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Abstract
In this paper, we present a simple yet efficient automatic system to translate biomedical terms. It mainly relies on a machine learning
approach able to infer rewriting rules from pair of terms in two languages. Given a new term, these rules are then used to transform the
initial term into its translation. Since conflicting rules may produce different translations, we also use language modeling to single out
the best candidate. We report experiments on different language pairs (including Czech, English, French, Italian, German, Portuguese,
Spanish and even Russian); our approach yields good results (varying according to the considered languages) and outperforms existing
ones for the French-English pair.

1. Introduction
In the biomedical domain, the international research frame-
work makes knowledge resources such as multilingual ter-
minologies and thesauri essential to carry out many re-
searches. Such resources have indeed proved extremely
useful for applications such as international collections of
epidemiological data, machine translation (Langlais and
Carl, 2004), and for cross-language access to medical pub-
lication. This last application has become an essential tool
for the biomedical community. For instance, the well-
known PubMed document retrieval system gathers over 17
millions citations and processes about 3 millions queries a
day (Herskovic et al., 2007)!
Unfortunately, up to now, little is offered to non-English
speaking users. Most of the existing terminologies and
document collections are in English, and the foreign or
multilingual resources are far from being complete. For
example, there are over 4 millions English entries in the
2006 UMLS Metathesaurus (Bodenreider, 2004), 1.2 mil-
lion Spanish ones, 98 178 for German, 79 586 for French,
49 307 for Russian, and only 722 entries for Norwe-
gian. Moreover, due to fast knowledge update, even well-
developed multilingual resources need constant translation
support. All these facts point up the need for automatic
techniques to produce, manage and update these multilin-
gual resources.
Within this context, we propose to present in this paper an
original method to translate biomedical terms from one lan-
guage to another. This method aims at getting rid of the
bottleneck caused by the incompleteness of multilingual re-
sources in most real-world applications. The new word-to-
word translation approach we propose makes it possible to
translate automatically a large class of simple terms (i.e.,
composed of one word) in the biomedical domain from one
language to another. It is tested and evaluated on transla-
tions within various language pairs (including Czech, En-
glish, French, German, Italian Portuguese, Russian, Span-
ish). Our approach relies on two major hypotheses:

• a large class of terms from one language to another are
morphologically related;

• differences between such terms are regular enough to
be automatically learned.

These two hypotheses, only stated for the biomedical do-
main, make the most of the fact that, most of the time,
biomedical terms share a common Greek or Latin basis
in many languages, and that their morphological deriva-
tions are very regular (Deléger et al., 2007). These reg-
ularities appear clearly in the following French-English
examples: ophtalmorragie/ophthalmorrhagia, ophtalmoplas-
tie/ophthalmoplasty, leucorragie/leukorrhagia...
The main idea of our work is that these regularities can
be learnt automatically with well suited machine learning
techniques, and then can be used them to translate new
or unknown biomedical terms. We thus proposed a sim-
ple machine learning approach allowing us to infer a set
of rewriting rules; it only necessitates examples of pairs of
terms that are translation of each other (different languages
can be considered as source or target). The inferred rules
operate at the letter level; once they are learnt, they can
be used to translate new and unseen terms into the target
language. It is worth noting that neither external data nor
knowledge is required besides the gathering of examples of
paired terms for the languages under consideration. More-
over, these examples are simply taken from the multilingual
terminologies that we aim at completing; thus, this is a fully
automatic process.
After the description of related studies, Section 3. is dedi-
cated to the description of the translation method and Sec-
tion 4. gives some of its results for a pure translation task.

2. Related work
Few researches aim at translating terms directly from one
language to another. One close work is the one of S. Schulz
et al. (2004) about the translation of biomedical terms from
Portuguese into Spanish with rewriting rules which are fur-
ther used for biomedical information retrieval (Markó et al.,
2005). Unfortunately, contrary to our work, these rules are
hand-coded making this approach not portable. In a pre-
vious work (Claveau and Zweigenbaum, 2005a), an auto-
matic technique relying on inference of transducers (finite-
state machines allowing rewriting while analyzing a string)



