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Universidad de Valladolid, E-47011, Valladolid, Spain

Abstract

Large bilingual parallel texts (also known as bitexts) are usually stored in a compressed
form, and previous work has shown that they can be more efficiently compressed if the
fact that the two texts are mutual translations is exploited. For example, a bitext can
be seen as a sequence of biwords —pairs of parallel words with a high probability of co-
occurrence— that can be used as an intermediate representation in the compression process.
However, the simple biword approach described in the literature can only exploit one-to-
one word alignments and cannot tackle the reordering of words. We therefore introduce a
generalization of biwords which can describe multi-word expressions and reorderings. We
also describe some methods for the binary compression of generalized biword sequences,
and compare their performance when different schemes are applied to the extraction of
the biword sequence. In addition, we show that this generalization of biwords allows for
the implementation of an efficient algorithm to look on the compressed bitext for words or
text segments in one of the texts and retrieve their counterpart translations in the other
text —an application usually referred to as translation spotting— with only some minor
modifications in the compression algorithm.

1. Introduction

The increasing availability of large collections of multilingual texts has fostered the devel-
opment of natural-language processing applications that address multilingual tasks —such
as corpus-based machine translation (Arnold, Balkan, Meijer, Humphreys, & Sadler, 1994;
Lopez, 2008; Koehn, 2010; Carl & Way, 2003), cross-language information retrieval (Gross-
man & Frieder, 2004, Ch. 4), the automatic extraction of bilingual lexicons (Tufis, Barbu,
& Ion, 2004), and translation spotting (Simard, 2003; Véronis & Langlais, 2000). Other
applications, which are monolingual in nature —e.g., syntactic parsing (Carroll, 2003), or
word sense disambiguation (Ide & Véronis, 1998)— can also exploit multilingual texts by
projecting the linguistic knowledge available in one language into other languages (Mihalcea
& Simard, 2005).

A bilingual parallel corpus, or bitext, is a textual collection that contains pairs of doc-
uments which are translations of one another. The documents in a pair of this nature are
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sometimes called the source text and the target text, respectively. However, whenever the
information as to how the document was created is unknown or irrelevant, the documents
are simply called the left text and right text. In the words of Melamed (2001, p. 1), “bitexts
are one of the richest sources of linguistic knowledge because the translation of a text into
another language can be viewed as a detailed annotation of what that text means”.

Bitexts are usually available in a compressed form in order to reduce storage require-
ments, to improve access times (Ziviani, Moura, Navarro, & Baeza-Yates, 2000), and to
increase the efficiency of transmissions. However, the independent compression of the two
texts of a bitext is clearly far from efficient because the information contained in both texts
is redundant: in theory, one of the texts might be sufficient to generate a translated ver-
sion if reliable machine translation systems were already available (Nevill-Manning & Bell,
1992). The improvement in compression performance obtained when taking advantage of
the fact that the two texts in a bitext are mutual translations may be regarded as an indica-
tion of the quality of word alignments (Och & Ney, 2003). This indicator, which bounds the
mutual information (Cover & Thomas, 1991) in the two texts of a bitext, does not require
a manually-annotated corpus to evaluate the automatic alignment.

The first article dealing with the compression of bitexts was published by Nevill-Manning
and Bell (1992). This approach compressed one of the texts in isolation, while the other
was compressed by a general prediction by partial matching (PPM; Cleary & Witten, 1984)
encoder based on a model that used the automatic translation of the left text to predict
the words in the right text. This model exploited two types of relations —exact word
matches and synonymy relationships provided by a thesaurus— and the relative weight of
both predictions depended on the number of letters in the word that had been processed.
This approach obtained better compression ratios than a standard PPM coder operating
on the concatenated texts.

In contrast, Conley and Klein (2008) have proposed text alignment —that is, pairings
between the words and phrases in one text and those in the other—, as the basis for mul-
tilingual text compression. Their algorithm extends the ideas of delta-encoding (Suel &
Memon, 2003) to the case in which the right text R is a translated, automatically aligned,
version of the source text L: L is compressed first, and each block in R is then encoded
as a reference to the parallel block in L. This method requires the computation of word-
and phrase-level alignments, together with the lemmatized forms of L and R. The trans-
lated text is retrieved from these references, using a bilingual glossary together with other
linguistic resources: a lemmata dictionary of words in L, a dictionary with all the possible
morphological variants of each word in R, and a bilingual glossary. The authors report
slight improvements in the compression of the right text R in comparison to classical com-
pression algorithms such as bzip21 or word-based Huffman (Moffat, 1989) (approximately
1% and 6%, respectively). However, the authors do not take into consideration the size of
the auxiliary files needed for the retrieval of the right text.

In contrast to PPM, some text-compression methods use words rather than characters
as input tokens (Moffat, 1989; Moffat & Isal, 2005). Analogously, Mart́ınez-Prieto, Adiego,
Sánchez-Mart́ınez, de la Fuente, and Carrasco (2009), and Adiego and his colleagues (2009,
2010) propose the use of biwords —pairs of words, each one from a different text, with a high

1. http://www.bzip.org
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Figure 1: Processing pipeline of a biword-based bitext compression approach.

probability of co-occurrence— as input units for the compression of bitexts. This means
that a biword-based intermediate representation of the bitext is obtained by exploiting
alignments, and encoding unaligned words as pairs in which one component is the empty
string. Significant spatial savings are achieved with this technique (Mart́ınez-Prieto et al.,
2009), although the compression of biword sequences requires larger dictionaries than the
traditional text compression methods.

The biword-based compression approach works as a simple processing pipeline consisting
of two stages (see Figure 1). After a text alignment has been obtained without pre-existing
linguistic resources, the first stage transforms the bitext into a biword sequence. The
second stage then compresses this sequence. Decompression works in reverse order: the
biword sequence representing the bitext is first generated from the compressed file, and the
original texts are then restored from this sequence.

A variation of the PPM algorithm that takes words rather than characters as input
tokens and bytes rather than bits as minimal output units (Adiego & de la Fuente, 2006)
can be directly applied in order to compress biword sequences. The bitext is thus compressed
using a single probabilistic model for both texts —rather than the independent models used
by older bitext-compression approaches (Nevill-Manning & Bell, 1992; Conley & Klein,
2008). The improvement over general-purpose compressors obtained with this approach
depends on the language pair: for instance, a reduction in the output size of almost 11% is
obtained for Spanish–Portuguese, and of about 2.5% for English–French (Mart́ınez-Prieto
et al., 2009).

A different biword-based scheme called 2lcab has recently been proposed (Adiego et al.,
2009) which creates a two-level dictionary to store the biwords and compresses the biword
sequence with End-Tagged Dense Code (ETDC; Brisaboa, Fariña, Navarro, & Paramá,
2007). The usage of ETDC permits both Boyer-Moore-type searching (Boyer & Moore,
1977), and random access to the compressed file. If 2lcab is used as a compression booster
for a standard PPM coder, further improvements in compression are obtained, but it is no
longer possible to directly search in the compressed files (Adiego et al., 2010).

The biword sequences obtained with the former biword-based compression methods
contain a large fraction —between 10% and 60%, depending on the language pair— of
unpaired words, that is, biwords of which one of the words in the pair is the empty word ε.
The unpaired words are generated in three different cases:
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Figure 2: Example of a Spanish–English pair of sentences with one-to-many word align-
ments.

• The aligner is unable to connect a word with any of the words in the parallel text
because, for example, infrequent idiomatic expressions or free translations have been
found.

