
MOOD : A Modular Object-Oriented Decoder for Statistical Machine
Translation

Alexandre Patry, Fabrizio Gotti and Philippe Langlais

RALI/DIRO
Universit́e de Montŕeal
Succursale Centre-Ville

H3C 3J7 Montŕeal, Canada
{patryale,gottif,felipe}@iro.umontreal.ca

Abstract
We present an Open Source framework calledMOOD developed in order to facilitate the development of a Statistical Machine Translation
Decoder.MOOD has been modularized using an object-oriented approach which makes it especially suitable for the fast development
of state-of-the-art decoders. As a proof of concept, a clone of the PHARAOH decoder has been implemented and evaluated. This clone
named RAMSES is part of the current distribution ofMOOD.

1. Introduction

Ever since the pioneering work of IBM researchers (Brown
et al., 1993), the number of Statistical Machine Transla-
tion (SMT) practitioners have constantly increased. One
reason for this lies in the invaluable toolkits that are avail-
able within our community. As a matter of fact, training an
SMT engine from a bitext is (more or less) a matter of glu-
ing together dedicated softwares. Word-based models, or
the so-called IBM models, can be trained using the GIZA

or GIZA ++ toolkits (Och and Ney, 2000). One can then
train phrase-based models using the THOT toolkit (Ortiz-
Mart́ınez et al., 2005). For their part, language models cur-
rently in use in SMT systems can be trained using pack-
ages such as SRILM (Stolcke, 2002) and the CMU-SLM
toolkit (Clarkson and Rosenfeld, 1997).

Last but not least, several available SMT decoders can ex-
ploit trained models in order to perform translation. Most
notably, the REWRITE decoder (Germann et al., 2001) rec-
ognizes an IBM model 4, while the PHARAOH decoder
is especially handy for phrase-based SMT (Koehn et al.,
2003). Such decoders are invaluable toolkits. For instance,
they can serve as baseline or reference systems. Unfortu-
nately, one major drawback of these two decoders is their
licensing policy. Indeed, they are both available for non-
commercial use in their binary form only. This severely
limits their use in practice (Walker, 2005).

In this paper, we describe our efforts in designing a generic
architecture calledMOOD (Modular Object-Oriented De-
coder) especially suited for instantiating specific SMT de-
coders. The goal ofMOOD is thus two-fold: offering Open
Source, state-of-the-art decoders and providing an architec-
ture to easily build these decoders.

We recall the role of the decoder in SMT in Section 2. In
Section 3, we describe the main architecture ofMOOD. We
then show in Section 4 how we usedMOOD to instanti-
ate RAMSES, a clone of PHARAOH. We evaluate RAMSES

against PHARAOH in Section 5. Finally, we conclude this
work in Section 6.

2. Decoding in SMT
The problem we are concerned with in this study is the
maximization (argmax) — also called decoding — that
arises in SMT and which is formulated in the following
equation:

translation(s) = argmax
t∈T

P(t|s) (1)

wheres is the sentence to translate,t is a possible transla-
tion andT is a set containing all the sentences of the lan-
guage oft.
Enumerating all the valid sentences in the target language,
as Equation 1 suggests is impracticable. Therefore, the tar-
get sentence is usually built incrementally by transforming
partial translations using an algorithm that can be outlined
as:

1. initialize the set of candidatesH to a blank translation

2. select an incomplete candidate translationh from H

3. for each transformationtr that applies toh

(a) sethcopy to the result of applyingtr onh

(b) if hcopy is promising, add it toH
(c) if H contains incomplete candidates, go to 2

4. return the best candidate inH

From this outline, we see that a decoder must resolve two
independent problems: representing the model and explor-
ing the space of possible translations efficiently. The model
has to do with expressiveness. It defines how (complete
or incomplete) translations and transformations are repre-
sented and evaluated. The first popular SMT models were
word-based (Brown et al., 1993) and had a hard time trans-
lating idioms and the like. Later came the phrase-based
models (PBM), which deal with word sequences (Marcu
and Wong, 2002; Koehn et al., 2003). Even though PBMs
give state-of-the-art performances (Och and Ney, 2004),
they still struggle with global reorderings that must be dealt
with when translating between languages that have differ-
ent syntactical structures (SOV versus SVO languages).

