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Abstract
This paper describes the University of Washington’s system
for the 2009 International Workshop on Spoken Language
Translation (IWSLT) evaluation campaign. Two systems
were developed, one each for the BTEC Chinese-to-English
and Arabic-to-English tracks. We describe experiments with
different preprocessing and alignment combination schemes.
Our main focus this year was on exploring a novel semi-
supervised approach to N-best list reranking; however, this
method yielded inconclusive results.

1. Introduction
The University of Washington submitted systems for two
translation tasks in the 2009 IWSLT shared evaluation cam-
paign: the BTEC Chinese-to-English and Arabic-to-English
tracks. Our main interest this year was in testing a novel
method for semi-supervised reranking of N-best lists, which
has previously shown improvements on 2007 IWSLT data.
We additionally explored different preprocessing schemes
for both language pairs, as well as methods for combin-
ing phrase tables based on different word alignments. In
the following sections we first describe the data, general
baseline system and post-processing steps, before describ-
ing language-pair specific methods and the semi-supervised
reranking method.

2. Corpora and Preprocessing
As mandated by the evaluation guidelines, the only data that
was used for system development was the official data pro-
vided by IWSLT. Training data for the BTEC tasks consisted
of approximately 20,000 sentence pairs in both the Chinese-
English and Arabic-English tracks. We used the combined
development datasets (about 500 sentences each) for initial
system tuning, except for the IWSLT 2008 eval set, which
we used as a held-out set for testing generalization perfor-
mance.

We performed initial corpus preprocessing with the pro-
vided scripts, i.e. the English half of each parallel corpus was
processed by lowercasing and tokenizing all punctuation and
possessive clitics. Although the Chinese data came in seg-
mented form, we also tested alternative segmentation meth-
ods. For Arabic, we compared various tokenization schemes.

These variants are further described in the system-specific
sections below.

The training corpus was additionally processed by filter-
ing sentence pairs according to the ratio of the source and tar-
get sentence lengths, in order to eliminate mismatched sen-
tence pairs that would skew the trained models. A 9:1 ratio
was used; however, this did not eliminate any sentences from
the Chinese-English corpus and only 52 sentences from the
Arabic-English corpus.

3. Basic System Overview
3.1. Translation Model

Our baseline system for this year’s task is a state-of-the-art,
two-pass phrase-based statistical machine translation system,
based on a log-linear translation model [7].

e∗ = argmaxep(e|f) = argmaxe{

K∑

k=1

λkφk(e, f)} (1)

where e is an English sentence, f is a foreign sentence,
φk(e, f) is a feature function defined on both sentences, and
λk is a feature weight. We trained this model within the
Moses development and decoding framework [8]. The fea-
ture functions used in this year’s system include:

• two phrase-based translation scores, one for each
translation direction

• two lexical translation scores, one for each translation
direction

• six lexical reordering scores
• word count penalty
• phrase count penalty
• distortion penalty
• language model score

For a segmentation of source and target sentences into
phrases, f = f̄1, f̄2, ..., f̄M and e = ē1, ē2, ..., ēM , the
phrasal translation score for ē given f̄ is computed as

P (ē|f̄) =
count(ē, f̄)

count(f̄)
(2)
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i.e. as the relative frequency estimate from the phrase-
segmented training corpus. The lexical score is computed
as

Scorelex(ē|f̄) =

J∏

j=1

1

|{j|a(i) = j}|

I∑

a(i)=j

p(fj |ei) (3)

where j ranges over words in phrase f̄ and i ranges over
words in phrase ē. The lexical reordering model esti-
mates the probablity of a sequence of orientations o =
(o1, o2, . . . , oM )

P (o|f, e) =
M∏

i=1

P (oi|ēi, f̄ai
, ai, ai−1) (4)

where each oi takes one of the three values: monotone, swap,
and discontinuous. This model adds six feature functions to
the overall log-linear model: for each of the three orienta-
tions, the orders of the source phrase with respect to both
the previous and the next source phrase are considered. The
feature scores are again estimated by relative frequency.

The training corpus was word-aligned by GIZA++; sub-
sequently, phrases were extracted using the technique in [6]
and as implemented in the Moses training scripts [8]. We
also used an alternative word-alignment based on the MTTK
[6] implementation of an HMM-based word-to-phrase align-
ment model with bigram probabilities. This yielded mixed
results, as described in later sections.

