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ABSTRACT 

We describe our Universal Parser Architecture and its use in a speech translation 
system, based on the Machine Translation system under development at the Center for 
Machine Translation at Carnegie Mellon. To "understand" natural language, a system 
must have syntactic knowledge of the language and semantic knowledge of the domain. 
The Universal Parser Architecture allows grammar writers to develop these kinds of 
knowledge separately in a declarative manner, and the compiler/interpreter integrates 
these two knowledge bases dynamically in order to parse input sentences. We recently 
integrated our system with a speech recognition system to accept spoken sentences (rather 
than typed sentences) by extending our runtime parser component to handle "noisy" 
phoneme sequences (of spoken utterances) that possibly include recognition errors. The 
nature of this modification is explained and examples are presented. We find our archi- 
tecture very suitable for speech translation, as it combines the use of domain semantic 
knowledge with a highly efficient runtime parsing algorithm, thus accommodating the 
increased search space necessary for parsing speech input. 

1. INTRODUCTION 

To "understand" natural language, a system must have syntactic know- 
ledge of the language and semantic knowledge of the domain. We want to 
separate these kinds of knowledge so that semantics for any given domain 
can be used for many languages and the syntactic grammar for any given 
language can be used for many different domains. The Universal Parser 
Architecture allows grammar writers to develop these kinds of knowledge 
separately in a modular manner, and the compiler/interpreter integrates 
these two knowledge bases dynamically in order to parse input sentences. 
We believe that, for future systems, this architecture is essential in a software 
engineering sense, as grammars are getting larger and more complex in 
practical applications such as knowledge-based machine translation 
systems. In essence, we are building a "Parser Factory" whose raw materials 
are syntactic grammars and domain knowledge bases, whose machinery is 
the Universal Parser Compiler, and whose output is integrated semantic/ 
syntactic runtime parsing systems. Such systems are very efficient, but not 
necessarily human-readable in their compiled form. 
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The Universal Parser Architecture has been employed in CMU's multi- 
lingual machine translation system. We recently integrated our system with 
a speech recognition system to accept spoken sentences (rather than typed 
sentences) by extending our runtime parser component to handle "noisy" 
phoneme sequences (of spoken utterances) that possibly include recogni- 
tion errors. There are four major reasons why we feel that a knowledge- 
based system such as the Universal Parser is appropriate for speech trans- 
lation. First, speech translation is always final (human post-editing is not 
applicable to speech); thus it must be accurate, which requires the compre- 
hension available from a knowledge-based system. Second, speech utteran- 
ces often contain elliptical, anaphoric or syntactically ill-formed expres- 
sions, which require knowledge-based analysis in order to be resolved. 
Third, a speech system must respond in real time, and requires an efficient 
algorithm such as ours. Fourth, a speech parsing system must be able to 
handle recognition errors made by its speech recognition device; this greatly 
increases the necessary search space, which can be constrained by the use 
of knowledge, but still requires a highly efficient algorithm. 

In this paper, we first describe the Universal Parser Compiler and its 
knowledge sources, and then explain our Generalized LR Parsing algorithm, 
and its extension to handle speech recognition, with examples. 

Section 2 describes the components of the Universal Parser Compiler. 
We use the Pseudo Unification Grammar formalism, which is in a similar 
notation to that of the Unification Grammar formalism, for representing 
linguistic (syntactic) knowledge. For the representation of domain semantic 
knowledge, we adopt FrameKit, which is a frame representation system 
developed at Carnegie Mellon University. The Universal Parser Compiler 
compiles these knowledge bases and produces the Augmented Context-Free 
Grammar (ACFG) for runtime parsing. An ACFG is essentially a list of 
context-free phrase structure rules, to each of which is attached a LISP 
program (augmentation) (2). These LISP programs are further compiled 
into machine code using the standard LISP compiler. The phrase structure 
part of the ACFG is also compiled further into a Generalized LR parsing 
table for the Generalized LR parsing algorithm described in Section 3.2. 

Section 3 outlines the Generalized LR parsing algorithm, the runtime 
parsing algorithm for the compiled grammar, and goes on to show how it is 
modified for use in speech recognition. It is an LR parsing algorithm exten- 
ded to handle arbitrary context-free grammars. A graph-structured stack, 
the key to the way the Generalized LR algorithm handles nondeterminism 
in stack operations, is described. We then show how this algorithm is exten- 
ded to handle spoken input, i.e., noisy phoneme sequences of Japanese 
utterances produced by an experimental continuous speech recognition 
system developed by Matsushita Research Institute. An extended example 
is used to illustrate the workings of the modified algorithm. 