709

One research strategy to solve this problem is to use syn-
tactic knowledge and work with parse trees instead of word
sequences (e.g. see (Yamada and Knight, 2001; Quirk et
al., 2005)).
The search space exploration strategy is a compromise be-
tween the decoder’s speed and the quality of the translations
produced. The search method decides which incomplete
translations are promising, the order in which they are ex-
plored and when a solution is good enough to stop search-
ing. The problem is complex; Knight (1999) has shown
that the search space exploration is NP-complete for word-
based models.
Many different decoders have been implemented for dif-
ferent models. An overview of some decoders available
for word-based models can be found in (Tillmann and Ney,
2003). Several decoders have been published for phrase-
based models (see for instance (Koehn, 2004)).

3. The MOOD Framework
A decoder must implement a specific combination of a
model representation and a search space exploration strat-
egy. In this section, we present a framework that applies
to any such combination. To do so, theMOOD framework
clearly separates the model and the search space explo-
ration strategy. Algorithm 1 presents a functional view of
how a typical decoder is implemented withinMOOD.

Algorithm 1 A typical decoder as implemented using the
MOOD framework. The algorithm takes as inputhstart, the
starting hypothesis andgen, a transformation generator.

1: Hactive←{hstart}
2: Hcomplete← /0
3: while Hactive is not emptydo
4: retrieve a hypothesis fromHactive into h
5: if h.value() is high enoughthen
6: T r ← gen.find(h.partialTranslation())
7: for all tr ∈ T r do
8: hcopy← h.clone()
9: hcopy.apply(tr)

10: if hcopy.isCompleted()then
11: addhcopy to Hcomplete

12: else
13: addhcopy to Hactive

14: return Hcomplete

The key idea behind Algorithm 1 is to manipulate a col-
lection of partial translations that will be transformed until
they are completed or until no more transformation can be
applied to them.

3.1. Model representation

A model is implemented using four concepts : partial trans-
lations, transformations, cost functions and transformation
generators. The dependencies between those concepts are
presented in Figure 1.
A partial translation represents a translation that is being
built. It consists of a 3-tuple of the form〈s, t, p〉 wheres is
the sentence to translate,t is a partial translation ofs andp
is a progress indicator describing howt can be extended.

Cost

Transformation

SearchStrategy

:TransformationGenerator

:Hypothesis

Translation

TransformationGenerator

Hypothesis

:Translation

:Transformation

Figure 1: The different components of theMOOD frame-
work. Arrows indicate dependencies and dashed boxes
template parameters.

Incomplete translations are stored in a collection named
Hactive and complete translations are stored inHcomplete.
At each step, atransformationis applied to an incomplete
partial translation (line 9). This transformation will mod-
ify the target sentence and the progress indicator. Usually,
the parameters of a decoder are rules likethe translation of
“wonderful” is “merveilleux” with a probability of 0.8. A
transformation is such a rule, but instantiated on a specific
partial translation, likethe translation of “wonderful” is the
ith word of the source with a probability of 0.8. As shown
in Figure 1, the implementation of partial translations de-
pends on the implementation of the transformations. This
is so because a partial translation must know how to apply
a transformation on itself.
The quality of a partial translation must be quantified in
order to pruneHactive (line 5) and to select the best trans-
lation in Hcomplete. This quantification is carried out by a
costobject, which associates a numerical value to a partial
translation. Each time a partial translation is transformed,
its cost must be updated. At the very least, the cost usu-
ally reflects the target sentence fluency, the probability of
the transformations applied as well as the word reordering
between the source and the target sentences.
The exploration algorithm does not need to know about the
inner workings of the model, but it must be able to retrieve
the transformations that are applicable to a partial transla-
tion (line 6). Thetransformation generatorserves this pur-
pose; it offers afind function that takes as input a partial
translation and returns a set of applicable transformations.

3.2. Search space exploration

A search space exploration method is specified using two
independent concepts: a hypothesis and a search strategy.

710

The principal role of ahypothesisis to synchronize a partial
translation with its cost, but it is not limited to that. It can,
for example, build a search graph that can be used afterward
to extractn-best translations (Ueffing et al., 2002) or it can
also compute statistics on the exploration. A hypothesis
able to build the search graph of any combination of model
and search strategy is available inMOOD.
All the concepts described so far are assembled in asearch
strategyto form a decoder. WithMOOD, a search strategy is
an object that offers adecodemethod that takes as a param-
eter the initial hypothesis and a transformation generator.
The responsibility of the search strategy is the management
of Hactive andHcomplete, that is, to determine the order in
which the hypotheses are explored and to establish a prun-
ing policy (lines 4 and 5).
As shown in Figure 1, the hypothesis and the search strat-
egy are independent of the model because they are templa-
tized. They can thus be reused with any other model imple-
menting the concepts described in the previous section.
The current distribution ofMOOD implements a multi-stack
beam search strategy (see Section 4).