• The aligner generates a one-to-many alignment because a word has been translated
into a multiword expression. For instance, if the Spanish word volver is translated
into English as to go back, the biword extractor has to select one of the links, build a
pair of words from that link, and leave the other words unpaired.

• The aligner generates some crossing alignments as a result of word reordering in
the translation. For instance, in Figure 2, either the pair (verde, green) or the pair
(casa,house) must be ignored by the biword extractor, thus leaving two unpaired
words; otherwise, the information provided by the sequence will not be sufficient to
retrieve both texts in the original order.

The last two sources of unpaired words are responsible for the different spatial savings
reported by Mart́ınez-Prieto et al. (2009) for bitexts consisting of closely-related languages
(e.g., Spanish and Portuguese) and for those involving divergent language pairs (e.g., French
and English), in which word reorderings and multiword translations are frequent.

In this paper, we describe and evaluate the simple biword extraction approach, and com-
pare it with other schemes used to generate generalized biword sequences that maintain all
or part of the structural information provided by the aligner. A biword essentially becomes
a left word connected with a variable number of right words plus additional information
concerning the relative position of each right word with regard to the preceding one. The
fraction of unpaired words is thus reduced, and better compression ratios can be obtained.

We also show that this generalization of biwords allows for the implementation of an
efficient translation spotting (Simard, 2003; Véronis & Langlais, 2000) algorithm on the
compressed bitext; a task that consists of identifying the words (or text segments) in the
other text that are the translation of the words in the query. Indeed, generalized biword
sequences contain all the information needed in order to retrieve connected passages.

Generalized biwords can also be used as an ingredient in the bilingual language model
employed in some statistical machine translation systems (Koehn, 2010). For instance,
Mariño et al. (2006) use bilingual n-grams and consider the translation as a bilingual de-
coding process. Casacuberta and Vidal (2004) also exploit bilingual n-grams but apply
stochastic finite-state transducers to this task. In both cases, the local reordering of words
is addressed by considering multiword segments of source and target words as the fundamen-
tal translation units. Some alternative approaches (Niehues, Herrmann, Vogel, & Waibel,
2011; Matusov, Zens, Vilar, Mauser, Popović, Hasan, & Ney, 2006; Hasan, Ganitkevitch,
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Ney, & Andrés-Ferrer, 2008) integrate bilingual language models as an additional feature in
the decoding function that drives the statistical translation process. However, none of the
approaches mentioned includes the structural information provided by the aligners as part
of the bilingual language model.

The remainder of the paper is organized as follows. The following section shows how a
generalized biword sequence can represent a bitext. Section 3 describes two different meth-
ods that can be applied to compress a biword sequence. Section 4 introduces the resources
used to evaluate different generalizations of the biwords, whereas Section 5 discusses the
compression results obtained. Section 6 then describes some modifications to one of these
compression techniques in order to allow the compressed bitext to be searched and presents
efficient search and translation spotting algorithms. Finally, some concluding remarks are
presented in Section 7.

2. Extraction of Biword Sequences

Before extracting the sequence of biwords representing a bitext, the alignments between the
words in the left text L = l1l2 · · · lM and the words in the right text R = r1r2 · · · rN must
be established by the word aligner. Word aligners usually work after a sentence aligner
has identified which pairs of sentences in the bitext are parallel, that is, a plausible mutual
translation. Sentence alignment algorithms are often based on simple statistical models
for the correlation between sentence lengths (Brown, Lai, & Mercer, 1991; Gale & Church,
1993).

Current word aligners use word-based statistical machine translation models (Brown,
Cocke, Pietra, Pietra, Jelinek, Lafferty, Mercer, & Roossin, 1990; Brown, Pietra, Pietra,
& Mercer, 1993) to compute the most likely alignment between the words in two parallel
sentences (Koehn, 2010, Ch. 4). In our case, word alignments are computed with the open-
source Giza++ toolkit2 (Och & Ney, 2003) which implements a set of methods, including
standard word-based statistical machine translation models (Brown et al., 1993) and a
hidden-Markov-model-based alignment model (Vogel, Ney, & Tillmann, 1996). Giza++
produces alignments such as those depicted in Figure 2, in which a source word (here, a left
word) can be aligned with many target words (here, right words), whereas a target word is
aligned with, at most, one source word.

The result of word alignment is a bigraph G = {L,R,A} in which an edge {li, rj} ∈ A
between word li ∈ L and word rj ∈ R signifies that they are mutual translations according
to the translation model used by the aligner. These complex structures are processed by
splitting the bigraph into connected components: each connected component is either an
unpaired (right or left) word, or a left word σ aligned with a sequence ρ of (one or more) right
words. As will be shown later, a connected component including the structural information
needed to place all the words in their original positions in the bitext is what we term as a
generalized biword.

In order to build a sequence B of generalized biwords, biwords will be sorted primarily
according to their left component σ and, secondarily, by the head of their right component
ρ. More precisely, if left(β) and right(β) denote the left word and the sequence of right

2. http://code.google.com/p/giza-pp/
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words respectively in a biword β, and ε represents the empty left or right component in
unpaired words, then α precedes β if and only if:

• left(α) 6= ε, left(β) 6= ε and left(α) precedes left(β) in L.

• Either left(α) = ε or left(β) = ε, and right(α) 6= ε, right(β) 6= ε, and the initial word
in right(α) precedes, in R, the initial word in right(β).

• left(α) = ε, left(β) 6= ε and there is no biword γ such that β precedes γ and γ precedes
α.

Every generalized biword β = (σ, ρ, ω) in the sequence B consists of:

• a string σ in ΣL,

• an array of strings ρ in ΣR, and

• an integer array ω containing one offset for every string in ρ.

Here, ΣL denotes the set of different words in L enhanced with the empty word ε, while ΣR

denotes the set of subsequences in R and includes the empty subsequence, represented by
(). The array of offsets ω stores the structural information needed to place each word in ρ
in its original position.

The offset is a non-negative integer that specifies, for every word in ρ that is not the
first one, the number of words in R located between this word and the preceding one in ρ,
thus allowing the generation stage during decompression to keep track of the gaps in the
subsequence ρ that will be filled in with a word from a posterior biword in B. The offset of
the first word w in ρ 6= () is defined as the number of words in R located between w and
the first available gap, that is, the first word in R that belongs to a biword that does not
precede β = (σ, ρ, ω).

The combination of both types of offsets permits the encoding of translations with
word reordering. Indeed, as can be seen in Figure 3, the offset in the biword (casa,

(house),(1)) signifies that there is a one-word gap between house and the which is occu-
pied by the word green with offset 0 in (verde,(green),(0)). The offsets in (vivimos,

(we,live), (0,0)) indicate that we comes directly after the word house and live comes
immediately after we. The pseudo-code of the procedure that extracts the sequence of
generalized biwords and further details on its implementation can be found in Appendix A.

Henceforth, we shall call biwords with shifts those biwords with at least one non-null
offset (biwords without shifts, otherwise). We shall further differentiate between biwords
with simple shifts, where only the first offset is non-null, and biwords with complex shifts,
with non-consecutive words in R.