Some concluding remarks are made in section 4. Appendix I contains 
actual sample outputs from our speech translation system. 
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2. THE UNIVERSAL PARSER ARCHITECTURE 

Multi-lingual systems require parsing multiple source languages, and 
thus a universal parser, which can take a language grammar as input (rather 
than building the grammar into the interpreter proper) is much preferred 
for reasons of extensibility and generality. When dealing with multiple lan- 
guages, the linguistic structure is no longer a universal invariant that trans- 
fers across all applications (as it was for pure English language parsers), but 
rather is another dimension of parameterization and extensibility. However, 
semantic information can remain invariant across languages (though, of 
course, not across domains). Therefore, it is crucial to keep semantic know- 
ledge sources separate from syntactic ones, so that if new linguistic infor- 
mation is added, it will apply across all semantic domains, and if new se- 
mantic information is added it will apply to all relevant languages. The 
question, of course, is how to accomplish this factoring, and how to accom- 
plish it without making major concessions to either run-time efficiency or 
semantic accuracy. 

The idea of the Universal Parser is depicted in figure 2-1. There are three 
kinds of knowledge sources: one containing syntactic grammars for diffe- 
rent languages, one containing semantic knowledge bases for different do- 
mains, and one containing sets of rules which map syntactic forms (words 
and phrases) into the semantic knowledge structure. Each of the syntactic 
grammars is totally independent of any specific domain, and likewise, each 
of the semantic knowledge bases is totally independent of any specific lan- 
guage. The mapping rules are both language- and domain-dependent, and a 
different set of mapping rules is created for each language/domain combi- 
nation. Syntactic grammars, domain knowledge bases, and mapping rules 
are written in a highly abstract, human-readable manner. This organization 
makes them easy to extend or modify but possibly machine-inefficient for a 
run-time parser. The grammar compiler takes one of the syntactic grammars 
(say Language Li) and one of the domain knowledge bases (say Domain 
Dj, along with the appropriate set of mapping rules (in this case, Mapping 
Li Dj), and produces one large grammar which contains both syntactic and 
semantic information. Such compilation proceeds off-line, producing a 
compiled grammar that need not be human-readable, but must be machine- 
efficient in terms of on-line run-time parsing speed. The pre-compiled 
grammar, in essence, consists of the legal subset of the cross product of Li 
and Dj, cross-indexed and optimized for efficient machine access and 
computation. When the user inputs sentences in Language Li (and Domain 
Dj), the run-time parser parses the sentences very efficiently, referencing 
only the compiled grammar, and producing semantic representations of 
the sentences. 

We adopt semantic case frames for domain knowledge representation 
and the Pseudo Unification Grammar formalism for syntactic grammar 
representation. The run-time grammar produced by the multi-phase Uni- 
versal Parser Compiler is an augmented context-free grammar (ACFG) 
which is further compiled into a generalized LR table to be used by a run- 
time parser based on the Generalized LR parsing algorithm [8], which is 
described  briefly  in section 3.2.    The  various  types  of  knowledge  sources 
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Figure 2-1.: Universal Parser Concept 
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used by the Universal Parser Compiler are described in detail in the follo- 
wing subsections. 

2.1. Representation of Domain Semantic Knowledge 

The semantic frame representation embodies domain knowledge in a 
language-neutral knowledge representation. We build an inheritance hie- 
rarchy of frames representing concepts. Each frame represents a different 
concept such as an object, action, state, process, etc. In addition to typing 
information, the frames encode semantic restriction information that pre- 
vents non-productive combinations from being computed. (For instance, 
only visible objects may have a color attribute.) We use the Framekit [5] 
knowledge representation language to encode domain semantic knowledge. 
Framekit is a general-purpose frame representation language developed at 
CMU. 

To date, we have developed two different domains for use with the Uni- 
versal Parser: doctor-patient conversations and personal computer ma- 
nuals. The personal computer manual domain contains frames for concepts 
such as the personal computer, its various parts, actions such as turning 
switches on and off, etc. Frames in the doctor-patient domain include 
*HAVE-A-SYMPTOM (an event frame), and object frames for symptoms, 
body parts, pain, etc. Higher-level frames such as the overall concept defini- 
tions for actions and time expressions are similar across both domains. 

Here are some sample frames from the domain of doctor-patient con- 
versations. This domain is targeted primarily at the patient's initial discus- 
sion with the doctor about some physical complaint. 

(*INGEST-MEDICINE 
(is-a (value *ACTION)) 
(:object (sem *MEDICINE)) 
(:ingest-with (sem *FOOD *MEDICINE)) 
) 

(TREATMENT-SUBSTANCE 
(is-a (value *NOMINAL)) 
(:quant (sem *QUANTITY)) 
) 

(*MEDICINE 
(is-a (value *TREATMENT-SUBSTANCE)) 
(:quant (sem *MEDICINE-QUANTITY)) 
(:name (sem *NOMINAL)) 
) 

Here is an example of the format of actual parser output for the sentence 
"Did you take aspirin three hours ago" using the frames above. 
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(((:CFNAME *INGEST-MEDICINE) (:MOOD QUES) 
(:AGENT 
 ((:CFNAME *PATIENT) (:HUMAN +) (:PRO +) 
  (:NUMBER SG PL) (:PERSON 2))) 
(:TIME PAST) 
(:WHEN 

((:CFNAME *TIME) 
(:TIME-RELATION 

   ((:CFNAME * TIME-RELATION) (DIRECTION -) 
     (:INTERVAL ((:CFNAME *DURATION) (:HOUR 3))))))) 
(:OBJECT 
((:CFNAME * MEDICINE) 
(:QUANT ((:CFNAME *MEDICINE-QUANTITY))) 
(:NAME *ASPIRIN))))) 

2.2. Representation of Linguistic Knowledge 

We express the grammar of each particular language in a grammar 
formalism called Pseudo Unification Grammar. Unlike Unification Gram- 
mar formalisms, which are based on the operation called unification, the 
Pseudo Unification Grammar formalism is based on the operation called 
pseudo unification. The pseudo unification does not exactly do the unifica- 
tion, but it does something very close (3). On the other hand, implementation 
of pseudo unification is much simpler than that of standard unification, 
especially with disjunctions, structure sharing, and other complicated 
phenomena. 