3.3. Object-oriented architecture at work

One of the key advantage of object-oriented architectures
is an improved reusability of the different modules of the
program. In order to illustrate this point, let us take a look
at the problems an engineer faces when adapting an existing
decoder to a new problem.
The first modification that must often be made during the
lifetime of a decoder is changing the cost function. Be-
cause withMOOD the different functionalities have been
separated, the task only consists of passing a different cost
object when creating the starting hypotheses. No existing
code needs to be changed or duplicated. It is noteworthy
that the cost function can be anything. It can even encapsu-
late an estimation of the future cost of a translation.
Another useful modification of an existing decoder con-
sists in adding new search strategies. WithinMOOD, the
inner workings of the search algorithm is cleanly disjoint
from that of the other modules, so one only needs to write
a new search strategy class that defines adecodefunction
that takes as a parameter a starting hypothesis and a trans-
formation generator. The search strategy does not have to
be aware of the implementation of the hypotheses or of the
transformations, thus it can be used with any model (word-
based, phrase-based, hierarchical, etc.).
Creating a decoder for a new model representation demands
more effort. Handling a new model representation means
that new partial translation and transformation classes must
be created. Because the cost and the transformation gen-
erator depend on the translations and the transformations
representation, new classes for these modules will have to
be created as well. Currently,MOOD only supports phrase-
based models, but other models will soon be supported.

3.4. Practical considerations

In practice, many different transformation sequences can
lead to equivalent hypotheses; when this is the case, we say
that the hypotheses are in the same state. When two or more
hypotheses are in the same state, we can safely ignore them

all but the one having the highest cost value. To handle this
strategy,MOOD expects each partial translation, cost and
hypothesis to provide acompareStatefunction that imposes
a total ordering on their state.

3.5. Implementation
MOOD is implemented with the C++ programming lan-
guage and is licensed under the Gnu General Public Li-
cense (GPL).1 This license grants the right to anybody to
use, modify and distribute the program and its source code.
The only restriction is that if a modified version is dis-
tributed, it must also be licensed under the GPL. As ex-
plained in (Walker, 2005), this kind of license stimulates
new ideas and research.MOOD is currently available at
http://smtmood.sourceforge.net .
It is our hope that the availability of the source code and
the clean design ofMOOD will make it a useful platform to
implement and distribute new decoders.

4. Creating a phrase-based decoder
As a proof of concept that our framework is viable,
we reproduced the most popular phrase-based decoder:
PHARAOH (Koehn, 2004). In this section, we describe how
we implemented RAMSES, our clone, based on the com-
prehensive user manual of PHARAOH. We followed this
manual as faithfully as possible; the command-line syntax
RAMSES recognizes mimics that of PHARAOH. The out-
put produced by both decoders are compatible and RAM -
SES can also output itsn-best lists in the same format
as PHARAOH does, that is, a format that theCARMEL

toolkit can parse (Knight and Al-Onaizan, 1999). There-
fore, switching from one decoder to another should be easy.

4.1. Model representation
When a PBM decoder is launched, it takes as parameters a
set of weighted rules and a language model. Each weighted
rule consists of a sequence of source words, a sequence of
target words and a probability. Before a source sentence
is translated, all the rules that can apply to it are indexed
and stored astransformations, which are tuples containing
a rule and the position where it applies in the source.
As we already said in Section 3.1, apartial translation
corresponds to a source sentence, a target sentence and a
progress indicator. The source and the target sentences
are sequences of words. The progress indicator contains
a mask indicating which source words have been translated
and the position of the word after the last translated one
(needed by the transformation generator). When a trans-
formation is applied, the target words of its rule are ap-
pended at the end of the target of the partial translation and
the progress indicator is updated. An example of how a
transformation is applied to a partial transformation can be
found in Figure 2.
When a transformation is applied to a partial translation,
the hypothesis ensures that itscostis updated. Each partial
translation’s cost is implemented using the following costs:

Language model The log-probability of the target created
(evaluated by a trigram model).

