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Abstract
LIMSI took part in the IWSLT 2011 TED task in the MT
track for English to French using the in-house n-code sys-
tem, which implements the n-gram based approach to Ma-
chine Translation. This framework not only allows to achieve
state-of-the-art results for this language pair, but is also ap-
pealing due to its conceptual simplicity and its use of well
understood statistical language models. Using this approach,
we compare several ways to adapt our existing systems and
resources to the TED task with mixture of language models
and try to provide an analysis of the modest gains obtained
by training a log linear combination of in- and out-of-domain
models.

1. Introduction
The performance of current Statistical Machine Translation
(SMT) systems depends heavily on the data that is used to
estimate the various statistical models. As has often been
pointed out, good performance can only be obtained if a suf-
ficiently large amount of in-domain training data is available,
which is not often the case, except for a rather restricter num-
ber of domains.

Therefore, improved methods for adapting statistical
models using both in-domain and out-of-domain data are ac-
tively sought and several proposals have been studied in the
literature (see below). The IWSLT’11 “TED” task offers a
nice test case for adaptation techniques, since the volume of
talk data is, by far, outnumbered by the other sources of data,
be they parallel or monolingual.

LIMSI took part in the IWSLT 2011 TED task in the MT
track for English to French with the intent to improve our
understanding of adaptation techniques for SMT. Our sub-
mission is based on the n-gram based approach to Machine
Translation [1, 2], a framework in which it is relatively sim-
ple to re-implement and compare various adaptation strate-
gies.

Several proposal have been put forward to adapt SMT
systems: in the typical situation where a small amount of in-
domain data is backed up by larger out-of-domain corpora,
various ways to combine the two source of informations can
be entertained. The most simple-minded approach is to pool
all the available data into one single mixed-domain training
corpus; carefully selecting the out-of-domain data based on

their similarity with the in-domain texts, at the level of sen-
tences [3], or at the level of phrases however proves to be
more effective. Pooling can also be performed directly at
the level of models using various mixture modeling strate-
gies [4, 5, 6]. Depending on the available resources, this
approach can be applied to the sole language or translation
model, or to both models. In the less favorable case where
only monolingual data is available, self-training techniques
using an out-of-domain SMT system to build an artificial in-
domain parallel corpus have also delivered improved perfor-
mance in several studies [7].

Following the study of [4], we have considered various
ways to build mixture models. If all adaptation strategies
were indeed useful, a rather paradoxical finding, that was al-
ready mentioned in the Foster et al’s study, and that we re-
produced in various past experiments [8], is that performing
an ad-hoc linear combination of models seems to be more
effective than tuning the weights of a log-linear model com-
bination with MERT [9]. This finding seems to contradict
the findings of [5]. We have found again the same effect, and
try to provide some analysis for this unexpected behavior.
Another contribution of the paper is an empirical study of
adaptation for Neural Network Language models, which was
found here to improve the performance of the non-adapted
models.

The rest of the paper is organized as follows. In Sec-
tions 2 and 3, we describe our decoder, then the various
sources of data that have been used to train our baseline sys-
tems. Section 4 presents the experimental results achieved
during the development period where we contrasted several
adaptation policies. We conclude and give further prospects
in Section 5.

2. An overview of n-code

Our in-house n-code SMT1 system implements the bilingual
n-gram approach to SMT [1]. Given a source sentence sJ1 ,
a translation hypothesis t̂I1 is defined as the sentence which

1The latest version of the system used for this evaluation can
be downloaded at http://www.limsi.fr/Individu/jmcrego/
bincoder/
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maximizes a linear combination of feature functions:

t̂I1 = argmax
tI1

{
M∑

m=1

λmhm(sJ1 , t
I
1)