Here is an example of a Pseudo Unification Grammar rule. This rule is 
designed to capture a simple declarative sentence in English. 

(<DEC> ↔ (<NP> <VP>) 
(((xl case) = nom) 
 ((x2 form) =c finite) 
 (*OR* 
(((x2 :time) = present) 
 ((xl agr) = (x2 agr))) 
(((x2 :time) = past))) 
(x0 = x2) 
 ((x0 passive) = -) 
 ((x0 subj) = xl))) 

A grammar rule consists of a context-free phrase structure rule followed 
by a list of pseudo equations. Pseudo equations are similar to the PATR-II 
notation [6]. "x0" refers to the functional structure corresponding to the left 
hand side of the rule. "xl" and "x2" refer to the first and second element of 
the right hand side of the rule, respectively. The equations in the above 
example roughly state: 
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The case of the noun phrase must be nominative; the form of the 
verb phrase must be finite; if the tense of the verb phrase is present, then 
agreements of the noun phrase and verb phrase must agree, or the tense 
must be past; "x0"(<S>) inherits all features from the verb phrase; and 
make it (passive -); and create a subject slot and put all the noun phrase 
features into that slot. 

Besides ordinary equations, the following practical features are available 
in the Pseudo Unification Grammar formalism. 
— Arbitrary LISP function calls. This feature is particularly useful when 

we want to do some kind of semantic processing or inference in parallel 
to the syntactic parsing. 

— A *MULTIPLE* operator for assigning multiple values. This feature is 
particularly useful for adjuncts and conjunctions. 

— A *NOT* operator for negation. 
— *DEFINED* and *UNDEFINED* operators to check if a particular 

attribute is defined (undefined). 
— A Wild Card symbol to match with any word. This is particularly useful 

for parsing proper nouns. 

A grammar can be interpreted on a character-by-character basis, rather 
than a word-by-word basis; that is, terminal symbols of a grammar are 
characters, not words. It is so designed with a view to the use of this system 
for unsegmented languages such as Japanese, in which there are no boun- 
dary spaces between words, as well as for continuously spoken sentences, 
which are sequences of phonemes with no clear word boundary as described 
in section 3. One benefit of this character-based feature is that the lexical 
dictionary and the morphological rules can be written in the same formalism 
as the syntactic rules. 

2.3. The Lexicon/Concept Mapping Rules 

The mapping rules are that portion of the knowledge sources which is 
both domain- and language-dependent. Their function is to unite the con- 
cept frame definitions for a particular domain with the syntactic rules for a 
given language. Each mapping rule consists of a frame name and the syn- 
tactic elements associated with that concept in a given language. 

In any language, one can use different syntactic structures to express a 
given set of concepts. For example, the sentences "I have a pain in the sto- 
mach" and "I have a stomach ache" refer to the same concepts. The mapping 
rules allow us to associate differing syntactic f-structures with the same se- 
mantic representation. On the other hand, a word can have different mea- 
nings depending upon the context in which it is used. For example, the 
English verb take is used in various ways in the doctor-patient domain: 

I take the medicine every day. 
I took a hot bath. 
I took my temperature. 
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In order to differentiate among these three kinds of actions, we need to 
associate the first take with the *INGEST-MEDICINE frame, the second 
with the *BATHE frame, and the third the *MEASURE frame. The mapping 
rules allow us to associate a single word with different semantic representa- 
tions depending upon the syntactic structure within which the word is used. 

Each of the frames in the concept lexicon needs to connect to a certain 
level of syntactic structure. In order to do this, we first have to specify which 
frames take which root in the f-structures. Sentential frames, such as 
*BATHE and *INGEST-MEDICINE, require verb roots, whereas nominal 
frames, such as *PAIN and *BODY-PART, take noun roots. We associate 
frame names with lexical roots as follows: 

Sentential frames: 
(*INGEST-MEDICINE   ↔   (*OR* take swallow)) 
(*BATHE ↔    bathe) 

Nominal frames: 
(*PAIN ↔   (*OR* pain ache)) 
(*BODY-PART ↔   stomach) 

Notice that take and swallow, or pain and ache are treated as synony- 
mous in the rules because both words can occur in the same syntactic struc- 
ture without changing the meaning of the sentence: 

I took two tablets of aspirin. 
I swallowed two tablets of aspirin. 

I have a pain in my stomach. 
I have an ache in my stomach. 