1http://www.gnu.org/copyleft/gpl.html

711

Initial partial translation
source quel monde merveilleux
progress 000 , next=1
target

Transformation 1
rule quel→ what awith probability 0.3
position 1

Partial translation 1
source quel monde merveilleux
progress 100 , next=2
target what a

Transformation 2
rule merveilleux→ wonderful with probability

0.8
position 3

Partial translation 2
source quel monde merveilleux
progress 101 , next=4
target what a wonderful

Transformation 3
rule “monde”→ “world” with probability 0.6
position 2

Completed translation
source quel monde merveilleux
progress 111 , next=3
target what a wonderful world

Figure 2: A possible transformation sequence that trans-
lates a French sentence into an English sentence using a
PBM model.

Translation table The sum of the log-probabilities of the
rules that have been applied so far.

Distortion The number of source words that were skipped
between two consecutive rules. For example, in Fig-
ure 2, transformation 2 incurs a distortion cost of 1
because the French wordmondeis skipped.

Word penalty The number of words in the target sentence.

Heuristic An estimation of the cost to complete the partial
translation. This estimation is the sum of the costs of
translating each contiguous untranslated sequence as
if it were a stand-alone sentence.

All these costs are weighted and combined in an exponen-
tial:

cost(h) = exp∑
c∈C

wcvaluec (2)

whereh is the partial translation to evaluate,C contains the
costs to consider,valuec is the value of a cost andwc is its
weight. Even though equation 2 is a mix of other costs, it
can be implemented in a cost object; inMOOD a cost can be
arbitrarily complex.

The only remaining part of the model representation is the
transformation generator. It consults the indexed trans-
formations and the progress indicator to return the trans-
formations that only translate untranslated words. Like
PHARAOH, it is possible to restrict the transformations re-
turned to the ones for which the starting position is not more
than dl words away from the position right after the last
translated word, wheredl is a distortion limit.

4.2. Search space exploration

The last building block of the decoder is thesearch strat-
egy. Like in PHARAOH, we implemented a beam search
strategy. Instead of treating all the hypotheses together, a
beam search proceeds level by level. At each level, the
hypotheses are pruned regardless of the hypotheses in the
other levels. The ones that are kept are expanded and stored
for treatment in a further level. The advantage of using dif-
ferent levels is that we can group and prune together com-
parable hypotheses.
In PHARAOH and RAMSES, the level of a hypothesis cor-
responds to the number of source words that are translated
in its partial translation. This is so because without a very
good heuristic, it is difficult to compare a hypothesis where
one word is translated with another where, for example,
twenty words are translated.
The way it is designed, this search strategy can therefore be
used by any model, as long as the latter provides a policy to
establish the level of any given hypothesis.

5. Evaluation
We evaluated whether theMOOD framework can be use
to develop a state-of-the-art decoder. We thus compared
RAMSES against PHARAOH.
Because there are some places in the PHARAOH manual
that left us with implementation choices, we ended up with
a clone which differs slightly from the original. To measure
this difference, we evaluated the translation quality of the
two decoders.
A good design is often a compromise between modularity,
which increases code reuse, and execution speed. To mea-
sure this compromise, we also compared the speed of the
two decoders.

5.1. Corpora

We used the parallel corpora that were prepared for the
shared task of the WPT’05 ACL workshop (Koehn and
Monz, 2005). They have been extracted from the proceed-
ings of the European Parliament. We focussed our atten-
tion on two different language pairs:French-to-Englishand
German-to-English. If the former is a well studied lan-
guage pair, the latter presents more challenge to a phrase-
based decoder, because German has a substantially differ-
ent word order than English has (Collins et al., 2005).
We trained (on theTRAIN section of the corpora) the
phrase-based models with one of our programs relying on a
bidirectional word alignment produced by GIZA ++ (Och
and Ney, 2000). Each PBM parameter was scored with
its relative frequency as well as with an IBM1-like score
(P(s|t) andP(t|s)). The only preprocessing we applied con-
sisted in putting all the texts in lowercase.

712

The two decoders were tuned (on theDEV sections) to op-
timize the BLEU metric using the algorithm described in
(Och, 2003). We used the implementation available in the
training toolkit graciously made available by the WPT’06
shared task organizers (seehttp://www.statmt.
org/wmt06/shared-task/baseline.html).
The main characteristics of the corpus and the models we
used in this study are reported in Table 1. Note that al-
though theTEST sections we used here correspond to the
test material that the participating systems had to translate,
a direct comparison between our results and the ones re-
ported during the workshop is not possible since, for some
reason, we did not use the same evaluation toolkits (see next
section).

pair corpus sentences parameters
TRAIN 688 031 13 190 285

fr2en DEV 200 203 760
TEST 2 000 663 042

TRAIN 751 088 11 852 331
de2en DEV 200 116 095

TEST 2 000 415 507

Table 1: Main characteristics of the corpora and models we
used in this study.parameters indicates the number of
parameters of the PBM that match the source material.

