

For each task of this year’s evaluation, the final primary
system is the system, who achieves the MAX BLEU score
on dev set. So we chose Moses for BTEC CE task, Chiero
for CT CE task and Silenus for CT EC task accordingly.

Table 1: The BLEU scores of four single systems on dev set.

System \ Task BTEC CE CT CE CT EC
Bruin 0.4204 0.3521 0.4623
Chiero 0.4359 0.3732 0.4369
Moses 0.4683 0.3645 0.4734
Silenus 0.4489 0.3649 0.4775

The final BLEU scores (case-sensitive, with punctua-
tions) of each primary system on test set are shown in Ta-
bler̃eftb:test, where“CRR” denotes correct recognition re-
sults and “ASR.20” denotes using 20-best ASR results.
When we run decoders on 20-best results, we simply decode
them one by one and then output the result with highest score.

From Table 2, although Silenus achieves an higher BLEU
score of 0.3886 and wins the third place on CT EC CRR task,
the correspondent score on ASR.20 task is very low, which
is only 0.2901. The main reason lies in the different pars-
ing quality on two set. With too much noise in ASR results,
the parser failed to generate good forest, which will hurt the
performance inevitably. The other reason maybe that we use
too much ASR results (20-best) without using any rescor-
ing technic. The simple way of choosing the highest among
all translation results of 20-best results may lower the output
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Table 2: The BLEU scores of each primary single system on
test set.

Task Input System BLEU
BTEC CRR Moses 0.3563

CT CE CRR Chiero 0.3078
ASR.20 0.2859

CT EC CRR Silenus 0.3886
ASR.20 0.2901

quality. Another thing we can conclude is that our Silenus
perform better on English-Chinese direction than Chinese-
English mainly due to the higher parsing quality on English.

5. Conclusions
In this paper, we describes the ICT statistical machine trans-
lation systems for the evaluation campaign of IWSLT 2009.
We first used a selection method to construct a development
set for each task. Then we run all the single systems on
each dev set. Finally, we choose the system with maximum
BLEU score as our primary system for each task. Since we
didn’t use any rescoring or system combination techniques
for the final submitions, we got a relatively lower rank. We
also concluded that our linguistically syntax-based system
performs better on English-Chinese direction than Chinese-
English due to the higher parsing quality on English.
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