Word count and phrase count penalties are constant
weights added for each word/phrase used in the translation;
the distortion penalty is a weight that increases in proportion
to the number of positions by which phrases are reordered
during translation. The language models used are n-gram
models as further described below. The weights for these
scores were optimized using an in-house implementation of
the minimum-error rate training (MERT) procedure devel-
oped in [9]. Our optimization criterion was the BLEU score
on the available development set.

3.2. Language Models
For first-pass decoding we used trigram language models.
We built all of our language models using the SRILM toolkit
[4] with modified Kneser-Ney discounting and interpolating
all n-gram estimates of order > 1. Due to the small size of
the training corpus, we experimented with lowering the min-
imum count requirement to 1 for all n-grams. This yielded
different results for the two different tasks, which are further
described below.

3.3. Decoding
Our system used the Moses decoder to generate 100-best
distinct output hypotheses per input sentence during the
first translation pass. For the second pass, the N-best lists
were rescored with additional models: higher-order language

models, POS-based language models, and sentence-type spe-
cific POS language models. These yielded mixed results de-
pending on the language pair and are described in the system-
specific sections.

3.4. Postprocessing

As a first postprocessing step, all untranslated source lan-
guage words are deleted. Our two-pass machine translation
system produces lowercase English output with tokenized
punctuation and possessives. In order to match the evalua-
tion guidelines, we post-processed the output by re-attaching
the possessive particle and restoring true case. Truecasing is
done by a noisy-channel model as implemented in the dis-
ambig tool in the SRILM package. It uses a 4-gram model
trained over a mixed-case representation of the BTEC train-
ing corpus and a probabilistic mapping table for lowercase-
uppercase word variants. The first letter at the beginning of
each sentence was uppercased deterministically.

4. Chinese → English

4.1. Preprocessing

Although the Chinese training data was pre-segmented we
nonetheless explored other segmentation tools. First, we
used the Stanford segmenter [2] to resegment the Chinese
data, as it provides templates for annotating numbers and
dates, potentially aiding in word alignment and phrase ex-
traction. In another experiment, an in-house tool [11]
was used to simply markup dates and numbers in the pre-
segmented BTEC data. Third, we developed our own mark-
up tool for numbers. In both Chinese and English, numbers
are represented by a combination of a limited set of num-
ber words. A simple method for detecting numbers is to first
obtain a set of number words and then search for subsenten-
tial chunks that are comprised of only number words. These
chunks are considered a single number and are replaced by
a special tag. This might prevent number translation errors
due to wrong word segmentations. We first replace all num-
bers in a sentence by such tags, translate the sentence, and
restore the number tag based on a look-up table. However,
we did not notice a significant improvement in translation
quality. Finally, we investigated a simple character-based
segmentation approach in which each Chinese character was
treated as a single word. This greatly reduces the size of
the Chinese vocabulary but increases the difficulties of word
alignment training because of the increased ambiguity for
aligning each Chinese word. We tested the segmentation on
the development set but found it led to worse performance
compared to the original word segmentation. As a final ex-
periment on preprocessing we also trained a system on data
which had been stripped of all punctuation marks, mimick-
ing the no case+no punc track, but this did not improve
our baseline system either.
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4.2. Word Alignment and Phrase Tables

As mentioned above, we used two different methods for
word alignment. In addition to the standard GIZA++ training
procedure we used a word-to-phrase HMM-based alignment
model with bigram probabilities, using the MTTK pack-
age. Subsequently, alignments trained in each direction were
combined using the grow-diag-final heuristic described in
[6]. Taken by itself, the MTTK-based alignment resulted in
a system that performed worse than the GIZA++-based sys-
tem, resulting in a 2-point drop in BLEU on the held-out set.
However, we experimented with combining both tables. To
this end the individual tables were combined into a single ta-
ble containing the 11 standard features (phrasal, lexical, and
reordering scores and phrase penalty) plus two additional bi-
nary features that indicate which alignment model produced
each entry in the phrase table. The weights for these features
were optimized along with all other features in the first-pass
MERT tuning.

4.3. Language Models

We decreased the minimum required count for n-grams with
order > 1 to 1. This led to larger n-gram coverage and an
increase in BLEU of 1 point on the held-out set.