5.2. Metrics

We used theBLEU (Papineni et al., 2002) andNIST (Dod-
dington, 2002) metrics to automatically rate the translation
quality of the engines we compared, both computed by the
script mteval . We used the versionv11a of the script
which we downloaded fromhttp://www.nist.gov/
speech/tests/mt/resources/scoring.htm .
To compare the decoding speed of the two decoders, we
decided to compute the number of states they explored per
second. It is indeed a better indicator of the potential of the
decoder than the total number of states or the total running
time, because those are mainly affected by pruning and tun-
ing. Different tunings yield different scores, thus affecting
the number of hypotheses that are pruned. We also report
the total number of states considered during each transla-
tion session. Note that because each decoder was tuned
separately (on the sameDEV sections with the same tool),
they eventually ended up with a different scoring function,
thus affecting the number of hypotheses that were pruned.

5.3. Results

The tests were conducted on computers equipped with a
2 GHz AMD Opteron 246 processor and 8 gigabytes of
RAM. The results of the French-to-English experiment are
reported in Table 2. Expectedly, the translation quality of
the two decoders is comparable. We observe that RAMSES

explores less states per second than PHARAOH. However,
for this setting, RAMSES explored 20% more hypotheses
than PHARAOH.
The performance of RAMSES and PHARAOH for the
German-to-English task are reported in Table 3. As we al-

BLEU NIST states / sec states
RAMSES 0.2908 7.2672 375 708 1.39E+10
PHARAOH 0.2897 7.2969 587 704 1.16E+10

Table 2: Translation quality metrics and decoding speeds
when translating from French to English.

ready mentioned, German is a lot more difficult to trans-
late than French for a PBM decoder (Collins et al., 2005),
and this results into lower scores. ForBLEU, PHARAOH

ended up with a significantly higher score, even if RAM -
SESexplored 40% more hypotheses than PHARAOH for this
setting. The fact that we tuned both decoders on a rather
small corpus (200 sentences) might explain the difference
in BLEU scores we observe. However, note that the differ-
ence inNIST scores is in favor of RAMSES.

BLEU NIST states / sec states
RAMSES 0.1994 6.4659 410 363 8.16E+9
PHARAOH 0.2262 6.4361 660 743 5.78E+9

Table 3: Translation quality metrics and decoding speeds
when translating from German to English.

When analyzing these results, we must keep in mind that
RAMSES was designed for two different reasons. First, to
offer the community an Open Source, phrase-based decoder
and second, to assess the usefulness ofMOOD when creat-
ing state-of-the-art decoders.
There is no doubt that the first goal was reached. By re-
leasingMOOD and RAMSES source codes, new SMT prac-
titioners do not need to start from scratch anymore when
they wish to test a new idea for the decoding process. An-
other advantage of Open Source software is that since more
people have the chance to read the source code, they are
more likely to detect bugs and improve the code.
We also consider that the second goal was reached. We
matched PHARAOH’s translation quality when translating
from French to English, and we further think that the differ-
ences observed in the results when translating from German
are due to implementation details or maybe to overfitting
during tuning.
Currently, PHARAOH is roughly twice as fast as RAM -
SES. If only the features of PHARAOH are needed, then
PHARAOH should be preferred to RAMSES, but for re-
searchers who want to experiment, RAMSES is a solid con-
tender.

6. Conclusion
Our main contribution has been to provide a general frame-
work in order to implement a decoder. Our C++ implemen-
tation of this framework is calledMOOD and it is released
under an Open Source license.2 Anyone can thus view, use
and modify its source code freely. As a proof of concept
that this framework can be used to build a full-fledged de-
coder, we implemented RAMSES, a PBM decoder based on
PHARAOH’s manual.