}
(1)

where sJ1 and tI1 respectively denote the source and the tar-
get sentences, and λm is the weight associated with the fea-
ture function hm. The translation feature is the log-score of
the translation model based on bilingual units called tuples.
The probability assigned to a sentence pair by the translation
model is estimated by using the n-gram assumption:

p(sJ1 , t
I
1) =

K∏
k=1

p((s, t)k|(s, t)k−1 . . . (s, t)k−n+1),

where s refers to a source symbol (resp. t for target) and
(s, t)k to the kth tuple of the given bilingual sentence pair.
It is worth noticing that, since both languages are linked up
in tuples, the context information provided by this transla-
tion model is bilingual. In addition to the translation model,
eleven feature functions are combined: a target-language
model (see Section 3.2 for details); four lexicon models; two
lexicalized reordering models [10] aiming at predicting the
orientation of the next translation unit; a “weak” distance-
based distortion model; and finally a word-bonus model and
a tuple-bonus model which compensate for the system pref-
erence for short translations. The four lexicon models are
similar to the ones used in a standard phrase-based system:
two scores correspond to the relative frequencies of the tu-
ples and two lexical weights are estimated from the automat-
ically generated word alignments. The weights associated to
feature functions are optimally combined using a discrimina-
tive training framework [9] (Minimum Error Rate Training
(MERT) using the provided tst2010 data as development set
and dev2010 as test set.

An interesting feature of the current version of n-code
is its ability to consider an arbitrary number of translation
and target language models. By default, these models are
just added in the log-linear combination, and their weight is
adjusted with MERT to the development (and hopefully test)
domain.

2.1. Training

In n-code, a translation model is estimated over a training
corpus composed of tuple sequences using classical smooth-
ing techniques. Tuples are extracted from a word-aligned
corpus (using MGIZA++2 with default settings) in such a
way that a unique segmentation of the bilingual corpus is
achieved, allowing to estimate the n-gram model. Figure 1
presents a simple example illustrating the unique tuple seg-
mentation for a given word-aligned pair of sentences (top).

The resulting sequence of tuples (1) is further refined to
avoid NULL words in the source side of the tuples (2). Once
the whole bilingual training data is segmented into tuples,

2http://geek.kyloo.net/software

Figure 1: Tuple extraction from a sentence pair.

n-gram language model probabilities can be estimated. In
this example, note that the English source words perfect and
translations have been reordered in the final tuple segmenta-
tion, while the French target words are kept in their original
order.

2.2. Inference

During decoding, source sentences are encoded in the form
of word lattices containing the most promising reordering hy-
potheses, so as to reproduce the word order modifications
introduced during the tuple extraction process. Hence, at de-
coding time, only those encoded reordering hypotheses are
translated. Reordering hypotheses are introduced using a
set of reordering rules automatically learned from the word
alignments.

In the previous example, the rule [perfect translations 
translations perfect] produces the swap of the English words
that is observed for the French and English pair. Typically,
part-of-speech (POS) information is used to increase the gen-
eralization power of such rules. Hence, rewriting rules are
built using POS rather than surface word forms. Refer to [11]
for details on tuple extraction and reordering rules.

3. Baselines

Our baseline system is the one developped for the
WMT’2011 evaluation. This system is fully described in [8].
In the rest of this paper, we will refer to the WMT training
corpora, except explicit mention to the TED data provided
by the IWSLT evaluation campaign.

3.1. Data Pre-processing and Selection

The word alignment model was estimated on all the paral-
lel data provided by WMT. The resulting model was used
to carry on a forced alignment of the TED bilingual data.
However, the United Nation corpus was discarded during the
training of the translation models To train the target language
models, we also used all provided data and monolingual cor-
pora released by the LDC for French. Moreover, all parallel
corpora were POS-tagged with the TreeTagger [12].
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3.1.1. Tokenization

We took advantage of our in-house text processing tools for
the tokenization and detokenization steps [13]. Previous ex-
periments have demonstrated that better normalization tools
provide better BLEU scores [14]. Thus all systems are built
in "true-case.”