Generalized biwords are clearly more expressive, and the bitexts will therefore be mapped
onto shorter sequences. However, the enhanced variety of biwords implies that the com-
pression algorithms must use larger dictionaries. The global effect on the compression
ratio must therefore be explored. It is also worth measuring the effect of ignoring cer-
tain infrequent alignments in order to avoid biwords with complex shifts. For example,
the generalized biword sequence in Figure 3 contains one biword with complex shifts,
(prefiero,(i,like),(0,1)) which can be split into smaller components, such as (ε,(i),
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(prefiero,(i,like),(0,1))

(ε,(would),(0))
(volver,(to,go,back),(0,0,0))

(a,(to),(0))

(la,(the),(0))

(casa,(house),(1))

(verde, (green),(0))

(en,(in),(2))

(que,(),())

(vivimos,(we,live),(0,0))

Figure 3: Generalized biword sequence for the word-aligned sentence shown in Figure 2.

(0)) and (prefiero,(like),(0)), so that the sequence only includes biwords with simple
shifts. If only simple shifts are allowed, the compression algorithm needs to encode, at most,
one non-null offset per biword.

In the experiments we shall compare the results obtained when the algorithms described
in the next section (Tre and 2lcab) are used in combination with four different methods
to extract a sequence of biwords:

• 1:N Complex: the one-to-many word alignments generated by Giza++ are used to
generate a sequence of generalized biwords.

• 1:N Simple: the biwords with complex shifts generated by the one-to-many align-
ments provided by Giza++ are split into biwords with simple shifts plus unpaired
words; the result is a sequence of biwords with simple shifts or without shifts. Bi-
words with complex shifts are split by ignoring the least frequent alignments so that
the resulting biwords only contain simple shifts.

• 1:1 Non-monotonic: one-to-one word alignments are obtained by computing the in-
tersection of the alignments produced by Giza++ when the left and the right text are
exchanged; the result is a sequence of biwords whose right component contains, at
most, one word (and these biwords cannot, therefore, have complex shifts).

• 1:1 Monotonic: the 1:1 non-monotonic sequence is transformed into a sequence of
biwords without shifts by splitting biwords with shifts into unpaired words.

The last method, 1:1 Monotonic, does not use the enhancement provided by the general-
ization of biwords (i.e., the structural information), and is therefore equivalent to the basic
procedures described earlier (Mart́ınez-Prieto et al., 2009; Adiego et al., 2009, 2010).

3. Compression of Biword Sequences

It is clearly possible to compress the intermediate representation introduced in the previous
section via the application of a wide range of approaches. Here, we describe and evaluate
two different encoding methods, namely Tre (Subsection 3.2) and 2lcab (Subsection 3.3),
that apply a word-based implementation of Huffman coding (Moffat & Turpin, 1997; Turpin
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& Moffat, 2000) in which the input strings are mapped onto integers and then compressed
with Huffman codewords (Huffman, 1952). Both methods encode the offsets as described
below (Subsection 3.1) but differ in how they encode the lexical components of the biword
sequence.

The use of Huffman codewords allows the two methods described here to achieve large
spatial savings, but makes it inefficient to search in the compressed bitext and to retrieve
matches. In Section 6 we shall describe a variant of the 2lcab compression algorithm
(searchable 2lcab) which allows a sequence of words to be retrieved in the left text in
addition to the parallel sequences (and their context) in the right text.

3.1 Structural Encoding

Preliminary tests showed that the biword extraction algorithm was capable of generating
sequences with a high number (usually above 70%) of biwords without shifts, and an array
of null values can thus be considered as the default offset sequence. The offsets can therefore
be encoded as two streams of integer values:

• The positions P = (p1, p2, . . . , pN ) of the biwords with shifts in the sequence B.
These positions can be expressed in relation to the previous biword with shifts in B;
for example, the biwords with shifts in Figure 3 are at P = (1, 5, 2).

• The offset values O for the biwords with shifts. In the example, the offsets are O =
(0, 1, 1, 2); the first two offsets belong to the first biword with shifts whereas the
following ones belong to the second and third biword with shifts, respectively.

Both streams are therefore encoded by using two independent sets of Huffman codewords.

3.2 The TRE Compressor

The Translation Relationship-based Encoder (Tre) assigns codewords to the left word and
to the sequences of right words in the biword through the use of two independent methods.
The left text is encoded using word-based Huffman coding (Moffat, 1989). In contrast,
the right text is encoded by using the left text as its context. To do this, Tre uses three
dictionaries: one, ΣL, with the left words, a second one, ΣR, with the sequences of right
words, and a third one, the translation dictionary τB, which maps each word σ ∈ ΣL onto
a subset of entries in ΣR:

τB(σ) = {ρ ∈ ΣR : ∃ω ∈ N∗ : (σ, ρ, ω) ∈ B}.

For every σ ∈ ΣL the sequences in τB(σ) are sorted by frequency and assigned an integer
in the range [1, |τB(σ)|], thus signifying that the most frequent translations have the lowest
values.

At the compression stage, the text in every biword (σ, ρ, ω) is mapped onto a pair of
integers —a reference to the left word σ and the integer value assigned to the sequence
of right words ρ by τB(σ)—, and both sequences of integers are then compressed using
independent Huffman codewords. The compression efficiency is improved because the most
frequent translations are all assigned low (and thus recurrent) integer values. Finally, the
compressed file includes a header with:
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• The dictionaries ΣL and ΣR, which are independently encoded using PPM compres-
sion. A special character is used to separate consecutive entries in the dictionaries
and white-space serves as the delimiter in word sequences.

• The translation dictionary τB, that is, a Huffman-compressed sequence of integers
(Moffat & Turpin, 1997) containing, for every entry σ ∈ ΣL, the size of τB(σ) and the
references to the entries in ΣR that store every sequence in τB(σ).

• The independent Huffman codewords used to compress the integer sequences of σ-
references, and τB(σ) values.

3.3 The 2LCAB Compressor

In contrast to Tre, the 2-Level Compressor for Aligned Bitexts (2lcab; Adiego et al., 2009)
encodes every biword with a single codeword based on a two-level dictionary. The first level
consists of two dictionaries, ΣL and ΣR, containing the left words and the sequences of right
words, respectively, that appear in the biword sequence B. The second level dictionary ΣB

stores the different biwords in B as an integer sequence of alternating references to the
entries in ΣL and ΣR. The text in the sequence B can then be mapped onto a sequence of
references to entries in ΣB.

The header includes ΣL and ΣR which are compressed, as in Tre, with a PPM algo-
rithm (Cleary & Witten, 1984). It also contains the codewords (selected according to the
Huffman compression procedure) for the integers in the sequence describing the dictionary
ΣB, the encoded dictionary ΣB, and a second list of Huffman codewords used to encode the
biword sequence B. This implementation of 2lcab employs (bit-oriented) Huffman cod-
ing, but the original work (Adiego et al., 2009), and the application described in Section 6
implement byte-oriented ETDC (Brisaboa et al., 2007). The bit-oriented approach is more
effective, but ETDC permits faster searches on the compressed bitext.

4. Resources and Settings

In order to evaluate the performance of the bitext compressors based on generalized biwords
we have made use of the following bitext collections:

• A 100 MB Spanish–Catalan (es-ca) bitext obtained from El Periódico de Catalunya,3

a daily newspaper published in Catalan and Spanish.

• A 100 MB Welsh–English (cy-en) bitext from the Proceedings of the National Assem-
bly for Wales (Jones & Eisele, 2006).4

• Bitexts (100 MB each) from the European Parliament Proceedings Parallel Corpus
(Europarl; Koehn, 2005) for seven different language pairs: German–English (de-en),
Spanish–English (es-en), Spanish–French (es-fr), Spanish–Italian (es-it), Spanish–
Portuguese (es-pt), French–English (fr-en), and Finnish–English (fi-en).