After putting the verb roots in each rule, we need to specify syntactic 
restrictions for matching the frame. In this example, we compare the frame 
definition of *INGEST-MEDICINE with the sentences which we want to 
map: 

Take Tylenol. 
I took three tablets of aspirin. 
I swallowed two aspirin with a glass of milk. 

(*INGEST-MEDICINE 
(is-a (value *PATIENT-ACTION)) 
(:object (sem *MEDICINE)) 
(:ingest-with (sem *FOOD *MEDICINE))) 

'Tylenol', 'three tablets of aspirin', and 'two aspirin' are objects taken or 
swallowed, and are associated with the :object slot of the *MEDICINE 
frame. They also are the syntactic objects of the sentences shown, called obj 
in the syntactic f-structure. 'A glass of milk' is something that we take the 
medicine  with,  so  it  fills  the :ingest-with slot in this frame;  and syntactically 
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it is a ppadjunct. Thus, we need to write the following mapping rule for the 
*INGEST-MEDICINE frame: 

(*INGEST-MEDICINE   ↔ (*OR* take swallow) 
((:object  ↔ (obj)) 
((:ingest-with) ↔ (ppadjunct (prep = with))))) 

Notice that we need to specify the preposition of ppadjunct as a con- 
straint. Otherwise, any ppadjunct can be mapped onto this slot if it contains 
food or medicine in its NP. 

The following examples contain three frames, and each frame is follo- 
wed by Japanese, English and French mapping rules. The verbs itadaku 
and have can be used for both solid foods and liquid foods (but note that 
there is no such verb in French). Therefore, these verbs are mapped onto the 
more general frame, *INGEST-FOOD. On the other hand, the verbs taberu, 
eat and manger are used with solid foods, since we cannot say ,*he eats milk'. 
Thus, these verbs are mapped onto the *INGEST-SOLID-FOOD frame. 

(f *INGEST-FOOD 
(is-a (value *PATIENT-ACTION)) 
(:object (sem *FOOD)) 
(:quant (sem *FOOD-QUANTITY)) 
) 

(jpn *INGEST-FOOD ↔ itadaku 
(:quant ↔ (advadjunct)) 
(:object ↔ (obj))) 

(eng *INGEST-FOOD ↔ have 
(:object ↔ (obj))) 

(f *INGEST-SOLID-FOOD 
(is-a (value *INGEST-FOOD)) 
:object (sem *SOLID-FOOD)) 
) 

(jpn *INGEST-SOLID-FOOD ↔ taberu 
(:object ↔ (obj))) 

(eng *INGEST-SOLID-FOOD ↔ eat 
(:object ↔ (obj))) 

(fre *INGEST-SOLID-FOOD ↔ manger 
(:object ↔ (obj))) 

(f *NGEST-LIQUID-FOOD 
(is-a (value *INGEST-FOOD)) 
(:object (sem *LIQUID-FOOD)) 

      ) 
(jpn *INGEST-LIQUID-FOOD ↔ nomu 

(:object ↔ (obj))) 
(eng *INGEST-LIQUID-FOOD ↔ drink 

(:object ↔ (obj))) 
(fre *INGEST-LIQUID-FOOD ↔ boire 

(:object ↔ (obj))) 

65 



2.4. Augmented Context-Free Grammar for Runtime 

The Universal Parser Compiler takes the three knowledge sources 
described in the previous subsections, and produces a runtime grammar in 
the formalism called Augmented Context-Free Grammar (ACFG). An 
ACFG is essentially a list of context-free phrase structure rules, except that 
we attach a LISP function to each phrase structure rule. Whenever consti- 
tuents are reduced into a higherlevel nonterminal using a phrase structure 
rule, the LISP program associated with the rule is evaluated. The LISP pro- 
gram handles such aspects as constructing a syntactic/semantic representa- 
tion of the input sentence, passing attribute values among constituents at 
different levels, and checking syntactic/semantic constraints. 

If the LISP function returns NIL, the rule will not be used. If the LISP 
function returns a non-NIL value, then this value is given to the newly crea- 
ted non-terminal. The value includes attributes of the nonterminal and of 
the partial syntactic/semantic representation constructed thus far. It is im- 
portant to emphasize that, at runtime, all the parser has to do in order to 
perform complex syntactic/semantic operations is to simply evaluate (i.e., 
run) the LISP programs. Notice that those LISP functions can be precompi- 
led into machine code by the standard LISP compiler. 

3. PARSING SPOKEN SENTENCES 

This section describes the Generalized LR parsing algorithm, and 
shows how it can be extended to handle "noisy" sentences that possibly in- 
clude errors due to a speech recognition device. Our parser is connected to a 
speech recognition device which takes a continuously spoken sentence in 
Japanese and produces a sequence of phonemes. The Japanese grammar in 
the Pseudo Unification Grammar formalism is written in such a way that its 
terminal symbols are morphemes; thus the morphological rules and the 
phonological rules are written in the same formalism. This means that the 
runtime grammar compiled by the Universal Parser Compiler includes all 
of the lexical, phonological, morphological, syntactic and domain seman- 
tic knowledge. The Generalized LR parsing algorithm has been adopted 
and modified to handle recognition errors made by the speech recognition 
device. 