3.1.2. Filtering the GigaWord Corpus

The available parallel data for English-French includes a
large Web corpus, referred to as the GigaWord parallel cor-
pus. This corpus is very noisy, and contains large portions
that are not useful for translating news text. The first fil-
ter aimed at detecting foreign languages based on perplex-
ity and lexical coverage. Then, to select a subset of paral-
lel sentences, trigram LMs were trained for both French and
English languages on a subset of the available News data:
the French (resp. English) LM was used to rank the French
(resp. English) side of the corpus, and only those sentences
with perplexity above a given threshold were selected. Fi-
nally, the two selected sets were intersected. In the following
experiments, the threshold was set to the median or upper
quartile value of the perplexity. Therefore, half (or 75%) of
this corpus was discarded.

3.2. Target Language Modeling

Neural networks, working on top of conventional n-gram
models, have been introduced in [15, 16] as a potential
means to improve conventional n-gram language models
(LMs). However, probably the major bottleneck with stan-
dard NNLMs is the computation of posterior probabilities in
the output layer. This layer must contain one unit for each
vocabulary word. Such a design makes handling of large vo-
cabularies, consisting of hundreds thousand words, infeasi-
ble due to a prohibitive growth in computation time. While
recent work proposed to estimate the n-gram distributions
only for the most frequent words (short-list) [16], we ex-
plored the use of the SOUL (Structured OUtput Layer Neural
Network) language model for SMT [17], which allowed us to
handle output vocabularies of arbitrary sizes.

Moreover, in our setting, increasing the order of standard
n-gram LM did not show any significant improvement. This
is mainly due to the data sparsity issue and to the drastic in-
crease in the number of parameters that need to be estimated.
With NNLM however, the increase in context length at the
input layer results in only a linear growth in complexity in
the worst case [16]. Thus, training longer-context neural net-
work models is still feasible, and was found to be very effec-
tive in our system.

3.3. Baseline n-gram Back-off Language Models

The baseline French language model was developped for the
WMT shared task, and we assumed that the test set consisted
off a selection of news texts dating from the end of 2010 to

the beginning of 2011. This assumption was based on what
was done for the WMT 2010 evaluation. Thus, we built a
development corpus in order to optimize the vocabulary and
the target language model.

In order to cover different periods, two development sets
were used. The first one is newstest2008. This corpus is two
years older than the targeted time period; therefore, a second
development corpus named dev2010-2011 was collected by
randomly sampling bunches of 5 consecutive sentences from
the provided news data of 2010 and 2011.

To estimate such large LMs, a vocabulary was first de-
fined for each language by including all tokens observed in
the Europarl and News-Commentary corpora. This vocabu-
lary was then expanded with all words that occur more than
5 times in the French-English GigaWord corpus, and with
the most frequent proper names taken from the monolingual
news data of 2010 and 2011. This procedure resulted in a
vocabulary containing around 500k words.

All the training data allowed in the constrained task were
divided into 7 sets based on dates or genres. On each set, a
standard 4-gram LM was estimated from the 500k words vo-
cabulary using absolute discounting interpolated with lower
order models [18, 19].

All LMs except the one trained on the news corpora from
2010-2011 were first linearly interpolated. The associated
coefficients were estimated so as to minimize the perplexity
evaluated on dev2010-2011. The resulting LM and the 2010-
2011 LM were finaly interpolated with newstest2008 as de-
velopment data. This procedure aims to avoid overestimating
the weight associated to the 2010-2011 LM.

3.4. The SOUL Model

We give here a brief overview of the SOUL LM; refer to [17]
for the complete training procedure. Following the classi-
cal work on distributed word representation [20], we assume
that the output vocabulary is structured by a clustering tree,
where each word belongs to only one class and its associated
sub-classes. If wi denotes the i-th word in a sentence, the se-
quence c1:D(wi) = c1, . . . , cD encodes the path for the word
wi in the clustering tree, with D the depth of the tree, cd(wi)
a class or sub-class assigned to wi, and cD(wi) the leaf asso-
ciated with wi (the word itself). The n-gram probability of
wi given its history h can then be estimated as follows using
the chain rule:

P (wi|h) = P (c1(wi)|h)
D∏

d=2

P (cd(wi)|h, c1:d−1)

Figure 2 represents the architecture of the NNLM to estimate
this distribution, for a tree of depth D = 3. The SOUL ar-
chitecture is the same as for the standard model up to the
output layer. The main difference lies in the output structure
which involves several layers with a softmax activation func-
tion. The first softmax layer (class layer) estimates the class
probability P (c1(wi)|h), while other output sub-class lay-
ers estimate the sub-class probabilities P (cd(wi)|h, c1:d−1).
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Figure 2: Architecture of the Structured Output Layer Neural
Network language model.

Finally, the word layers estimate the word probabilities
P (cD(wi)|h, c1:D−1). Words in the short-list are a special
case since each of them represents its own class without any
sub-classes (D = 1 in this case).

4. Developing TED systems
All our systems are two-pass systems, where a first decod-
ing with n-code provides us with lists of n-best hypotheses;
these n-best are lists are then reevaluated using continuous
space language models. All the language models involved in
these systems were subject to domain adaptation. We first
discuss experiments with the adaptation of the core models,
before presenting adaptation of the SOUL LMs.

4.1. Domain adaptation in n-code

As described in the section 2.1, n-code makes its decisions
based on a set of probabilistic scores; three of them play a
major role in shaping good translation hypotheses: the source
reordering model, the bilingual translation model, and the
target language model. Given that our initial attempts at
adapting the reordering component have not shown any im-
provement, we therefore decided to focused on the other two
models. For the bilngual and monolingual language models,
we compared the three following approaches:

(i) use only small in-domain models built with the sole
TED data provided for the IWSLT translation task;

(ii) use the out-of-domain models built for the WMT 2011
evaluation; these models where initially built for News
data and the only adaptation was to retune the system
on TED development data;

(iii) combine in- and out-of-domain data and/or models.

The first and third lines of Table 1 illustrate the results of
the two baselines (i) and (ii): the system built only with the
in-domain data and the system built for WMT after retuning.
Even if the WMT system was designed for a different task,
the joint effect of a large amount of training data and the
newly optimized weights seems sufficient to obtain a system
that clearly outperforms the small in-domain system.

The strategy (iii) can be implemented in many different
ways. For the bilingual model (BiLM), we consider two
adaptation schemes: simply pool together all the available
parallel data and trained a new bilingual model from scratch
(ALL), or keep two distinct models and use the ability of
n-code to take information from several bilingual models
(WMT+TED). This second approach is attractive as it let the
discriminative optimization adjust the weight of the in- and
out-of-domains models, so as to get the best BLEU score on
the development data set. It is also easier to implement, as it
does not need to rebuild a new LM, but rather use the existing
ones as they are.

For the target language model (TrgLM), we also com-
pared two approaches. The first is the linear interpolation
approach, where the interpolation coefficients are estimated
in order to optimize the perplexity of the development data
(BIG). The alternative (discriminative log-linear interpola-
tion) is similar to the method used for the bilingual model
and is also denoted (WMT+TED).

The results of all the various tested combinations are in
Table 1. All these numbers are obtained with several (at least
4) runs of MERT, so as to minimize the chances of an acci-
dentally good (or poor) run.

BiLM TrgLM dev test
TED TED 31.4 26.0
TED BIG 33.8 28.0
WMT WMT 32.9 26.9
WMT WMT + TED 33.5 27.3
WMT BIG 33.2 27.5
WMT + TED WMT 32.6 27.2
WMT + TED WMT + TED 33.1 27.4
WMT + TED BIG 33.3 27.7
ALL WMT 33.3 28.1
ALL WMT + TED 33.5 27.4
ALL BIG 33.9 28.2

Table 1: Translation results for the different combinations of
monolingual and bilingual models. (BLEU)

Both strategies for adapting the monolingual model have
succeeded in providing us with modest gains: compare, for
instance, the results of the systems with TrgLM=WMT with
the ones where TrgLM=WMT+TED: in all situations, an
BLEU improvement is observed on the development data.
Surprisingly, the linear-combination, which optimizes the
perplexity, works slightly better (lines with TrgLM=BIG)
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than the log-linear combination, and these improvements
carry over on our internal test set.

