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Abstract

This paper describes the MIT-LL/AFRL statistical MT
system and the improvements that were developed during the
IWSLT 2009 evaluation campaign. As part of these efforts,
we experimented with a number of extensions to the standard
phrase-based model that improve performance on the Arabic
and Turkish to English translation tasks.

We discuss the architecture of the MIT-LL/AFRL MT
system, improvements over our 2008 system, and experi-
ments we ran during the IWSLT-2009 evaluation. Specif-
ically, we focus on 1) Cross-domain translation using MAP
adaptation and unsupervised training, 2) Turkish morpholog-
ical processing and translation, 3) improved Arabic morphol-
ogy for MT preprocessing, and 4) system combination meth-
ods for machine translation.

1. Introduction
During the evaluation campaign for the 2009 International
Workshop on Spoken Language Translation (IWSLT-2009)
our experimental efforts centered on 1) improved statistical
modeling for phrase-based MT, specifically, better modeling
for sparse data, and 2) experiments with system combination.

In this paper we describe improvements over our 2008
baseline systems and methods we used to combine outputs
from multiple systems. For a more full description of the
2008 baseline system, refer to [1].

The remainder of this paper is structured as follows. In
section 2, we present an overview of our baseline system and
the minor improvements to this standard statistical MT ar-
chitecture that we incorporate. In sections 3, 4, 5, 6 and 7
we describe experiments for cross-domain adaptation, bet-
ter Turkish and Arabic morphological processing, improved
handling of speech input and our implementation of MT sys-
tem combination. Section 8 describes the systems we sub-
mitted for this year’s evaluation and their results.

†This work is sponsored by the Air Force Research Laboratory under
Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

1.1. IWSLT-2009 Data Usage

We submitted systems for Turkish-to-English and Arabic-to-
English language pairs. In each case, we used data supplied
by the evaluation for each language pair for training and op-
timization.

For cross-domain adaptation experiments we trained ini-
tial models using the ISI Arabic-English Automatically Ex-
tracted Parallel Corpus [3]. The IWSLT training data was
used to adapt these initial models to the IWSLT domain. As
these models make use of non-IWSLT data, they were not
submitted for official evaluation.

We employ a minimum error rate training process to op-
timize model parameters with a held-out development set.
The resulting models and optimization parameters can then
be applied to test data during decoding and rescoring phases
of the translation process.

2. Baseline System

Our baseline system implements a fairly standard SMT archi-
tecture allowing for training of a variety of word alignment
types and rescoring models. It has been applied successfully
to a number of different translation tasks in prior work, in-
cluding prior IWSLT evaluations. The training/decoding pro-
cedure for our system is outlined in Table 1. Details of the
training procedure are described in [4].

2.1. Phrase Table Training

To maximize phrase table coverage, we combine multiple
word alignment strategies, extending the method described
in [5]. For all language pairs, we combine alignments from
IBM model 5 (see [8] and [9]) with alignments extracted us-
ing the competitive linking algorithm (CLA) described in [6]
and the Berkeley Aligner [7]. Phrases were extracted from
both types of alignments and combined in one phrase table.
This was done by summing counts of phrases extracted from
alignment types before computing the relative frequencies
used in the our phrase tables.
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Training Process
1. Segment training corpus
2. Compute GIZA++, Berkeley and Competitive Linking

Alignments (CLA) for segmented data [5] [6] [7]
3. Extract phrases for all variants of the training corpus
4. Split word-segmented phrases into characters
5. Combine phrase counts and normalize
6. Train language models from the training corpus
7. Train TrueCase models
8. Train source language repunctuation models

Decoding/Rescoring Process
1. Decode input sentences use base models
2. Add rescoring features (e.g. IBM model-1 score, etc.)
3. Merge N-best lists (if input is ASR n-best)
4. Rerank N-best list entries

Table 1: Training/decoding structure

2.2. Language Model Training

During the training process we built n-gram language models
for use in decoding/rescoring, TrueCasing and repunctuation.
In all cases, the SRI Language Modeling Toolkit [10] was
used to create interpolated Knesser-Ney LMs. Additional
class-based language model were also trained for rescoring.
Some systems made use of 3- and 7-gram language models
for rescoring trained on the target side of the parallel text.