4.4. Rescoring

For second-pass rescoring we evaluated higher-order n-gram
models (4-grams and 5-grams) a part-of-speech (POS) based
language model and sentence-type specific POS models. As
a POS model, we tested both 4-gram and 5-gram language
models trained on a POS annotation of the training data
and n-best lists using Ratnaparkhi’s maximum-entropy tag-
ger [10]. None of these improved the performance. Ques-
tions and statements usually have quite different syntactic
structures in both Chinese and English. In order to cap-
ture these differences, sentence-type specific POS models
were trained, one for questions, one for statements. These
were used in the second pass to rerank questions and non-
questions, respectively. The sentence type was determined
from the punctuation on the source side. This led to a small
improvement in performance

4.5. Final Systems

For the final primary system, the development data was
added to the training data, however, weights were not re-
tuned. Our contrastive submission used a novel re-ranking
method, detailed in Section 6. The training corpus, pre-
and post-processing methods, and first-pass system were the
same as in the primary system.

5. Arabic → English
5.1. Preprocessing

We preprocessed the Arabic data by using the the Columbia
University MADA and TOKAN tools [5]. We compared two
tokenization schemes: the first splits off the conjunctions w+,
f+, the particles l+, the b+ preposition and the definite article
Al+. It also normalizes different variants of alif, final yaa and
taa marbuta. The second scheme (equivalent to TOKAN’s
D2 scheme) does not split off Al+ but instead separates the
prefix s+. Differences between the two schemes were slight;
the first scheme yielded a 0.2 increase in BLEU on the held-
out set.

5.2. Word Alignment and Phrase Tables

As in the Chinese-English system, we trained word align-
ments using both GIZA++ and MTTK. We found that MTTK
gave significantly worse results (by 6 BLEU points) com-
pared to GIZA++, so it was not used either in isolation or for
phrase table combination.

5.3. Language Models

As mentioned in the system overview, we tried lowering the
minimum count threshold for the 3- and 4-grams in the lan-
guage model (from 2 to 1). This greatly increased the lan-
guage model’s coverage from 17k to 95k 3-grams, and from
15k to 120k 4-grams. However, the overall system score de-
creased by 0.5 BLEU points and so our Arabic-to-English
submission uses the default SRILM cutoffs. Note that this is
in contrast with our Chinese-to-English results.

5.4. Rescoring

For rescoring we investigated higher-order n-gram models,
POS-based 4-gram and 5-gram language models as well as
sentence-type specific POS models. In this case, however,
the baseline performance was not improved by either type of
model.

6. Semi-Supervised Reranking
For our contrastive Chinese-to-English system, we enriched
the baseline system with a semi-supervised re-ranker that uti-
lizes information inherent in the test set’s N-best lists. The
goal is to “adapt” a general re-ranker to each test list indepen-
dently and to rescore it using the adapted re-ranker. Such “lo-
cal learning” approaches may outperform a global re-ranker
that was trained to optimize performance globally on an en-
tire development set.

Our semi-supervised reranking approach is based on a
modification of the RankBoost [3] learning algorithm, a
state-of-the-art machine learning technique for reranking.
RankBoost treats the re-ranking problem as a problem of bi-
nary classification on pairs of hypotheses (hypothesis x is
ranked higher than y or vice versa) and maintains a weight
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distribution over labeled instances in the training set. It then
iteratively trains a weak ranker on the labeled instances and
adjusts the weight distribution according to the correctness
of the classification decisions made by the weak ranker, de-
creasing the weights for correctly classified samples, and in-
creasing the weights for wrongly classified samples. Finally,
individual rankers are combined in a weighted fashion. Let-
ting our ranking function be f(), where hypotheses with high
f values are ranked higher, RankBoost minimizes the follow-
ing objective:

∑

<x,y>∈PL

exp(−(f(x) − f(y))) (5)

The set PL (the labeled set) consists of all pairs of elements
in the lists where x is ranked higher than y (according to the
true labels). The difference f(x) − f(y) can also be thought
of as a margin, which the learner aims to maximize. In order
to adapt such a ranker to a given test N-best list, we add a
second criterion that computes a “pseudo-margin” from pairs
of hypotheses in the test list:

∑

(x,y)∈PL

exp(−(f(x) − f(y))) (6)

+ β ∗
∑

<i,j>∈PU

exp(|f(i) − f(j)|) (7)

Here, the set PU (the unlabeled set) consists of all pairs of hy-
potheses from the test list in focus; β is a trade-off parameter
balancing the contributions of the labeled vs. unlabeled data.
This ranking objective corresponds to the cluster assumption
used in semi-supervised classification [1]. The effect is to
force the ranker to be more confident in teasing apart (clus-
tering) good vs. bad hypotheses in the test list.