The have been a few attempts to integrate a speech recognition device 
with a natural language understanding system. Hayes et. al [7] adopted the 
technique of caseframe instantiation to parse a continously spoken English 
sentence in the form of a word lattice (a set of word candidates hypothesized 
by a speech recognition module), and produce a frame representation of the 
utterance. Poesio and Rullent [1] suggested a modified implementation of 
the caseframe parsing to parse a word lattice in Italian. Lee et. al [2] develo- 
ped a prototype Chinese (Mandarin) dictation machine which takes a sylla- 
ble lattice (a set of syllables, such as [guo-2] and [tieng-1], hypothesized by a 
speech recognition module) and produces a Chinese character sequence 
which is both syntactically and semantically sound. 
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We try to parse a Japanese utterance in the form of a sequence of pho- 
nemes. (4) Our speech recognition device, which was developed by Mat- 
sushita Research institute [3, 4], takes a continuous speech utterance, for 
example "megaitai" ("I have a pain in my eye."), from a microphone and 
produces a noisy phoneme sequence such as "ebaitaai" (5). The speech re- 
cognition device does not have any syntactic or semantic knowledge. More 
input/output examples of the speech device are presented in figure 3-1. 

correct sequence of phonemes       output of the recognition device 
ingamukamukasuru →           ingangukamukusjuru 

ingamukamonkasjuru 
kubingakowabaqteiru → kubingakooboqteiiru 

kubingakooboqtuingju 
atamangaitai → otomongaitai 

atamongeitain 

Figure 3-1 : Input and Output of the Speech Recognition Device 

3.1. Coping with Recognition Errors 

Note that the speech recognition device produces a phoneme sequence, 
not a phoneme lattice ; that is, there are no other phoneme candidates avai- 
lable to alternate with any phoneme actually presented by the recognition 
device. We must make the best guess about possible alternate phonemes, 
based solely on the phoneme sequence generated by the speech device. 
Errors caused by the speech device can be classified into three groups : 

— Altered Phonemes -- Phonemes recognized incorrectly. The second 
phoneme /b/ in "ebaitaai" is an altered phoneme, for example. 

— Missing Phonemes — Phonemes not recognized by the device which are 
actually spoken. The first phoneme /m/ in "megaitai" is a missing pho- 
neme, for example. 

— Extra Phonemes -- Phonemes recognized by the device which are not 
actually spoken. The penultimate phoneme, /a/, in "ebaitaai" is an extra 
phoneme, for example. 

To cope with these problems, we need: 

1, A very efficient parsing algorithm, as our task requires much more search 
than conventional typed sentence parsing. 

2. A good scoring scheme to select the most likely sentence out of multiple 
candidates. 

To cope with altered, extra and missing phonemes, the parser must con- 
sider these errors as it parses an input from left to right. The Generalized LR 
Parsing Algorithm is well suited to consider many possibilities at the same 
time, and therefore, it can be relatively easily modified to handle noisy 
phenomena: 
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— altered phonemes 
  Each phoneme in a phoneme sequence may have been altered and thus 

may be incorrect. The parser has to consider all these possibilities. We 
can create a phoneme lattice dynamically by placing alternate phoneme 
candidates in the same location as the original phoneme. Each possibi- 
lity is then explored by each branch of the parser. Not all phonemes can 
be altered to any other phoneme. For example, while /o/ can be mis- 
recognized as /u/, /i/ can never be mis-recognized as /o/. This kind of 
information can be obtained from a confusion matrix, which we shall 
discuss in the next section. With the confusion matrix, the parser does 
not have to exhaustively create alternate phoneme candidates. 

— missing phonemes 
Missing phonemes can be handled by inserting possible missing pho- 
nemes between two real phonemes. The parser assumes that at most one 
phoneme can be missing between two real phonemes. 

— extra phonemes 
Each phoneme in a phoneme sequence may be an extra, and the parser 
has to consider these possibilities. We have one branch of the parser 
consider an extra phoneme by simply ignoring the phoneme. The parser 
assumes that at most one extra phoneme can exist between two real 
phonemes, and we have found the assumption quite reasonable and 
safe. 

3.2. Generalized LR Parsing 

Tomita [8, 10] introduced the Generalized LR Parsing Algorithm for 
Augmented Context-Free Grammars, which can ingeniously handle non- 
determinism and ambiguity with a graph-structured stack. Tomita also 
showed that it can be used for a word lattice parsing [9]. Our algorithm here 
is based on Tomita's parsing algorithm. 

A very simple example grammar is shown in Figure 3-2, and its LR par- 
sing table, compiled automatically from the grammar, is shown in Figure 3-3. 