3. Available on-line at http://www.elperiodico.com.
4. Available on-line at http://xixona.dlsi.ua.es/corpora/UAGT-PNAW/.
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Lang.
bzip2 gzip p7zip ppmdi wh

pair

en-de 22.19% 31.59% 21.61% 20.35% 23.28%
es-en 22.01% 31.38% 21.39% 20.12% 23.95%
fr-es 21.51% 30.80% 20.75% 19.57% 24.04%
it-es 21.88% 31.00% 21.15% 19.98% 23.57%
pt-es 21.94% 31.10% 21.11% 20.02% 23.11%
fr-en 21.65% 31.10% 21.06% 19.76% 24.57%
es-ca 27.21% 37.09% 24.41% 25.43% 27.66%
en-fi 22.17% 31.32% 20.78% 20.33% 22.97%
cy-en 21.83% 31.11% 20.33% 20.07% 25.18%

Table 1: Compression ratios obtained with four general-purpose compressors and a word-
based text compressor (wh).

As is common in information retrieval applications, the texts were tokenized and con-
verted to lowercase (Manning & Schütze, 1999, Ch. 4). The tokenization placed blank
spaces before and after every punctuation mark, and a word was thus defined as being any
sequence of alphanumeric characters delimited by blank spaces.

Word alignments were computed with the Giza++ toolkit, with all parameters set to
their default values, with the exception of the fertility which was set to 5 (the default being
9). The fertility is the maximum number of words with which a word can be aligned, and a
low value moderates the number of right sequences with one single occurrence in the bitext.

5. Results and Discussion

As a reference, Table 1 shows the compression ratio —defined as the quotient between the
lengths of the output and the input texts (Ziv & Lempel, 1977)— achieved with the afore-
mentioned bitexts when they are compressed with a variety of general-purpose compressors
and with a word-based compressor operating on the concatenation of the two texts L and
R. The other approaches quoted in the introduction could not be compared because either
the code or the linguistic resources required were not publicly available. The compressors
used as a reference are:

• The bzip2 compressor,5 which splits the text into blocks (100-900 KB), then, applies
the Burrows-Wheeler Transform (BWT; Burrows & Wheeler, 1994) followed by a move-
to-front transformation and, finally, encodes the result with a Huffman encoder.

• Two dictionary-based compressors built on different variants of the Ziv-Lempel’s
LZ77 (Ziv & Lempel, 1977) algorithm. First, gzip,6 a classical compressor that
combines LZ77-based modeling with Huffman coding (Huffman, 1952). Second, the
modern p7zip7 compressor based on the Lempel-Ziv-Markov chain algorithm (Sa-

5. http://www.bzip.org. Experiments run with version 1.0.5.
6. http://www.gzip.org. Experiments were carried out with version 1.3.12-6.
7. http://www.7zip.com. Experiments were carried out using version 4.58∼dfsg1.1.
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Lang. 1:1 1:1 1:N 1:N

pair Monotonic Non-monotonic Simple Complex

en-de 20.38% 20.06% 20.26% 21.22%
es-en 19.63% 18.85% 18.69% 19.33%
fr-es 19.07% 18.60% 18.78% 19.51%
it-es 19.21% 18.86% 19.11% 20.00%
pt-es 18.44% 18.06% 18.17% 18.79%
fr-en 20.20% 19.30% 19.31% 20.06%
es-ca 17.02% 16.95% 16.78% 16.86%
en-fi 21.50% 20.82% 21.70% 22.24%
cy-en 20.06% 18.69% 18.05% 18.22%

Table 2: Compression ratios obtained with the Tre compressor and different biword
extraction methods.

lomon, 2007, Sec. 3.24), an algorithm which improves LZ77 with a large dictionary
(up to 4 GB) and range encoding (Martin, 1979).

• ppmdi (Shkarin, 2002) as a representative of the Prediction by Partial Matching
(PPM; Cleary & Witten, 1984) family of compressors. ppmdi uses a high-order
context model and method D (Howard & Vitter, 1992) to handle escape codes. The
implementation available in the Pizza&Chili website8 with the default configuration
(sixth-order context model) has been used.

• A word-based Huffman compressor (Moffat, 1989) that maps the input strings to
integers before encoding the values with Huffman codewords (Moffat & Turpin, 1997;
Turpin & Moffat, 2000). This method was originally designed to compress text, but
also works well with other types of sources. The dictionary that maps words to integers
—after its encoding with a ppmdi compressor— is part of the output.

As can be seen in Table 1, the lowest compression ratios are obtained with ppmdi,
except for the es-ca pair. The fact that the compression ratios depend only moderately on
the languages involved suggests that these compressors do not benefit from the (variable)
cross-language information provided by the translations.

These ratios must be compared with the performance of the two compressors described
in this section and presented in Tables 2 and 3. Note that although all the bitexts were
aligned in both translation directions, only the results obtained with the direction producing
the best compression are reported here, since the effect of this choice on the compression
ratio proved to be small (an average difference of 0.2 percentage points).

The comparison shows that both Tre and 2lcab outperform the general-purpose com-
pressors in all cases but that of the en-fi pair. The best results are obtained in most
of the cases when one-to-one alignments are used with both techniques. 2lcab achieves
slightly better results than Tre for all language pairs with the exception of it-es and
pt-es, although in these two cases the difference in performance is too small to be consid-
ered relevant. The low performance for en-fi is the consequence of the larger translation

8. http://pizzachili.dcc.uchile.cl/utils/ppmdi.tar.gz
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Lang. 1:1 1:1 1:N 1:N

pair Monotonic Non-monotonic Simple Complex

en-de 19.98% 19.83% 20.77% 22.12%
es-en 19.29% 18.68% 19.08% 19.99%
fr-es 18.89% 18.50% 19.27% 20.25%
it-es 19.18% 18.87% 19.77% 20.96%
pt-es 18.46% 18.09% 18.75% 19.60%
fr-en 19.75% 19.03% 19.65% 20.71%
es-ca 16.69% 16.61% 16.59% 16.70%
en-fi 21.29% 20.62% 22.46% 23.31%
cy-en 19.43% 18.30% 17.98% 18.25%

Table 3: Compression ratios obtained with the 2lcab compressor and different biword
extraction methods.

Lang. General 2lcab 1:1 2lcab Gain Gain

pair purpose Monotonic (best) (Best/Gen.) (Best/Mono.)

en-de 20.35% 19.98% 19.83% 2.56% 0.75%
es-en 20.12% 19.29% 18.68% 7.16% 3.16%
fr-es 19.57% 18.89% 18.50% 5.47% 2.06%
it-es 19.98% 19.18% 18.87% 5.56% 1.62%
pt-es 20.02% 18.46% 18.09% 9.64% 2.00%
fr-en 19.76% 19.75% 19.03% 3.69% 3.65%
es-ca 24.41% 16.69% 16.59% 32.04% 0.60%
en-fi 20.33% 21.29% 20.62% -1.43% 3.15%
cy-en 20.07% 19.43% 17.98% 10.41% 7.46%

Table 4: Summary of the best compression results obtained with: i) general-purpose and
word-based compressors; ii) the 2lcab compressor with no structural information (1:1
Monotonic); iii) the best 2lcab compressor. The columns on the right show the rela-
tive improvement of the best 2lcab over the general purpose and monotonic compressors,
respectively.

dictionaries used by Tre, and the larger bilingual dictionary used by 2lcab, in comparison
to the other language pairs. Furthermore, the percentage of unpaired words is also higher
than that of the other language pairs as will be seen below.