2.3. Optimization, Decoding, and Rescoring

Our translation model assumes a log-linear combination of
phrase translation models, language models, etc.

logP (E|F) ∝
∑
∀r

λrhr(E,F)

To optimize system performance we train scaling factors,
λr, for both decoding and rescoring features so as to mini-
mize an objective error criterion. This is done using a stan-
dard Powell-like grid search using a development set [11].

A full list of the independent model parameters that we
used in our baseline system is shown in Table 2. All systems
generated N-best lists that are then rescored and reranked us-
ing either a MAP or an MBR (Minimum Bayes Risk) crite-
rion.

These model parameters are similar to those used by
other phrase-based systems. For IWSLT, we also add a
source-target word translation pairs to the phrase table that
would not have been extracted by the standard phrase extrac-
tion heuristic from IBM model 5 word alignments. These
phrases have an additional lexical backoff penalty that is op-
timized during minimum error rate training.

This system serves as the basis for a number of the
contrastive systems submitted during this year’s evaluation.
Contrastive systems differ in terms of their rescoring con-
figuration (e.g. language models, MBR) and the data used
to train them (some system made use of additional lexicon

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P̂ (E) – 4-gram language model

Rescoring Features
P̂rescore(E) – 5-gram LM

P̂class(E) – 7-gram class-based LM
PModel1(F|E) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

data). Each of the contrastive systems was used as a com-
ponent for system combination. The combined output for
each of the Turkish-to-English and Arabic-to-English tasks
was submitted as our primary system. Detailed differences
of each submitted system can be found in section 9.

The moses decoder [12] was used for our baseline sys-
tem and for confusion network decoding. Additionally, we
also used an FST-based decoder developed for speech input
applications.

3. Cross Domain Adaptation
During this evaluation we explored methods to adapt general-
purpose phrase-based models to the IWSLT (travel domain)
task. To this end, we built a general purpose model in Ara-
bic using training data from the ISI automatically extracted
parallel corpus [3]. These models were trained using over
500k sentence pairs of newswire data. Using the provided
training data from the IWSLT evaluation, we explored two
approaches to adapt the model to the IWSLT task:

1. Semisupervised Adaptation: We use the general-
purpose model to generate translations of IWSLT
source data. Machine translated sentences that are
deemed to be “high quality” are then chosen for adap-
tation. Adaptation is performed using the selected
source sentences from IWSLT and their corresponding
MT output (i.e. no reference data is used for adapta-
tion).

2. Human-in-the-loop Adaptation: We employ the
general-purpose model to generate translations of the
IWSLT Arabic source data. Then we select sen-
tence pairs (both source and target) of the training set
deemed to have “poor translation quality” (see below)
to create an adaptation set. The resulting adaptation
set is then used to update both the phrase table and
language models. This simulates an active learning
paradigm in which source sentences with poor output
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from the MT system are sent to a translator for correc-
tion and then used for retraining.

3.1. Translation Quality Scoring

With both methods described above, we assume the pres-
ence of a human judge who can assign quality ratings to MT
output. Due to cost and resource limitations, we used ME-
TEOR scores as a proxy for human judgement as it has been
shown to correlate well [13]. Figure 1 shows the distribution
of scores when decoding the IWSLT Arabic training set us-
ing the general-purpose model. Higher scoring sentences are
the focus of the semisupervised adaptation approach whereas
the human-in-the-loop method uses lower-scoring sentences
as candidates for human translation.