(1) S → NP V 
(2) S → N 
(3) S → V 
(4) NS → N P 
(5) N → m e 
(6) N → i 
(7) P → g a 
(8) V → i t a i 

Figure 3-2 : An Example Grammar 
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Grammar symbols of lower case characters are terminals. The Genera- 
lized LR parsing algorithm is a table driven shift-reduce parsing algorithm 
that can handle arbitrary context-free grammars in polynomial time. Entries 
"s n" in the action table (the left part of the table) indicate the action ,"shift 
one word from input buffer onto the stack and go to state n". Entries "r n" 
indicate the action "reduce constituents on the stack using rule n. The entry 
"acc" stands for the action "accept", and blank spaces represent "error". 
The goto table (the right part of the table) decides to which state the parser 
should go after a reduce action. In case there are multiple actions in one 
entry, it executes all the actions with the graph-structured stack. We do not 
describe the Generalized LR parsing algorithm in any more detail, referring 
the reader to [8, 10, 9]. 

 

Figure 3-3 : LR Parsing Table with Multiple Entries 

3.3. A Sample Parse 

Using the grammar in Figure 3-2 and its LR table in Figure 3-3, let us try 
to parse the phoneme sequence "ebaitaai." (The correct sequence is "megai- 
tai" which means "I have a pain in my eye.") 

1    2    3    4    5    6    7    8   9    10  11   12  13   14  15   16  17 
|     |e   |     |b    |     |a    |     |i   |     |t     |      |a    |     |a    |      |i    | 

Figure 3-4: An input sequence of phonemes 

First an initial state 0 is created. The action table indicates that the ini- 
tial state is expecting "m" and "i" (Figure 3-5). Since the parsing strictly 
proceeds from left to right, the parser looks for the candidates of the missing 
phonemes between the first time frame 1-2. (We will use the term Tl, T2, ... 
for representing the time 1, time 2,... in Figure 3-4.) Only the phoneme ,"m" 
in this group is applicable to state 0. The new state number 5 is determined 
from the action table. 
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The next group of phonemes between T2 and T3 consists of the "e" 
phoneme in the phoneme sequence and the altered candidate phonemes of 
"e". In this group "e" is expected by state 5 and "i" is expected by state 0 
(Figure 3-7). After "e" is taken, the new state is 12, which is ready for the 
action "reduce 5". Thus, using the rule 5(N → m e), we reduce the phonemes 
"m e" into N. From state 0 with the nonterminal N, state 2 is determined 
from the goto table. The action table, then, indicates that state 2 has a multi- 
ple entry, i.e., state 2 is expecting "g" and ready for the reduce action (Figure 
3-8). Thus, we reduce the nonterminal N into S by rule 2(S → N), and the 
new state number 6 is determined from the goto table (Figure 3-9). The action 
table indicates that state 6 is an accept state, which means that "m e" is a 
successful parse. But only the first phoneme "e" of the input sequence 
"ebaitaai" is consumed at this point. Thus we discard this parse by the fol- 
lowing constraint. 

Constraint 1: The successful parse should consume the phonemes at 
least until the phoneme just before the end of the input sequence. 

Note that only the parse S in Figure 3-9 is ignored and that the nonter- 
minal N in Figure 3-8 is alive. 

Now we return to the Figure 3-7 and continue the shift action of "i". After "i" 
is taken, the new state 4 is determined from the action table. This state has a 
multiple entry, i.e. state 4 is expecting "t" and ready for the reduce action. 
Thus we reduce "i" into N by rule 6. Here we use the local ambiguity packing 
technique, because the reduced nonterminal is the same, the starting state is 
0 for both, and the new state is 2 for both. Thus we do not create the new 
nonterminal N. 

Now we go on to the next group of phonemes between T3 and T4. Only 
"m" is applied to the initial state (Figure 3-10). 

The next group of phonemes between T4 and T5 has two applicable 
phonemes, i.e. "m" to state 0 and "g" to state 2. After "g" is taken, the new 
state 7 is determined from the action table (Figure 3-11). 

The next group of phonemes between T5 and T6 has only one applica- 
ble phoneme; "m" to state 0. Here we can introduce another constraint 
which discards this partial-parse. 
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Constraint 2: After consuming two phonemes of the input sequence, no 

phonemes can be applied to the initial state 0. 
This constraint is natural because it is unlikely that more than two 

phonemes are recorded before the actual beginning phoneme for our speech 
recognition device. 

The next group of phonemes between T6 and T7 has two applicable 
phonemes, i.e. "a" to state 7 and "e" to state 5. After "a" is taken, the new state 
7 is ready for the reduce action. Thus, we reduce "g a" into P by rule 7 (Figure 
3-12). The new state 8 is determined by the goto table, and is also ready for 
the reduce action. Thus we reduce "N P" into NP by rule 4. The new state is 3. 
In applying "e", there are two "state 2"s : one is "m" between T1 and T2; the 
other one is "m" between T3 and T4. Here we can introduce a third constraint 
which discards the former partial-parse. 

Constraint 3: A shift action is not applied when the distance between 
the phoneme and the applied (non)terminal is more than 4. (This distance 
contains at least one real phoneme.) 

Figure 3-13 shows the situation after "e" is applied. 

The parsing continues in this way, and the final situation is shown in 
Figure 3-14 (a little simplified). 
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3.4. Scoring and the Confusion Matrix 

There are two main reasons why we want to score each parse: first, to 
prune the search space by discarding branches of the parse whose score is 
hopelessly low; second, to select the best sentence out of multiple candidates 
by comparing their scores. In the next two subsections, a simple scoring 
method without the confusion matrix and a more sophisticated scoring 
method with the confusion matrix are respectively described. 