Table 4 summarizes the results obtained by the general-purpose compressors and by
2lcab, and the relative gains in compression performance with regard to the general-
purpose compressors performing best, and with regard to that of 2lcab when compressing
the 1:1 Monotonic biword sequence. The greatest improvement, in comparison to the re-
sults obtained for the general-purpose compressors, is achieved for the language pair es-ca:
instead of the 24.4% compression ratio obtained by p7zip, 2lcab achieves a compression
ratio of 16.6% which represents a substantial spatial saving (32.04% relative improvement).
This suggests that Tre and 2lcab take advantage of the fact that the texts contain the
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Lang. 1:1 1:1 1:N 1:N

pair Monotonic Non-monotonic Simple Complex

en-de 0.600 0.483 0.352 0.319
es-en 0.506 0.395 0.984 0.258
fr-es 0.463 0.398 0.290 0.266
it-es 0.465 0.408 0.279 0.247
pt-es 0.421 0.363 0.249 0.225
fr-en 0.540 0.425 0.316 0.292
es-ca 0.128 0.122 0.077 0.072
en-fi 0.684 0.610 0.492 0.467
cy-en 0.530 0.387 0.286 0.276

Table 5: Fraction of biwords in the extracted sequence with one empty component.

same information but “encoded” in different languages, particularly in the case of highly
parallel bitexts (en-cy) and languages with a high syntactic correlation (es-ca).

The generalization of biwords generates shorter biword sequences, essentially because
the sequence extracted contains a lower fraction of unpaired words. Table 5 shows the
fraction of biwords in which one component is the empty word (the other being an unpaired
word). This number is obviously considerably reduced when offsets are used to encode the
structural information implicit in the alignments. Of course, in the case of the 1:N Complex

approach, the fraction coincides with that of the bigraph produced by the aligner.
As expected, the effect of the generalization on the percentage of biwords with an empty

component depends on the languages involved, the reduction being smaller for pairs of
closely-related languages (es-ca, pt-es, and it-es) than for pairs of languages with strong
grammatical divergences (en-de, es-en, and fr-en) since, in the latter case, word reorder-
ings and multiword expressions commonly appear in translations.

In order to gain some insight into the performance of the Tre and 2lcab compressors,
it is interesting to make a separate examination of the contribution to the output size of
the headers, the dictionaries and the codewords. In this respect, it is worth noting that:

1. The number of entries in the left dictionary ΣL does not depend on the method used
to extract the biword sequence.

2. The number of entries in the right dictionary ΣR is identical for the two extraction
methods based on one-to-one alignments because it consists of all the words found in
the right text plus the empty word.

Tables 6 and 7 show the fraction of the output that corresponds to the encoded biword
sequence (columns B), and to the translation dictionary or biword dictionary (columns D),
depending on the compressor used. These numbers reveal that the more general the bi-
words used are, the more compact the encoded sequences are compared to the headers and
dictionaries. In particular, the translation dictionary size (analogously, the biword dictio-
nary size) does not differ much if non-monotonic alignments are used instead of the basic
method. However, the usage of one-to-many alignments causes the size of the dictionary
to grow considerably, particularly in the case of the biword dictionary ΣB used by 2lcab.
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1:1 1:1 1:N 1:N

Lang. Monotonic Non-monotonic Simple Complex

pair B D B D B D B D

en-de 0.933 0.031 0.930 0.034 0.857 0.070 0.787 0.078
es-en 0.942 0.035 0.940 0.037 0.894 0.058 0.839 0.069
fr-es 0.934 0.041 0.932 0.042 0.884 0.065 0.826 0.074
it-es 0.928 0.045 0.927 0.046 0.870 0.073 0.805 0.081
pt-es 0.923 0.047 0.922 0.048 0.870 0.072 0.819 0.078
fr-en 0.951 0.029 0.948 0.031 0.903 0.054 0.845 0.066
es-ca 0.892 0.039 0.893 0.039 0.870 0.045 0.862 0.046
en-fi 0.884 0.059 0.884 0.058 0.785 0.093 0.724 0.089
cy-en 0.960 0.021 0.958 0.023 0.933 0.034 0.916 0.038

Table 6: Fraction of the file compressed with Tre encoding the bitext (B) and the trans-
lation dictionary (D).

1:1 1:1 1:N 1:N

Lang. Monotonic Non-monotonic Simple Complex

pair B D B D B D B D

en-de 0.896 0.065 0.893 0.067 0.808 0.116 0.733 0.130
es-en 0.911 0.063 0.908 0.065 0.844 0.105 0.788 0.119
fr-es 0.894 0.077 0.892 0.079 0.831 0.115 0.772 0.126
it-es 0.886 0.083 0.884 0.084 0.812 0.128 0.745 0.140
pt-es 0.880 0.087 0.880 0.088 0.814 0.126 0.762 0.133
fr-en 0.920 0.057 0.916 0.060 0.856 0.098 0.796 0.114
es-ca 0.859 0.071 0.860 0.070 0.832 0.080 0.824 0.082
en-fi 0.845 0.094 0.844 0.093 0.725 0.151 0.666 0.147
cy-en 0.939 0.039 0.935 0.042 0.903 0.061 0.884 0.066

Table 7: Fraction of the file compressed with 2lcab encoding the bitext (B) and the
biword dictionary (D).
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1:N Simple 1:N Complex

Lang. Comp. Biword τB Comp. Biword τB
pair Ratio reduc. weight Ratio reduc. weight

en-de 19.82% 0.514 0.033 19.93% 0.465 0.033
es-en 18.51% 0.495 0.024 18.56% 0.441 0.024
fr-es 18.58% 0.472 0.028 18.64% 0.434 0.027
it-es 18.82% 0.458 0.029 18.91% 0.418 0.029
pt-es 17.98% 0.483 0.030 18.05% 0.456 0.030
fr-en 19.10% 0.479 0.022 19.17% 0.416 0.022
es-ca 16.78% 1.000 0.045 16.86% 1.000 0.046
en-fi 21.01% 0.539 0.049 21.09% 0.559 0.048
cy-en 18.05% 1.000 0.034 18.08% 0.631 0.019

Table 8: Compression ratios with Tre when infrequent biwords are split into smaller
biwords, remaining fraction of the original biword dictionary, and relative size of the trans-
lation dictionary in the compressed file.

1:N Simple 1:N Complex

Lang. Comp. Biword ΣB Comp. Biword ΣB
pair Ratio reduc. weight Ratio reduc. weight

en-de 19.42% 0.435 0.043 19.51% 0.393 0.043
es-en 18.16% 0.406 0.036 18.22% 0.326 0.031
fr-es 18.21% 0.385 0.038 18.27% 0.354 0.037
it-es 18.47% 0.334 0.035 18.55% 0.306 0.035
pt-es 17.67% 0.361 0.037 17.73% 0.341 0.036
fr-en 18.71% 0.386 0.033 18.77% 0.334 0.032
es-ca 16.59% 1.000 0.080 16.70% 1.000 0.082
en-fi 20.50% 0.445 0.056 20.55% 0.464 0.055
cy-en 17.68% 0.573 0.029 17.71% 0.542 0.029

Table 9: Compression ratios with 2lcab when infrequent biwords are split into smaller
biwords, remaining fraction of the original biword dictionary, and relative size of the biword
dictionary in the compressed file.

This, in most of the cases, causes 2lcab to perform worse than Tre with one-to-many
word alignments.