The adaptation of the bilingual model was also quite suc-
cessful: both adaptation strategies improve performance over
the corresponding baseline system. Small improvements are
obtained even with adapted LMs (compare the lines with
BiLM=WMT and BiLM=WMT+TED with the adapted tar-
get LM BIG). Again, it seems that retraining the model
with all the in- and out-domain data is here slightly better
(BiLM=BIG) than combining the models directly through
MERT. The latter strategy is however much less costly, as
training the small TED BiLM is done at almost no cost, com-
pared to the time needed to recompute the ALL bilingual LM
from scratch.

The overall conclusion of these experiments are some-
what disappointing, since pooling all the available parallel
training data was found to be better than performing a com-
bination at the model level. We do not have a good expla-
nation for this observation: one hypothesis is that our tuning
procedure resulted in models that were too close to the de-
velopment data, and did not generalize on our internal tests;
another hypothesis is that the TED model is too small to pro-
vide MERT with consistent assessments of translation hy-
potheses. In any case, complementary analyses are needed
to better understand these results.

4.2. Adaptation in SOUL

For these evaluations, our baseline SOUL models are also the
ones developed on News data for the WMT’11 evaluation.
Details regarding these models are given in [8]. It suffices
here to say that these baseline models use a history of 10
words, and that their development involves a combination of
four different neural networks, each of which is trained on a
randomly selected subpart of the whole French monolingual
data. The only adaptation that is performed with these mod-
els consists in retuning their weight in the linear combination
of weights use to reevaluate the n-best lists.

These models were adapted by run a small number of ad-
ditional iterations using the entirety of the TED monolingual
data. Results are given in Table 2.

BiLM TrgLM NN-model dev test
WMT+TED WMT+TED SOUL 33.24 28.21
WMT+TED WMT+TED SOUL+TED 33.74 28.50
ALL BIG SOUL 34.51 29.31
ALL BIG SOUL+TED 34.79 29.50

Table 2: Reranking results using the SOUL language model,
without and with domain adaptation. (BLEU)

As was already observed in several experiments, using
the large continuous space language models provides a clear
improvement over the baseline: rescoring with SOUL im-
proves the score of approximately one BLEU point. Interest-
ingly, these improvements are attained with translation and

target language models that have already been adapted, when
the SOUL model has only seen News data. Adapting the
SOUL model with in-domain data does even slightly bet-
ter: compared to the initial WMT baseline, the total accumu-
lated improvement of adaptation is approximately +2.5 bleu
points.

Most of the results presented above have been obtained
as the result of post-evaluation analyses. Our primary sub-
mission for the official TED task uses two separate bilingual
models, as well as two separated target language models, and
a non-adapted SOUL LM; the corresponding results are re-
ported in [21].

5. Conclusion
In this paper, we presented LIMSI’s submission for
IWSLT’2011 text translation task. These results were ob-
tained using our in-house n-code system, which implements
th n-gram based approach to SMT. One convenient feature
of n-code is its ability to handle a arbitrary number of bilin-
gual and target side language models, a facility which makes
domain adaptation straightforward: it suffices to incorporate
all the available in- and out-of-domain models in the log-
linear combination and let the tuning procedure determine
the best mixture weights. In particular, models computed for
other purposes can be reused as they are, and do not need to
be retrained. In this evaluation, this strategy was somewhat
sub-optimal, as better results on the internal test data were
obtained by pooling the available data and/or models prior
to MERT training. These unexpected results may be due to
a small mismatch between our development and test condi-
tions. We were much more successful in our use of n-best
rescoring with continuous space language models, a strategy
that again provided us with clear gains with respect to the
baseline; we also showed that these gains are even higher
when the continuous space models are also adapted.
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