3.2. Adaptation Methods

Given an initial (general-purpose) model and a small amount
of in-domain data, we attempt to adapt the general-purpose
model to the domain of interest. We explored three ap-
proaches for adaptation:

1. Language Model Adaptation In this case, we use a
small set of target sentences from the domain of in-
terest to generate a new language model. This lan-
guage model is interpolated with a general purpose
language model so as to maximize BLEU score. In the
semisupervised version of this procedure, target lan-
guage sentences are generated by decoding source lan-
guage sentences selected from the IWSLT training set.
In the human-in-the-loop condition, target sentences
are chosen from the IWSLT training bitext.

2. Phrase Table Adaptation We apply MAP adaptation
based on the approach described by Bacchiani et
al [25] for language models. This approach interpo-
lates phrase probabilities from both the general pur-
pose phrase table and a phrase table trained on the
adaptation data as described below:

p̂(s|t) = λpiwslt(s|t) + (1− λ)pgp(s|t) (1)

where pgp and piwslt are phrase probability estimates
from the general purpose and IWSLT-domain models
respectively, and λ

λ =
Niwslt(s, t)

Niwslt(s, t) + τ
(2)

where τ is the MAP relevance factor and Niwslt(s, t)
is the observed count of phrase pair (s, t). We set τ to
a fixed value for all experiments.

Phrases that do not exist in either the IWSLT training
set or the general purpose phrase table are assumed to
have probability zero in equation 1.

3. Combined PT and LM adaptation

4. Turkish Preprocessing
Turkish is an agglutinative language with a rich deriva-
tional and inflectional morphology. Many Turkish words are
formed from the application of suffixes to a relatively small
set of core noun and verb forms. This results in a poten-
tially large vocabulary size and poor probability estimates
when aligning Turkish-English parallel texts. We applied a
rule-based Turkish morphological analyzer [14] to the Turk-
ish texts and split morphemes into individual tokens. When
taken in isolation, many morphological breakdowns of sur-
face forms are ambiguous without the context of surrounding
words. However, we achieved the best performance simply
by choosing the first morphological parse for each surface
form.

5. Count-Mediated Morphological Analysis
for Arabic

Arabic is a morphologically rich language [15, 16], and var-
ious work (e.g., as described in [17, 18]) has indicated that
it can be advantageous to separate surface tokens into their
morphological constituents for machine translation. In our
system for IWSLT 2007, we employed a light morpholog-
ical analysis procedure we called AP5 [2], and in our sys-
tem for IWSLT 2008, we added a preprocessing step to AP5
to remove various diacritics [1]. In our 2009 system, AP5
(with the diacritic removal process) was again central to our
Arabic-English system; however, our primary system was a
combination of a number of subsystems, and several of these
subsystems employed a modification to the AP5 process that
we call Count-Mediated Morphological Analysis (CoMMA).

As described in [17, 18], Arabic has three possible levels
of clitics that can be attached to a base form in a strict order:

[CONJ+ [PART+ [Al+ BASE +PRON]]]

A base may have the definite article Al+ or a pronoun
(+PRON) but not both. Particles (PART+) include l+
“to/for”, b+ “by/with”, and k+ “as/such”. (We do not seg-
ment the particle s+ “will/future tense” in AP5.) Finally, the
possible attached conjunctions (CONJ+) include w+ “and”
and f+ “so”. In [17], it was shown that the degree (i.e.,
level) of clitic segmentation that performs best for statistical
machine translation depends on the amount of training data
available. With small amounts of training data, one should
segment all of the clitics from the base; with larger amounts
of training data, fewer levels should be split off from the base.
In [18], it was further shown that various processing schemes
that segment different levels of clitics could be combined to
improve performance in a decoding-plus-rescoring method
of combination.