The observation that a one-to-many alignment leads to larger dictionaries makes it worth
exploring the effect on the compression ratio when very infrequent biwords are discarded.
Tables 8 and 9 therefore show the compression ratios obtained by Tre and 2lcab, re-
spectively, when infrequent biwords are split into smaller, more frequent, biwords. This
split proceeds iteratively by removing the least frequent alignment in the biword (which
produces a new unpaired word) until all biword frequencies are above a threshold δ or the
biwords only contain unpaired words. The threshold is determined by means of a ternary
search which optimizes the compression ratio. The tables also show the fraction of biwords
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that remain in the dictionary after pruning, along with the new fraction of the output that
corresponds to the translation or biword dictionary.

As can be seen in the tables, discarding the most infrequent biwords (about two thirds
of them) usually leads to an improvement in the compression ratios, except in the case
of very similar languages, such as Catalan and Spanish, in which the translation is highly
parallel. This effect is more important in the case of 2lcab because the pruning leads
to a large reduction in the size of the biword dictionary and this compensates the small
increment in the total number of biwords needed to represent the bitext (between 5% and
10% of increment depending on the method used for its generation). With this filtering,
2lcab and Tre obtain the best results when extracting the biword sequence with method
1:N Simple.

6. Translation Spotting with Compressed Bitexts

The exploitation of bitexts by computer-aided translation tools has evolved from simple
bilingual concordancers (Barlow, 2004; Bowker & Barlow, 2004) to advanced translation
search engines (Callison-Burch, Bannard, & Schroeder, 2005a; Bourdaillet, Huet, Langlais,
& Lapalme, 2010). The standard translation unit processed by bilingual concordancers are
sentences, and these concordancers can thus only provide a whole sentence as the result
of a translation search. In contrast, translation search engines have translation spotting
capabilities, i.e. they can retrieve parallel text segments in bitexts.

It would seem that existing translation search engines (Callison-Burch et al., 2005a;
Bourdaillet et al., 2010) do not access bitexts in their compressed forms because storing
the correspondences between the translated segments requires additional data structures
such as word indexes or suffix arrays (Lopez, 2007; Callison-Burch, Bannard, & Schroeder,
2005b); suffix arrays typically require four times the size of the text (Manber & Myers,
1993). In contrast, the generalized biwords require much less space, they integrate the
alignment information into the compressed bitext, and this information can be exploited
to retrieve translation examples. In this section we describe some minor modifications that
need to be done to the 2lcab compression algorithm before it can be applied to this task.
We also describe a search algorithm on the compressed bitexts and evaluate the compression
performance of the new 2lcab implementation (searchable 2lcab).

The application of the 2lcab compression technique to the direct search in compressed
bitexts leads to certain challenges which are not present during the decompression process
because:

• Huffman and PPM compression hinder both direct searching and random access to
the compressed text (Bell, Cleary, & Witten, 1990).

• In a multilevel scheme such as 2lcab, whenever a matching string is found —for
instance, in the biword dictionary ΣB— it is necessary to know the string’s codeword
in order to search for the encoded string in the higher level —for example, the sequence
of biwords B.

The differences induced in 2lcab are described as follows, and are summarized in Table 10.
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Data Content 2lcab Searchable 2lcab
ΣL lword0, lword1, . . . PPM PPM†

ΣR rword0, rword1, . . . PPM PPM†

ΣB lpos0, rpos0, lpos1, rpos1, . . . Huffman ETDC†

B bpos0, bpos1, . . . Huffman ETDC
P delta0, delta1, . . . Huffman RRR
O offset0, offset1, . . . Huffman DAC & RG

Table 10: Summary of the compression methods applied. Those marked with † sort the
items before the compression. RG is only used with DAC in case biwords with complex
shifts are present.

6.1 Searchable 2LCAB Compression

There are several alternative compression methods, such as ETDC, which allow direct
searches in compressed text. In contrast to the output of the Huffman compression, the
ETDC header only stores words, because each codeword can be derived from the word po-
sition —henceforth, its rank— if the words are sorted according to their relative frequencies
in the document which is to be compressed. This means that there is always a mapping,
denoted code(n), which provides the ETDC codeword for the n-th most frequent word,
along with the corresponding reverse mapping.

For instance, if the b-th byte in the compressed bilingual dictionary ΣB matches a left-
word code, its rank in ΣB determines which codeword must be looked for in B.9 Of course,
this rank can be obtained by keeping a record of the number n of words in ΣB scanned so
far, but the standard pattern matching algorithms —such as BM (Boyer & Moore, 1977) or
KMP (Knuth, Morris, & Pratt, 1977)— are not well suited to this tracking. We therefore
use a finite sequence of bits S = b1, b2, · · · , b|S| to retrieve the rank of the n-th byte βn in
the encoded ΣB. This sequence has bn = 1 for every n such that βn is the final byte in a
codeword and it can be built on the fly when ΣB is read from the compressed file.

Succinct data structures (Navarro & Mäkinen, 2007, Sec. 6), such as RG (González,
Grabowski, Mäkinen, & Navarro, 2005) and RRR (Raman, Raman, & Rao, 2002), provide
an effective way in which to represent a sequence of bits and recover the rank associated
with every matching sequence, because they support a number of operations in the sequence
of bits S in a time that is independent of its length (Clark, 1996):

• The number of bits rankS(i) whose value is one in b1 · · · bi.

• The position selectS(i) of the i-th bit in S whose value is one;

• The value of the i-th bit in S, denoted as accessS(i) = bi.

Moreover, the structural information in P describing which the biwords with shifts are
also needs to be randomly accessed, and the succinct data structure RRR provides a compact
alternative to the Huffman-based method used in 2lcab to compress P, the sequence of
position increments. Indeed, the RRR encoding is especially compact when the information

9. This rank can also be used to discard false matches originated by a coincidence with a right word in ΣB

because, in such cases, the rank will be an even number.
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is unbalanced —for instance, above 80% of the bits show identical value—, as in this case
in which the number of biwords with shifts is small. Therefore, the integer sequence P will
instead be stored as a binary sequence P = p1, p2, . . . , pm such that pi = 1 if the n-th byte
in B is the final byte in the codeword of a biword with shifts.

Finally, the offsets stored in O will be compressed with directly addressable variable-
length codes (DAC, Brisaboa, Ladra, & Navarro, 2009) which, in contrast to the Huffman
compression, provide direct access to the n-th encoded element. Information associated
with the n-th biword can thus be retrieved immediately, since DAC encoding does not
require the preceding sequence to be decompressed from the beginning. As the biwords
with complex shifts contain more than one offset, the access to O in these cases is indirect
and provided through an auxiliary RG data structure. This structure builds a sequence of
bits Q = q1, q2, · · · , q|Q| where |Q| is the total number of offsets stored in O. The sequence
Q has qi = 1 if Oi is the first offset in the array ω of a biword (σ, ρ, ω), and qi = 0 otherwise.

As can be seen in Table 10, the searchable 2lcab method replaces the Huffman com-
pression with ETDC and sorts some contents so that the higher-level ETDC compression
does not need to store codewords in its header.

6.2 Translation Spotting

The searchable 2lcab described above is complemented with a search algorithm which,
given a single word w in the left text, proceeds as follows:

1. The word w is looked for in ΣL —whose relatively small size permits an uncompressed
copy to be stored in the memory— and its identifier n, given by the word position in
ΣL, is used to obtain its ETDC codeword c = code(n).