In our context of reranking N-best lists produced by a
machine translation system, the labeled and unlabeled sets
are determined as follows: The set PL is produced by first
computing the smoothed sentence-level BLEU score for each
hypothesis in a given N-best list. If sentence-level BLEU
score of hypothesis x is greater than that of hypothesis y by a
threshold τ , the pair of hypotheses receives a positive label,
else it receives a negative label. If the BLEU difference is
less than τ , the hypotheses are considered tied and are not
used for training. The complete PL set consists of all valid
hypothesis pairs extracted from the development set. The
set PU is made up of all valid hypothesis pairs (determined
according to the same threshold τ ) from a single test N-best
list. Thus, a different semi-supervised ranker is trained for
every N-best list in the test set.

The weak rankers are rankers based on individual feature
function scores in the log-linear model. The final ranking
function is

f(x) =
∑

i

θihi(x) (8)

where i ranges over all iterations performed and θi is a
weight proportional to the ranker’s accuracy.

System baseline +reranking
BLEU 0.368 0.362
NIST 6.596 5.890
PER 0.444 0.432
TER 0.434 0.400
WER 0.521 0.498
METEOR 0.636 0.638
GTM 0.672 0.658
F1 0.681 0.696
PREC 0.699 0.738
RECL 0.664 0.658

Table 1: System performance for the Chinese-English base-
line system vs. semi-supervised reranking, truecased version.

In the past we have seen substantial improvements from
this method over both standard RankBoost and MERT on the
IWSLT 2007 Italian-English and Arabic-English data (im-
provements in BLEU of 3.1 and 1.8 points, respectively, for
baselines of 21.2 and 24.3). This motivated us to apply this
method to this year’s task as well. The β parameter was set
to 1, giving equal weight to labeled and unlabeled data. The
τ parameter was optimized on the IWSLT 2008 eval set and
was set to 55. On the eval08 set (our development set), the
BLEU score increased slightly from 41.9 to 42.4. The com-
plete set of scores for the 2009 eval set is shown in Table 1.
We observe that n-gram based evaluation scores like BLEU
and NIST decrease slightly whereas PER, TER, WER and
Precision improve.

Our final primary system is trained on all the IWSLT09
data, including the development data. Therefore, the rerank-
ing algorithm cannot be retrained for this system since no de-
velopment set is available for training the boosted classifier.
If we use the classifier trained for the system shown in Table
1 and apply it to our final primary system as is, we obtain the
results shown in Table 2. We see that the BLEU score drops
slightly while PER still shows a slight improvement. Overall
it seems that the reranker increases precision at the expense
of recall.

7. Results
The official evaluation results for our primary systems are
shown in Tables 3 and 4. Not that the primary system
for Chinese-English was obtained after a final training pass
where all development data had been added to the training
data. It is obvious that the largest single gain derives from
using all available data for training rather than from better
reranking methods.

8. Conclusions
We have presented our systems for the IWSLT09 Arabic-
English and Chinese-English BTEC tasks. In contrast to

- 127 -

Proceedings of IWSLT 2009, Tokyo - Japan



System baseline +reranking
BLEU 0.406 0.401
NIST 7.048 6.368
PER 0.424 0.417
TER 0.424 0.388
WER 0.500 0.481
METEOR 0.662 0.658
GTM 0.695 0.680
F1 0.699 0.709
PREC 0.708 0.745
RECL 0.690 0.676

Table 2: Official evaluation scores on eval09 obtained by pri-
mary Chinese-English baseline system vs. semi-supervised
contrastive system, truecased version.

System BLEU PER Meteor NIST
case+punc 0.41 0.42 0.66 7.05
no case+punc 0.40 0.45 0.62 7.30

Table 3: Chinese-English translation results on the IWSLT09
eval set - subset of the official evaluation scores.

previous years, several techniques that were observed to in-
crease MT performance (e.g. POS-based language models)
did not show improvements on this years tasks, possibly
due to the limitation of only using the BTEC training data.
Our main goal this year was the integration of novel semi-
supervised learning techniques, in particular semi-supervised
ranking. Results from this method are inconclusive, im-
proving some performance measures while decreasing oth-
ers. This is in contrast to earlier experiments on two previous
IWSLT data sets – further experiments need to be conducted
to determine the reason for this discrepancy.
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