Based on the insights of [17, 18], we also investigated
multiple ways of segmenting the input Arabic text, although
by a different method. Rather than segmenting off the same
level of clitics for all surface tokens, where the “best” level
depends on the overall amount of training data, the CoMMA
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process segments all levels of clitics (with AP5) for each to-
ken that occurs in the training data fewer times than a user-
chosen threshold. Tokens that occur at least as many times as
the threshold are passed through to the output unsegmented.
Note that all tokens have diacritics removed before any part
of the CoMMA process is applied. Any morphological an-
alyzer (especially a light analyzer such as AP5) is bound
to make mistakes for some tokens, and consistent mistakes
made on tokens that occur frequently will in turn be frequent,
whereas mistakes made on a token that occurs infrequently
will in turn be infrequent.

6. Improved Speech Translation
6.1. Finite State Transducer System

We have successfully implemented a phrase-based transla-
tion system capable of directly translating ASR lattices via fi-
nite state transducers. Finite state transducers (FSTs) provide
a useful framework for natural language processing applica-
tions as the implementation details of graph optimization and
search are handled through a software library that operates on
a common state machine representation. A detailed explana-
tion our of FST system can be found in [2] and [1]. The basic
idea is outlined below.

Our decoder takes as input a finite state acceptor which
represents either a single input sentence or the output from a
speech recognizer. The best translation can be described as
the best path through the transducer given by:

E = I ◦ P ◦D ◦ T ◦ L (3)

where ◦ represents the composition operation. I represents
the input acceptor and P is the phrase segmentation trans-
ducer. The transducer given by D performs phrase permu-
tations. T and L are the translation and language models,
respectively.

We have made significant improvements to the pruning
algorithm used in the FST decoder. Previous versions of the
decoder relied on a generic Viterbi beam search routine com-
mon to many FST toolkits which did not account for opti-
mizations specific to machine translation. In the FST decod-
ing algorithm, beam search is used during the final step in
(3), where the language model transducer, L, is applied. This
step results in a potentially large node expansion, and both
beam and histogram pruning are required to control memory
usage. The generic search only pruned the set of expanded
nodes resulting from a single node in the input transducer.
In machine translation terms, the search only pruned the set
of possible n-gram expansions from each predecessor node
in isolation. There was no global pruning, and all distortion
and phrase segmentation paths remained in the final search
graph. With minimal changes to the search algorithm, we
were able to implement phrase level pruning, much like that
used in the Moses decoder.

First, input phrase boundaries were marked with a spe-
cial # character that results in a null output, much like ε.

This serves two purposes: 1) determinization can be used
to greatly reduce the size of the input phrase transducer af-
ter phrase swapping and 2) the search algorithm can use the
special character to key on phrase boundaries and trigger
a global phrase level pruning routine. However, the input
transducer must first be topologically sorted according to a
modified breadth-first search routine, where tree depth refers
number of source words covered. In this way, a global beam
pruning routine can be triggered each time the # character
is encountered, signaling a change in the number of covered
source words.

The result of these improvements are faster decoding
times and reduced memory usage for a given configuration.
We are also able to apply the phrase swapping transducer up
to three times for longer distance phrase reordering. Typi-
cally, this operation can only be done twice as the total num-
ber of resulting output paths uses too much memory. This
was particularly helpful in the Turkish-English language pair,
where the systems benefited from increased distortion limits.

7. System Combination
In order to take advantage of the strengths of our various
modeling and decoding techniques, we employ a system
combination technique similar to the one presented in [21].
This is based on the successful ROVER technique used in
automatic speech recognition [22]. In ROVER, individual
words are aligned to minimize edit distance, and confusion
networks are generated from these alignments. A voting al-
gorithm is used to select the best word sequence with the
lowest expected word error rate. In speech recognition, this
process is relatively straightforward given the strict word or-
der defined by the acoustics.

In machine translation, the system combination problem
is compounded by many possible phrase choices and word
orderings between systems. To combat this problem, each
system serves as the skeleton system once, and all other sys-
tem outputs are aligned to it. Confusion networks are gen-
erated for each skeleton alignment and the union of all con-
fusion networks is taken. This final union network is then
scored to find the best output sentence. The advantage of this
technique over simply selecting the best system output is that
the effect of combination can be localized within segments.