2. An exact pattern-matching algorithm (Knuth et al., 1977) identifies all the occurrences
of the codeword c in the biword dictionary ΣB. If a match is found at the b-th byte
and r = rankS(b) is odd (indicating a match with a ΣL-codeword, that is, a biword
with a left component w), then, the biword with codeword code(r/2) is added to the
search set Z.

3. The multi-pattern matching algorithm Set-Horspool (Horspool, 1980; Navarro &
Raffinot, 2002) locates all the codewords in the sequence of biwords B that match one
of those contained in Z, and the matching positions are added to a new set M .

4. For every match m ∈M , the adjacent right component is read from B and, whenever
pm = 1 in P , the offsets are recovered from O and used to place the right words in
the original order. In case the biwords can have complex shifts, the interval Oi · · · Oj

containing the offsets ω starts at i = selectQ(r) and ends at j = selectQ(r + 1) − 1,
with r = rankP (m).

In case the query consists of a sequence of words (w1, w2, · · ·wK) with K > 1, the
Set-Horspool algorithm is executed only for the word wk in the sequence generating the
smallest set of codewords to locate Zk, and the remaining words are then used to filter the
results once the biword context has been retrieved.

Table 11 shows an actual example of the output obtained for a multiple word query
and a compressed biword sequence obtained with the 1:N Complex method. Note that the
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Left text: it is only democratic that our citizens should be able to exercise influ-
ence , and it goes without saying that they should be entitled to all
the information they need in order to perform their civic duties in
society .

Right text: un componente de la democracia es que los ciudadanos puedan influir y
, obviamente , que tengan derecho a acceder a la información necesaria
para actuar como ciudadanos en sus sociedades .

Left text: it is concerned , then , with protection under criminal law and with
europol units having to receive the information and intelligence they
need in order to perform their tasks .

Right text: se trata , por tanto , de protección penal y de que las unidades de
europol deben obtener la información y los datos que necesiten para
poder realizar su trabajo .

Left text: the co-decision procedure must be used in order to perform this
legislative work under conditions which guarantee a genuine debate ,
involving society and citizens .

Right text: para que ese trabajo legislativo se realice en condiciones que garan-
ticen un verdadero debate , social y ciudadano , hace falta recurrir al
procedimiento de codecisión .

Left text: what are the tools , what are the procedures , that we need in order
to perform them ?

Right text: ¿ cuáles son las herramientas , los procedimientos que necesitamos para
ejecutarlas ?

Table 11: Output obtained after the query “in order to perform” on the bitext compressed
with the 1:N Complex method. The query terms and their translations are spotted in
boldface.

third match shows a non-contiguous translation, a case which cannot be retrieved with the
original 2lcab implementation (Adiego et al., 2009).

6.3 Experimental Evaluation

The compression ratios obtained with the searchable 2lcab are shown in Table 12. The al-
gorithm is clearly not as effective as the 2lcab described in Section 3, leading to compression
ratios which are slightly worse than those obtained with general purpose and word-based
compressors. However, it is worth to mentioning that these compressed files include the in-
formation concerning the alignments between the words, information that is not included in
the files compressed with the standard compressors but is necessary to perform translation
spotting.

Table 12 also shows that the 1:1 Monotonic method is in this case more effective
than the 1:1 Non-monotonic method because the latter needs an additional data structure
(the RRR bit sequence) in order to access the structural information. Moreover, the byte
orientation of ETDC reduces the gain obtained by encoding a lower number of biwords.

407



Sánchez-Mart́ınez, Carrasco, Mart́ınez-Prieto & Adiego

Lang. 1:1 1:1 1:N 1:N

pair Monotonic Non-monotonic Simple Complex

en-de 22.66% 23.20% 24.10% 26.02%
es-en 21.86% 21.81% 22.26% 23.68%
fr-es 21.30% 21.47% 22.33% 23.70%
it-es 21.69% 21.93% 22.93% 24.57%
pt-es 20.87% 21.07% 21.78% 23.00%
fr-en 22.37% 22.19% 22.83% 24.36%
es-ca 19.22% 19.67% 19.70% 19.87%
en-fi 24.14% 24.01% 25.91% 27.29%
cy-en 22.30% 21.86% 21.39% 21.98%

Table 12: Compression ratios obtained with the searchable 2lcab compressor.

We have studied how the time needed to process a query depends on the language pair
and also on the number and frequencies of the words in the query. The average times over
100 different sequences and 10 runs are reported in Figures 4 and 5, in which process times
were measured on an AMD Athlon Dual Core at 2 GHz with 2GB of RAM.

Figure 4 presents the times for two different language pairs. The first one, en-fr, dis-
plays the typical behavior of all Europarl bitexts (Koehn, 2005), while the second one,
en-fi, requires particularly longer times, especially for large queries. This divergent be-
havior seems to originate in the poor quality of the alignments between the words in this
pair of languages. This often makes words participate in a large number of different biwords
and this degrades the performance of the Set-Horspool algorithm. This language pair
consistently leads to the worst compression ratios.

Finally, Figure 5 shows the processing times for two language pairs (en-cy and es-ca)
whose bitexts have been obtained from a totally different source. The processing times are
considerably lower than those required by the Europarl corpus and a manual inspection of
the bitexts revealed that they have a highly parallel structure. This implies that the words
participate only in a small number of biwords and, not surprisingly, 2lcab achieves the
lowest compression ratios with these language pairs.

7. Concluding Remarks

We have introduced the concept of generalized biwords when applied to the compression
of bitexts. Generalized biwords integrate the information concerning word reordering and
multiword expressions in the translated text. We have described a procedure that transforms
the bitext into a sequence of generalized biwords which can be used as an intermediate
representation in the compression process. We have then extended the binary compression
algorithm 2lcab and proposed a new one, called Tre, for the encoding of generalized
biword sequences. We have also designed a variant of the 2lcab compression technique,
and a companion algorithm which facilitates efficient searching and translation spotting on
the compressed bitext.

The compression performance of 2lcab and Tre has been tested with four different
schemes to extract the biword sequence, each of which uses biwords with different structural
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(a) English–French (en-fr) bitext
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Figure 4: Average time (milliseconds) needed to process a query containing only words
with low, medium or high frequency, as a function of the query length. Times are shown
for two different language pairs and four encoding methods.
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Figure 5: Average time (milliseconds) needed to process a query for two different language
pairs (en-cy and es-ca).
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complexities. The simplest method uses biwords without shifts and is therefore equivalent
to those approaches in which biwords are simple pairs and include no structural information.
The other methods include offsets to integrate the structural information of the alignments.

Our experiments show that generalized biwords lead to better compression ratios because
the reduction in the sequences encoding the bitext compensates the larger dictionaries
needed. The largest reduction in the compression ratios is obtained for pairs of divergent
languages because, in these cases, biwords without shifts cannot tackle the frequent word
reorderings and multiword translations.

Since the enhanced variability of generalized biwords requires larger dictionaries that
increase the header included in the compressed files, we have tested the effect of splitting
infrequent biwords into smaller, more frequent biwords. This reduces the number of different
biwords and allows the 2lcab compressor to obtain lower compression ratios. After this
pruning, 2lcab provides the best results if biwords are obtained from one-to-many word
alignments in which only simple shifts are allowed, that is, the target text is only split into
segments of contiguous words. Both of the algorithms, Tre and 2lcab, provide better
compression ratios than general purpose compressors, particularly in the case of pairs of
languages that share a common language family (es-ca) or bitexts which are highly parallel
(en-cy). The compression ratio can therefore be used to indirectly measure the quality of
word alignment and the degree of parallelism of the bitext.