3.4.1. Penalty 

Branches of the parse which consider fewer altered/extra/missing pho- 
nemes should be given higher scores. Whenever a branch of the parse 
handles an altered/extra/missing phoneme, a specific penalty is given to 
the branch. The following table indicates example scoring points. 

 real phoneme 10 
altered phoneme 8 

 extra phonemes 0 

                                  missing phonemes                                -6 

Real phonemes are given 10 points while other "fake" phonemes are 
given less. Since the higher score indicates better accuracy, we can just 
simply add scores of each phoneme as the parsing proceeds. 

3.4.2. The confusion Matrix 

Scoring accuracy can improve with the confusion matrix: 

 
INPUT     /a/      /o/       /u/      /i/      /e/      /j/     /w/      ...         (I)      (II) 

/a/ 93.8 1.1 1.3 0 2.7 0 0 0.9 5477 
/o/ 2.4 84.3 5.8 0 0.3 0 0.6 6.5 7529 
/u/ 0.3 1.8 79.7 2.4 4.6 0.1 0 9.7 5722 

      /i/ 0.2 0        0.9    91.2 3.5 0.7 0 2.9 6158 
/e/ 1.9 0 4.5 3.3   89.1 0.1 0 1.1 3248 
/j/ 0 0 1.1 2.3 2.2   80.1 0.3 11.4 2660 
/w/ 0.2 5.1 5.8 0.5 0 2.6    56.1 11.2 428 

(III)       327    176     564    512   290    864     212 

(I) rate of missing phonemes 
(II) total number of samples 
(III) number of extra phonemes 
 

Figure 3-15 : A Confusion Matrix (portion) 
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Figure 3-15 shows a part of the confusion matrix. This matrix tells us, for 
example, that if the phoneme /a/ is inputed, then the device recognizes it 
correctly 93.8 % of the time; mis-recognizes it as /o/ 1.1 % of the time, as /u/ 
1.3 % of the time, and so on. The column (I) says that the input is missed 0.9 % 
of the time. 

Conversely, if the phoneme /o/ is generated from the device, there is a 
slight chance that the original input was /a/, /u/ and /w/, respectively, but no 
chance that the original input was /i/, /e/ or /j/. The probability of the original 
input being /a/ is much higher than being /w/. Thus, an altered phoneme 
/w/ should be given a more severe penalty than /a/. 

See Appendix I for examples of actual parser output. 

4. DISCUSSION AND CONCLUDING REMARKS 

In this paper, we have described the Universal Parser Architecture for 
multi-lingual knowledge-based parsing systems, and its use in a speech 
translation system. The Universal Parser Architecture is very suitable for 
speech translation for two reasons : 
1. Domain semantic knowledge seems absolutely necessary to the task, and 
2. A very efficient algorithm is required at runtime, as the search space for 

parsing speech input is much larger than that for typed input, due to re- 
cognition errors. 

Preliminary results of integrating the Universal Parser Architecture and 
a speech recognition system have been presented. The results so far have 
been very promising in terms of both accuracy and speed (see Appendix I.). 

Future improvements are planned for the Universal Parser, to make it 
easier to write and alter grammars. It takes about 15-20 minutes to compile 
our largest grammar (with over 2000 rules) all the way into an augmented 
LR parsing table. For smaller grammars with 300 rules, it takes only a couple 
of minutes. We are developing an incremental compilation mode, in which 
the grammar writer does not have to compile everything each time he makes 
a small change to the grammar. We are also developing an interpreting 
mode, in which the grammar developer can test and debug his grammar 
without compilation, by sacrificing runtime efficiency. 

In the speech translation system, we plan to make more use of contextual 
knowledge, and to expand the coverage of the system within our test domain. 
Eventually we hope to add other domains, perhaps including portions of 
those under active development for our text translation system. 

I.  Appendix I: Some Sample Runs of the Speech Parser 

The actual output of our parser is shown in this appendix. The first 
subsection shows a run from an earlier version of the system, and the second 
subsection shows a run from the latest version. The earlier samples show 
that speech parsing can result in ambiguous parses with totally different 
meanings.    (This   implies   a  strong  need  for  contextual  analysis  in  future 
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systems.) Note that the later version is more accurate, and automatically 
generates the English translation as (typed) output. In the near future, the 
system will be connected to DECTALK in order to produce synthesized 
speech output. 

1.1. Earlier Version 

 

The input phoneme sequence is "atomo ba itai", which was intended to 
be "atama ga itai" (which means "I have a headache."). The parser actually 
produced two parses with the highest scores, 104 and 94. The parser prints 
out, for each parse, its score, its supposed phoneme sequence and its 
f-structure. 