2http://smtmood.sourceforge.net

713

In its architecture,MOOD cleanly separates the model from
the search space exploration strategy. It thus maximizes
code reusability by allowing the same exploration strategy
to be used with many different models. Code reusability has
two major advantages over a complete rewrite: it is faster to
develop a new decoder and reduces the risk of introducing
bugs.
Even though RAMSES is not as fast as PHARAOH, it is a
solid tool for research projects: the code is Open Source
and the architecture is modular, making it easier for re-
searchers to experiment with SMT. Also, the command-line
interface of RAMSES is very close to that of PHARAOH, so
switching from one to the other should be easy.
Currently,MOOD only supports PBM and the beam search
strategy. We plan to support at least word-based models
and hierarchical models. We will also add a greedy and a
dynamic programming search space exploration strategy.
Often, SMT is said to be language independant, but some-
times, specific problems need specific solutions. We there-
fore intend to add toMOOD specialized modules for some
languages. For instance, we would like to create a transfor-
mation generator that returns transformations that respect
the structure of a sentence as well as specialized costs. Be-
causeMOOD is modular, these modules will be easy to
switch on or off, so the overall decoder will not lose its
generality.

7. References
Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della

Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estimation.
Computational Linguistics, 19(2):263–311.

Philip Clarkson and Ronald Rosenfeld. 1997. Statistical
language modeling using the CMU-cambridge toolkit.
In Proc. Eurospeech ’97, pages 2707–2710, Rhodes,
Greece.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine trans-
lation. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL’05),
Ann Arbor, Michigan, June.

G. Doddington. 2002. Automatic evaluation of machine
translation quality using n-gram cooccurrence statistics.
In Proceedings of the HLT, pages 257–258, San Diego,
USA.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast decoding and
optimal decoding for machine translation. InACL ’01:
Proceedings of the 39th Annual Meeting on Association
for Computational Linguistics, pages 228–235.

K. Knight and Y. Al-Onaizan, 1999. A Primer on
Finite-State Software for Natural Language Processing,
August. http://www.isi.edu/licensed-sw/carmel/carmel-
tutorial2.pdf.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models.Computational Linguis-
tic, 25(4):607–615.

Philipp Koehn and Christof Monz. 2005. Shared task: Sta-
tistical machine translation between european languages.
In Proceedings of the ACL Workshop on Building and

Using Parallel Texts, pages 119–124, Ann Arbor, Michi-
gan, June.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statistical phrase-
based translation. InProceedings of the Human Lan-
guage Technology Conference (HLT), pages 127–133.

P. Koehn. 2004. Pharaoh: a beam search decoder for
phrase-based SMT. InProceedings of AMTA, pages
115–124.

Daniel Marcu and William Wong. 2002. A phrase-based,
joint probability model for statistical machine transla-
tion. In Conference on Empirical Methods in Natural
Language Processing.

F.J. Och and H. Ney. 2000. Improved statistical alignment
models. InConference of the Association for Compu-
tational Linguistic (ACL), pages 440–447, Hongkong,
China.

F.J. Och and H. Ney. 2004. The alignment template ap-
proach to statistical machine translation.Computational
Linguistics, 30:417–449.

Franz Joseph Och. 2003. Minimum error rate training
for statistical machine translation. InProceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, Sapporo, Japan, July.

Daniel Ortiz-Mart́ınez, Ismael Garcı́a-Varea, and Francisco
Casacuberta. 2005. Thot: a toolkit to train phrase-based
statistical translation models. InTenth Machine Transla-
tion Summit, pages 141–148, Phuket, Thailand.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. InProceedings of the 40th Annual
Meeting of the ACL, pages 311–318, Philadelphia, Penn-
sylvania.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: Syntactically informed
phrasal SMT. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 271–279, Ann Arbor, Michigan, June.

A. Stolcke. 2002. SRILM - an extensible language model-
ing toolkit. In Proceedings of ICSLP, Denver, Colorado,
Sept.

C. Tillmann and H. Ney. 2003. Word reordering and a
dynamic programming beam search algorithm for sta-
tistical machine translation.Computational Linguistics,
29:97–133.

Nicola Ueffing, Franz Josef Och, and Hermann Ney. 2002.
Generation of word graphs in statistical machine transla-
tion. In Proc. of the Conference on Empirical Methods
in Natural Language Processing, Philadephia, PA, July
6-7.

Daniel J. Walker. 2005. The open ”a.i.” kitTM : Gen-
eral machine learning modules from statistical machine
translation. InWorkshop on MT Summit X, ”Open-
Source Machine Translation”, Phuket, Thailand.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. InProceedings of the 39th
Annual Meeting of the Association for Computational
Linguistics (ACL’01), pages 523–530, Toulouse, France.

714