In our implementation of this round-robin confusion net-
work scheme, we have added some additional features in-
cluding a language model, word penalty, and a prior prob-
ability on choosing a particular system as the skeleton. To
further improve the combination, we use a weighted voting
scheme. All of these feature weights are optimized on a held-
out set using Nelder-Meade simplex optimization to maxi-
mize the BLEU score.

In order to form the confusion networks, we use align-
ments provided by the translation error rate (TER) scoring
tool [23]. TER performs a string alignment allowing for
word movement via a beam search. We have modified the
beam search to include partial matching via wordnet syn-
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onymy or word stems. Synonyms across candidate sys-
tems are considered matches (e.g. “attorney” is equivalent
to “lawyer”.) This results in an improved set of alignments
and better confusion networks.

Each alignment set is converted to a confusion network
where skipped words are allowed via NULL arcs. Each in-
dividual word, wi, forms an arc with a posterior probability
equal to the normalized sum of all system weights, λn, that
produced word wi. NULL arc probabilities are also included
in this calculation.

In the final weighted confusion network, the hypothesis
score for word sequenceW is given by:

log(PW) =
Ik∑

i=0

[
log

(∑
n∈wi

λn∑N
l=0 λl

)]
+ λNLen(W)

+ λN+1 log(PLM (W)) + λN+2 log(βk) (4)

where Ik is the number of confusion pairs in the branch with
system k as the skeleton, N is the total number of systems,
and λ0 through λN+2 are the weights optimized by a simplex
minimization procedure. Note that (4) is not log-linear with
respect to the system weights, λn. The main kernel contains
the summation over all confusion sets of the log of the sum
of weighted posteriors and is more easily optimized via non-
gradient based methods. The system priors, βk, are given for
each system to discourage poorly performing systems from
taking the role as the skeleton. For our system we used the
normalized BLEU scores from a held-out data set as system
priors. Additionally, each sentence output is assigned a word
penalty based on the total number of words, Len(W), so
that the sentence length can be properly optimized. Finally, a
language model, PLM (W) is applied to the output sequence.
The language model helps to reject hypotheses due to im-
proper alignments, such as repeated or missing words. This
formulation is similar to the one presented in [24], but here
we have added a separate prior probability for each system
and the word posteriors are computed only with the normal-
ized λn system weights.

8. Experiments
With each of the enhancements presented in prior sections,
we ran a number of development experiments in preparation
for this year’s evaluation. This section describes the devel-
opment data that was used for each evaluation track and re-
sults comparing the aforementioned enhancements with our
baseline system. Our experiments focused on the Turkish-to-
English (BTEC) and Arabic-to-English (BTEC) tasks.

8.1. Development Data

Tables 3 describes the development and training set configu-
rations used for each language pair in this year’s evaluation.

For Turkish, development experiments were conducted
using dev1 for optimization and dev2 for development
testing and system combiner optimization. For Arabic,

Turkish English

train

Sentences 19,972 K
Running words 142,2519 161,171
Avg. Sent. length 7.14 8.07
Vocabulary 17,085 6,766

dev1
Sentences 506
Running words 2,908 4,101
Avg. Sent. length 5.89 8.11

dev2
Sentences 500
Running words 2,980 4,056
Avg. Sent. length 5.82 8.11

Arabic English

train

Sentences 19,972
Running words 130,650 161,171
Avg. Sent. length 6.54 8.07
Vocabulary 18,121 6,766

dev6
Sentences 489
Running words 2,388 3,082
Avg. Sent. length 4.88 6.30

dev7
Sentences 507
Running words 3,224 3,461
Avg. Sent. length 6.36 6.83

Table 3: Corpus Statistics for All Language Pairs

dev6 and dev7 were used for optimization and develop-
ment testing respectively.