1: (104)  A<2-3> T<4-5> A<6-7#8> M<8-9> A<10-11#8> 
G<12-13#8> A<14-15> I<16-17> T<18-19> A<20-21> 
I<22-23> 

((:MOOD DEC) (SEM *HAVE-A-PAIN441) 
 (OBJ((:WH -) (CASE GA) (SEM *HEAD) (ROOT ATAMA))) 
 (CAUSATIVE -) (OBJ-CASE GA) (SUBJ-CASE GA) 
 (SUBCAT 2ARG-GA) (CAT ADJ) (:TIME PRESENT) (ROOT ITAI)) 

2 : (94)    A<2-3> S<4-5#8> A<6-7#8> M<8-9> A<10-11#8> 
D<12-13#8> E<14-15#8> I<16-17> K<18-19#8> O<20-21#8> 
U<22-23#8> 

((:MOOD DEC) (SEM *PTRANS453) 
 (PPADJUNCT 
  ((PART MADE) (SEM *TIME) (ROOT *TIME) 

    (:DAY-SEGMENT ((:CFNAME *MORNING))))) 
 (SUBJ-CASE GA) (CAUSATIVE -) (PASSIVE -) (SUBCAT INTRANS) 
 (:TIME (*OR* PRESENT FUTURE)) (SIYOU +) (CAT V) (ROOT IKU)) 

Both parses are syntactically and semantically sound in the domain of 
doctor-patient conversation. The first parse "atamagaitai" means "I have a 
headache", which is the intended sentence. The second parse "asamadeikou" 
means something like "let us go until morning", which is also semantically 
(marginally) sound in the domain. 

1.2. Latest Version 

Using the same scoring system as the above, the later version produced 
preferred parses with substantially higher scores. Two sentences were spoken 
into the microphone. The sequence of phonemes after (tran) is what was 
outputted from the speech recognizer as its recognition of the input speech, 
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which is then supplied to the phoneme-based GLR parser. The result of the 
parse (an f-structure) was then supplied to our generator package, Genkit, 
to produce the English. Note that the elapsed real time is within the accep- 
table limits suggested earlier in this paper (20 seconds or less.) 

(tran) 
ATAMA*A*UKI*JUKISURU 
ACCEPTED ! 
Real time :   1.54 s 
Run time:     0.48 s 
1 parses found 
1 : (186)  A<2-3> T<4-5> A<6-7> M<8-9> A<10-11> 
                 *<12-13> A<14-15> Z<16-17#8> U<18-19> K<20-21> 
                 I<22-23> Z<24-25#8> U<28-29> K<30-31> I<32-33> 
                S<34-35> U<36-37> R<38-39> U<40-41> 
-- Direct vers. — 
((OBJECT ((LOCATION ((CFNAME *HEAD))) 
(CFNAME *PAIN) (PAIN-SPEC *THROBBING))) 
 (CFNAME *HAVE-A-SYMPTOM) 
 (MOOD DEC) 
 (TENSE PRESENT)) 

0 BAD parses found 
English : I HAVE A THROBBING PAIN IN THE HEAD 
NIL 

(tran) 
ME*EZIRIZIRISURU 
ACCEPTED! 
Real time :   18.26 s 
Run time :      0.54 s 
1 parses found 
1 : (154) M<2-3> E<4-5> *<6-7> A<8-9#8> H<10-11#8> I<12-13> 
               R<14-15> I<16-17> H<18-19#8> I<20-21> R<22-23> 
               I<24-25> S<26-27> U<28-29> R<30-31> U<32-33> 
-- Direct vers. — 
((OBJECT ((LOCATION ((CFNAME *EYE))) 
 (CFNAME *PAIN) (PAIN-SPEC *BURNING))) 
 (CFNAME *HAVE-A-SYMPTOM) 
 (MOOD DEC) 
 (TENSE PRESENT)) 

0 BAD parses found 
English : I HAVE A BURNING PAIN IN THE EYE 
NIL 
(dribble) 
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NOTES 

(1) Some portions of this paper are taken from the following papers : 
"Linguistic and Domain Knowledge Sources for the Universal Parser Architecture" 
by Tomita M, Kee M., Mitamura T. and Carbonell J.G.; in Terminology and Know- 
ledge Engineering. INDEKS Verlag, Frankfurt / M., 1987. 
"Parsing Noisy Sentences" by Saito H. and Tomita M.; in proceedings of COLING88, 
Budapest, 1988. 
We should also like to thank other members of the Center for Machine Translation 
for useful comments and advice. Funding for this project is provided by several 
private institutions and governmental agencies in the United States and Japan. 

(2) Note that these LISP programs, as well as phrase structure rules, are generated auto- 
matically by the compiler. 

(3) For more details on pseudo-unification, see the document "The Generalized LR 
Parser/Compiler Version 8.1: User's Guide", and its updates, available from the 
Center for Machine Translation at Carnegie Mellon. 

(4) Phonemes (e.g. /g/, /a/, /s/, etc.) are even lower level units than syllables. 
(5) We distinguish noisy from ill-formed. The former is due to recognition device errors, 

while the latter is due to human users. 

Address : Computer Science Department and Center for Machine Translation; 
Carnegie-Mellon University; 
Pittsburgh, Pa 15213, USA. 

Received: 3 November 1988. 

77 
 


