Two methods for stabilizing MERT: NICT at IWSLT 2009

Masao Utiyama, Hirofumi Yamamoto, and Eiichiro Sumita

NICT

Our system

- Participated in the Challenge Task
- A baseline phrase-based SMT system

Outline

- Language resources
- Combination of Chinese segmentations
- Two methods for stabilizing MERT
- Official results
- What we tried but didn't work

Language resources

- Training data: IWSLT09_BTEC.train.*, IWSLT09.devset*, IWSLT09_CT.train.*
- Expanded the devset data
- Two language models from the CT portion and rest
- Development data: Sample sentences from the training data. These sentences were excluded from the training data.
- Development test data:

IWSLT09_CT.devset.*.with_interpreter.txt

- In-house tokenizers for Chinese and English
- Lowercased English sentences in EC
- Truecase in CE

Combination of Chinese segmentations

Method1

Word segmentation with our in-house tokenizer ${\bf Method2}$

- 1. Segmentation into characters with ' $\langle w \rangle$ ' tags inserted between words.
- 2. Insertion of ' $\langle w \rangle$ ' into English texts
- 3. Made a phrase (reordering) table from this data.

Combination of the two tables

- 1. Phrases in the first phrase (reordering) table were segmented into characters.
- 2. Removal of " $\langle w \rangle$ " from the output

Two methods for stabilizing MERT

- Devset sampling
- Averaged mert

Causes of instability in MERT

Mismatch between development and test data

- *Devset sampling* tries to sample sentences that are similar to the input data
- Best parameters on devset \neq Best parameters on test Averaged MERT avoids over-fitting by using averaged parameters

Devset sampling

- Sampling similar sentences to the input texts
- Sampled sentences were excluded from the training
- \bullet For test each sentence in the 500 test sentences
 - -Extracted the most similar 2 sentences
 - Average of BLEU1, ... BLEU4 scores as the similarity score
 - Input sentence was regarded as the reference
 - Used the most similar 1000 sentence development data
- After the tuning, the development data were added to the training data again to make the final model

Results using devset sampling

with samplingw/o samplingEC32.1630.34CE28.6626.12

Similar sentences (testset // devset)

- hotel royal plaza may i help you // holiday inn crowne plaza may i help you
- yes can you tell me the number of people type of room and approximate budget please // yes would you tell me the address and phone number of the hotel please
- yes let me check for vacancies // yes let me check hold on a moment please
- \bullet sorry to keep you waiting // sorry to keep you waiting
- we have two types of rooms available in your budget range // we have two types of dressing japanese or french

Averaged MERT

- Run MERT several times on a development data
- Average tuned parameters to get final parameters

Why this works?

$$\sum_{m=1}^{M} \lambda_m h_m(\mathbf{e}, \mathbf{f})$$

- Average of parameters (weights) \rightarrow average of scores
- A kind of a system combination method

Results of Averaged Mert

	average	max	
EC	32.61	31.93	
CE	29.24	28.49	

Additional experiments on IWSLT-2007 Japanese-English translation task

- \bullet Bootstrap method
- Run MERT 100 times on devset1
- Obtained 100 parameter sets
- Calculated the averages and standard deviations of BLEU scores for 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, and 100 parameter sets by sampling these parameter sets
- Sampled 100 parameter sets for each number of parameter sets.

Two methods

- Averaged parameters
- Parameters that obtained the maximum BLEU score on devset1

Results

method	average	maximum
No.	av. (std.)	av. (std.)
1	62.22(0.54)	62.22(0.54)
2	62.59(0.41)	62.32(0.42)
3	62.63(0.37)	62.08(0.59)
5	62.72 (0.38)	62.18(0.53)
7	62.72(0.29)	$62.14\ (0.56)$
10	62.73 (0.27)	$62.14\ (0.54)$
20	62.71(0.21)	62.27 (0.52)
30	62.73 (0.21)	62.16(0.55)
50	62.69(0.19)	62.36(0.45)
70	62.70 (0.16)	62.42(0.41)
100	62.71(0.15)	62.50(0.33)

BLEU scores for our official submissions

	EC		CE	
	c+p	nc+np	c+p	nc+np
ASR	35.83	35.44	26.67	25.80
CSR	38.42	38.15	29.70	28.72

What we tried but didn't work

- Increasing the size of the CT corpus
- Alignment with lowercased prefixes
- Replacing numbers with a special symbol

Increasing the size of the CT corpus

• Adding several replications of each sentence of the CT corpus when we added them to the BTEC corpus

with w/o EC 30.89 31.25 CE 25.12 26.11

Alignment with lowercased prefixes

• Using lowercased 4-letter prefixes of English words in word alignment

with w/o EC 29.58 32.22 CE 26.73 26.91

Replacing numbers with a special symbol

with w/o EC 29.56 32.22 CE 24.17 26.91 Examples failed

• a Chinese word sequence "0 0 0" was translated into "triple o"

Conclusions

- Participated in the Challenge Task
- Two methods for stabilizing MERT to reduce mismatch between development and test data
 - Devset sampling tries to sample sentences that are similar to the input data
 - $-\operatorname{Best}$ parameters on devset \neq Best parameters on test

Averaged MERT avoids over-fitting by using averaged parameters