8.2. Baseline Experiments

Turkish and Arabic data sets were processed using the mor-
phological analysis procedures described above. The result-
ing text was then used for training, optimization and decod-
ing. Tables 4 and 5 show the performance of our baseline
systems on development data with AP5 preprocessing and
Bilkent’s morphology for Arabic and Turkish respectively.
The Arabic system shown in these tables vary in terms of
whether they use lexical approximation [19] and in terms of
the decoder (either moses or our FST-based decoder).

System dev6 dev7

Phrase-based FST decoder + lex-approx 55.84 55.59
Standard Phrase-based system (no lex-approx) 55.07 56.20
Standard Phrase-based system (w/ lex-approx) 53.24 54.66

Table 4: Arabic Baseline Systems

8.3. Domain Adaptation Experiments

We conducted a number of experiments comparing language
model and phrase table adaptation in the context of both
semisupervised and human-in-the-loop methods. Because
these experiments make use of data from outside the IWSLT
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System dev1 dev2

Phrase-based FST decoder 64.63 60.79
Standard Phrase-based system 66.49 62.91
+ drop unknown words 67.50 63.53
+ optimize NIST + BLEU 67.08 63.65

Table 5: Turkish Baseline Systems

 

Figure 1: Distribution of METEOR scores for sentences from
the IWSLT training data

evaluations, none of these systems were used for MIT/LL
submission runs.

We evaluated the performance of both human-in-the-loop
and semisupervised adaptation methods as a function of the
adaptation data size. To this end, we decoded the IWSLT
training data and ranked sentences by METEOR score (see
figure 1). The data was then divided into octiles and each
method was evaluated using fractions of this data between
1/8 and 8/8 for adaptation.

Figure 2 shows the results on dev7 when using an
semisupervised method for adaptation. Using no adaptation,
the general purpose models yield a BLEU score of 23.04
(significantly worse than the 56.20 achieved by our IWSLT
baseline system). The red line shows the performance of an
phrase table trained on the IWSLT-2009 training data using
no reference data (also no general purpose phrase table or
language model is used other than to decode the IWSLT-2009
training data set). The green and cyan lines show the perfor-
mance of language model adaptation (without phrase table
adaptation) and phrase table adaptation (without LM adap-
tation) respectively. The blue line shows the performance
of joint phrase table and language model adaptation. In all
cases, use of adaptation can outperform the baseline. Gains
of 12-17% relative are possible when choosing the best per-
forming sentences for adaptation of both the language model
and phrase table (i.e. the lower octiles of the graph) with
most of the improvement arising from language model adap-
tation. Even using all of the data, which does not require su-
pervision (in terms of sentence quality judgements), results
in a 9% relative improvement.

 
Semi-supervised Training Experiments (IWSLT09 dev7)

16

18

20

22

24

26

28

1 2 3 4 5 6 7 8

Top X Octiles of Training Set Scores

B
LE

U
 S

co
re

Phrase Table and LM Adaptation
In-Domain Only
LM Adaptation
Phrase Table Adaptation
Baseline (GP Model only)

Figure 2: Semisupervised Adaptation Results

 
Human-in-the-Loop Experiments (IWSLT09 dev7)
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Figure 3: Human-in-the-loop Adaptation Results

Figure 3 shows the performance of human-in-the-loop
adaptation as a function of adaptation data size. The red
line indicates the performance of an IWSLT model trained on
data from each of the adaptation data subsets (trained from
scratch, no adaptation). This is a baseline making no use
of general purpose models. The blue line shows the perfor-
mance of human-in-the-loop adaptation using adapted phrase
tables and language models while the green and cyan lines
show language model adaptation (without phrase table adap-
tation) and phrase table adaptation (without language model
adaptation) respectively. In all data sizes, adaptation (us-
ing both phrase table and language model approaches) out-
performs the baseline significantly and interestingly, while
both phrase table and language model adaptation methods
improve performance in combination, their gains are com-
plementary.

As one might expect, the relative improvement is greatest
at smaller data sizes (using 1/8 of the IWSLT training data
results in 49.8% relative improvement), but even when using
all the IWSLT training data this adaptation method results in
an improvement of 2.2 BLEU points (4.5% relative).