Some modifications made to the 2lcab compressors allow the compressed bitext to be
searched efficiently, although this adaptation leads to slightly worse compression ratios.
However, the new compressed file includes the alignments between the words in the bitext
and this additional information is needed in order to implement translation spotting.

The relatively small difference in the time needed to process a query by the 1:1 Monotonic

method (the fastest one) and by the 1:N Complex method (the one conveying most infor-
mation) makes the latter the preferable choice in translation spotting because it identifies
a larger variety of translations in the bitext and provides richer examples.

In our future work we plan to study the effect on translation performance of the inte-
gration of generalized, biword-based bilingual language models into current state-of-the-art
statistical machine translation systems.

Appendix A. Biword Extraction Algorithm

Algorithm 1 shows the procedure used to obtain the sequence of generalized biwords B from
a bitext with one-to-many word alignments. The main loop (lines 3–25) iterates over the
words in the left and right texts while there are still words on both sides to be considered.
Variables m and n point to the next left and right words, respectively, to be processed.
Inside the main loop, the set A→m with the positions of the right words aligned with the left
word lm, and the set A←n with the positions of the left words aligned with the right word
rn are first computed. As word alignments are one-to-many, A←n contains, at most, one
element.

After every iteration, a single biword is produced. If A→m is empty, i.e., lm is not aligned,
the next biword consists of the left word lm, an empty sequence of right words and an empty
sequence of offsets (line 7). If A→m is not empty but A←n is, the biword consists of the empty
word, a sequence of right words containing only rn and a sequence of offsets containing only
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Algorithm 1 GetBiwords extracts a biword sequence from a one-to-many word align-
ment between two texts.

Input: Two word sequences L and R, and a one-to-many bigraph G = {L,R,A}
Output: A sequence B of 3-tuples (word, sequence of words, sequence of offsets)

1: B ← () . Create an empty sequence of 3-tuples
2: m← 1; n← 1
3: while (m ≤M) ∧ (n ≤ N) do
4: A→m ← {j : (lm, rj) ∈ A}
5: A←n ← {i : (li, rn) ∈ A}
6: if A→m = ∅ then
7: add (lm, (), ()) to B
8: m← m+ 1
9: else if A←n = ∅ then

10: add (ε, (rn), (0)) to B
11: n←NextRight(m,n,G)
12: else
13: ρ← (); ω ← () . Create empty sequences of words and offsets
14: k ← n
15: for all j ∈ A→m in ascending order do
16: add rj to ρ; add j − k to ω
17: k ← j + 1
18: if n = j then
19: n←NextRight(m,n,A)
20: end if
21: end for
22: add (lm, ρ, ω) to B
23: m← m+ 1
24: end if
25: end while
26: while m ≤M do
27: add (lm, (), ()) to B
28: m← m+ 1
29: end while
30: while n ≤ N do
31: A←n ← {i : (li, rn) ∈ A}
32: if A←n = ∅ then
33: add (ε, (rn), (0)) to B
34: end if
35: n← n+ 1
36: end while
37: return B
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Algorithm 2 NextRight

Input: Integers m and n, one-to-many bigraph G = (L,R,A)
Output: Index of the next right word paired with ε, with lm or posterior word in L
1: repeat
2: n← n+ 1
3: A←n ← {i : (li, rn) ∈ A}
4: until (n > N) ∨ (A←n = ∅) ∨ (min(A←n ) ≥ m)
5: return n

a null offset (line 10). Otherwise, the biword consists of lm, a sequence containing all the
right words aligned with lm, and a sequence containing one offset for each right word. The
first offset is relative to n, whereas the following ones are relative to the previous word in
the sequence (see lines 15–21).

Index m is simply incremented every time a biword containing a left word is produced.
The update of n is more subtle since some words in positions greater than n may have
already been processed because they are aligned with a left word preceding lm. n is therefore
assigned the value returned by function NextRight (depicted in Algorithm 2) which, given
the current values of m and n, looks for the next n such that rm is paired either with the
empty word ε or with a left word not preceding lm.

Finally, two loops take care of the words that remain unprocessed after the main loop.

Appendix B. Bitext Restoration Algorithm

Algorithm 3 provides the pseudo-code with which to restore the right text of the bitext from
the biword representation obtained with Algorithm 1. Restoring the left text is straightfor-
ward since biwords are sorted by their left component.

The main loop in Algorithm 3 (lines 3–15) iterates over the sequence of biwords rep-
resenting the bitext. Variables m and n point to the next biword to be processed, and to
the next gap in R to be filled in with a word, respectively. It then iterates over the array
of offsets ω = (w1, . . . , w|ω|) (lines 7–10) and places each word ρj in the sequence of right
words ρ = (ρ1, . . . , ρ|ω|) in the right place. After each biword has been processed, m is
updated to point to the next biword, and n to point to the next gap in R to be filled in
(lines 12–14).

Acknowledgments

This work has been supported by the Spanish Government through projects TIN2009-14009-
C02-01 and TIN2009-14009-C02-02, and by the Millennium Institute for Cell Dynamics and
Biotechnology (grant ICM P05-001-F). During the development of the work reported in this
paper, Miguel A. Mart́ınez-Prieto was at the Department of Computer Science (University
of Chile) on a post-doctoral stay. The authors thanks Nieves R. Brisaboa for her ideas
and cooperation in the development of the initial version of 2lcab, Gonzalo Navarro for
his inspiration for the Tre compression approach, the anonymous referees for suggesting
significant improvements to this paper and Francis M. Tyers for proof-reading it.

413



Sánchez-Mart́ınez, Carrasco, Mart́ınez-Prieto & Adiego

Algorithm 3 GetRightText retrieves the right text from the biword representation of
the bitext.

Input: A sequence of biwords B = (β1, . . . , βM )
Output: The right text R = r1r2 · · · rN contained in the sequence B.

1: m← 1
2: n← 1
3: while m ≤M do
4: k = n− 1
5: ω ← offset(βm)
6: ρ← right(βm)
7: for j = 1, . . . , |ω| do
8: k ← k + ωj + 1
9: rk ← ρj

10: end for
11: m← m+ 1
12: while rn is not undefined do
13: n← n+ 1
14: end while
15: end while
16: return R

References

Adiego, J., Brisaboa, N. R., Mart́ınez-Prieto, M. A., & Sánchez-Mart́ınez, F. (2009). A
two-level structure for compressing aligned bitexts. In Proceedings of the 16th String
Processing and Information Retrieval Symposium, Vol. 5721 of Lecture Notes in Com-
puter Science, pp. 114–121, Saariselkä, Finland. Springer.
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Véronis, J., & Langlais, P. (2000). Parallel text processing. Alignment and use of transla-
tion corpora, chap. Evaluation of Parallel Text Alignment Systems – The ARCADE
Project. Kluwer Academic Publishers.

Vogel, S., Ney, H., & Tillmann, C. (1996). HMM-based word alignment in statistical trans-
lation. In Proceedings of the 16th International Conference on Computational Lin-
guistics, pp. 836–841, Copenhagen, Denmark.

Ziv, J., & Lempel, A. (1977). An universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23 (3), 337–343.

Ziviani, N., Moura, E., Navarro, G., & Baeza-Yates, R. (2000). Compression: A key for
next-generation text retrieval systems. IEEE Computer, 33 (11), 37–44.

418