Table 6 summarizes these results.

8.4. Arabic Morphology Experiments

We evaluated the translation results from the CoMMA pro-
cess at several threshold levels. We removed all diacritics
from the training set and all of the development sets, and
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System dev7 eval

General Purpose Model Only 23.06 21.35
GP + Unsupervised Adaptation 25.74 23.86
GP + Semisupervised Adaptation (top 1

4 th) 27.19 25.89
IWSLT-only Baseline 54.63 52.69
GP Model + Human-in-the-Loop Adaptation 56.57 56.11

Table 6: Summary of Adaptation Experiment Results

obtained token counts for all tokens in the Arabic side of
the augmented training set consisting of the original train-
ing set and development sets one through five. For a given
threshold, the CoMMA process was then applied (using the
file of token counts) to the Arabic sides of the augmented
training data and development sets six (dev6 ) and seven
(dev7 ). All systems then used the baseline training, opti-
mization, and Moses decoding process of our IWSLT 2008
Arabic-English system as outlined in [1] (without lexical ap-
proximation). Two experiments were run, one used dev6 for
optimization with dev7 for testing, while the other used
dev7 for optimization and dev6 for testing. After optimiza-
tion, the best system in terms of BLEU score for TrueCased
output was used for testing. Note that a CoMMA threshold
of zero means that no token was segmented, while a thresh-
old of 10,000 means that all tokens were segmented (as in the
original AP5) as the only token to appear in the augmented
training data more than 10,000 times was the period.

Table 7 shows the results in terms of mean BLEU scores
for TrueCased output on dev6 and dev7 versus various
CoMMA thresholds. For both data sets, all of the CoMMA
thresholds 20 or higher resulted in substantially better perfor-
mance than applying no morphological analysis (i.e., at the
CoMMA threshold of zero). For dev6 , the best CoMMA
threshold was found to be 2,000, which performed 0.69
BLEU points better than segmenting all tokens (i.e., at the
CoMMA threshold of 10,000). However, for dev7 , all of
the CoMMA thresholds 20 or higher resulted in similar per-
formance. Despite the similar BLEU score performance on
dev7 across CoMMA thresholds other than zero, the actual
translations were often quite different.

CoMMA Mean BLEU
Threshold dev6 dev7

0 50.00 51.94
20 53.92 54.29

200 53.14 54.64
2,000 54.02 54.57

10,000 53.33 54.48

Table 7: Mean BLEU scores for CoMMA systems versus
threshold.

The results on dev7 as well as the system combina-
tion results of [18], suggested a further experiment in sys-

tem combination with the CoMMA systems. Combining the
CoMMA system at a threshold of 10,000 with the other three
Arabic-English MT systems described in Sections 8.2, re-
sulted in a BLEU score on lower case output of 56.58 for
dev6 and 58.65 for dev7 . Combining the CoMMA sys-
tems at thresholds of 20, 200, 2,000, and 10,000 with the
other three Arabic-English MT systems described in Sec-
tions 8.2, resulted in a BLEU score on lower case output
of 57.08 for dev6 and 60.15 for dev7 . Thus, using all
four of the CoMMA systems with thresholds other than zero
yielded an additional 0.50 BLEU points on dev6 and 1.50
BLEU points on dev7 over using just the CoMMA system at
10,000 when combined with our other three Arabic-English
MT systems. Thus, the CoMMA systems at thresholds of 20,
200, 2,000, and 10,000 were all used in this year’s system.

9. Evaluation Summary
As part of this year’s evaluation we experimented with
cross-domain adaptation, Turkish morphological analysis,
improved Arabic morphological processing and refinements
to our multiple MT combination approach. These develop-
ments have helped to improve our system when compared
with our 2008 baseline.

Table 8 summarizes each of the systems submitted for
this year’s evaluation.
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