was proposed. The main drawback of this approach was
that it could only handle language pairs sharing the same
alphabet and produced less reliable results than the one
presented in this paper (see Section 4.3.). More recently,
Langlais et al. (Langlais and Patry, 2007) proposed a
very interesting approach to translate unknown words based
on analogical learning. This technique seems promising
and its use to translate biomedical terms is under study
(Langlais et al., 2007).
Apart from these studies, related problems are often ad-
dressed in the domain of automatic corpus translation. In-
deed, the cognate detection task (cognates are pairs of
words with close forms) (Fluhr et al., 2000, inter alia) relies
on morphological operations (edit distance, longest com-
mon sub-string...) sometimes very close to the rewriting
rules we infer. Other studies are based on corpus-based
analysis using statistical techniques or lexical clues (punc-
tuation marks, digits...) in order to discover alignments
—thus, possible translation relations— between terms in
aligned corpora (Ahrenberg et al., 2000; Gale and Church,
1991; Tiedemann, 2004) or comparable corpora (Fung and
McKeown, 1997b; Fung and McKeown, 1997a). Besides
the problem of the lack of such specialized corpora, these
approaches differ from ours in that their goal is to exhibit
the translation of a word in a text (relationship problem)
whereas we are addressing the problem of producing the
translation of a term without other information (generation
problem). Moreover, most of the times, these alignment
techniques actually need pairs of terms that are translation
of each other as a starting point (Véronis, 2000, for a state-
of-the-art).
More generally, statistical machine translation (Brown et
al., 1990) addresses a close problem; of course, in our case,
the sequence to translate is composed of letters and not
words. Yet, the method we propose bears many similari-
ties with the standard statistical approach that uses a trans-
lation model and a language model (Brown et al., 1993).
Nonetheless, the kind of data we manipulate implies im-
portant differences. First, we are not concerned with the
problem of reordering words, taken into account in the IBM
models through the distortion parameter: indeed, the mor-
pheme order (and thus the letter order) of our terms hardly
varies from one language to another. Similarly, the fertility
parameters or null words in these models, which are used
to tackle the word-to-word translation exceptions, are not
suited for our data. Such problems are indeed naturally
handled by our inference technique which allows us to gen-
erate rewriting rules translating not only letter to letter but
also from a string of letter to another string of letter of dif-
ferent length.
Studies on transliteration, for instance for Japanese
(katakana) (Qu et al., 2003; Tsuji et al., 2002; Knight and
Graehl, 1998, for example) or for Arabic (Al-Onaizan and
Knight, 2002; AbdulJaleel and Larkey, 2003) bear lot of
similarities with our approach. Indeed, some of the tech-
niques used in this domain are very close to one we de-
tail hereafter, but usually only concern the representation
of foreign words (mainly named entities) in languages hav-
ing a different alphabet than the source words. Most of
these techniques include a step aiming at transforming the

term as a sequence of phonemes; they are said phonetic-
based. Such techniques thus require external knowledge
(letters-to-phonemes table, source-language phonemes to
target-language phonemes table. . . ) which makes the ap-
proach efficient but not portable to other pairs of languages.
The technique we present is in fact similar to some exist-
ing approaches developed in the spelling-based framework
(Al-Onaizan and Knight, 2002). In the existing studies
about named-entity transliteration, the two translation di-
rections are not considered as equivalent: one speaks about
forward transliteration (for example, transliteration of an
Arabic name into the Latin alphabet) and backward translit-
eration (retrieving the original Arabic name from its Latin
transliteration). This distinction often implies differences
in the techniques used (vowelization in Arabic for exam-
ple); it is not relevant to our approach. Our technique is
fully symmetric even if the performances may vary from
one translation direction to the other.
Finally, let us mention the studies on computational mor-
phology in which machine learning approaches have been
successfully used to lemmatize (Erjavec and Džeroski,
2004), to discover morphologic relations (Gaussier, 1999;
Moreau et al., 2007) or to perform morphographemic anal-
ysis (Oflazer and Nirenburg, 1999). The technique of
rewriting rule inference presented in the next section falls
within the scope of such studies.

3. Translation technique
The translation technique we propose here works in two
steps. First, rewriting rules (see below for examples) are
learnt from examples of terms that are translations of each
other in the considered language pair. This set of rules
is then used to translate any new term, but conflicting
rules may produce several rivaling translations. In order
to choose only one translation, we use a language model,
learnt on the training data, and keep the most probable
translation.

3.1. Rewriting rules
Our translation technique aims at learning rewriting rules
(that can also be seen as transliteration rules). These rules,
inferred from lists of bilingual term pairs (cf. Section 4.1.),
have the following form:

〈input string〉 → 〈output string〉

In the remaining of this paper, we note r a rewriting rule;
R is the list of every rule inferred during an experiment,
input(r) and output(r) respectively refer to the input and
output strings of the rule r.
Algorithm 1 gives an overview of our machine learning ap-
proach. The first step is performed by the software DPalign
(http://www.cnts.ua.ac.be/∼decadt/?section=dpalign). It is
used to align two sequences by minimizing their edit dis-
tance with the dynamic programming approach proposed
by Wagner & Fischer (1974); the necessary costs of substi-
tuting characters are computed on the whole set of pair to
be aligned. Thus, this software does not rely on a formal
similarity between characters; it makes it possible to align
terms that do not share the same alphabet.



L Portuguese-English L English-Russian
# c e t o s t e r ó i d e s #
# k e t o s t e r o i d s #

# a d e n o s i n e t r i p h o s p h a t a s e #
# ad e n o z i n trif o sf ata z a #

# e l e c t r o p o r a ç ã o #
# e l e c t r o p o r a t i o n #

# h y d r o x y p r e g n e n o l o n e #
# g i dro k s i pr e g n e n olo n #

# e n c e f a l o g r a f i a #
# e n c e p h a l o g r a p h y #

# k e r a t o p l a s t y #
# k e ra t o p la s ti k a #

Table 1: Examples of alignment produced for two language pairs

Algorithm 1 Inferring rewriting rules
1: align term pairs at the letter level, put the results in L
2: for all term pair W1 in L do
3: for all letter alignment of W1 in which the 2 letters

differ do
4: find the best hypothesis of rule r in the search

space E
5: add r to the set of rules R
6: end for
7: end for

A list of paired terms is provided in input of DPalign; to
each term, we add two characters # to represent the begin-
ning and the end of the string of letters. The output list L
then contains the paired terms aligned at a letter-level; Ta-
ble 1 presents some examples for two language pairs (’ ’
means no character). Hereafter, the source term of pair
p (respectively the target term of p) is written input(p)
(resp. output(p)); moreover, align(x, y) means that the
sub-string x is aligned with sub-string y in the considered
term pair.
For each difference between two aligned letters,
our algorithm has to generate the best rewriting
rule. Many rules are eligible: consider for exam-
ple the difference i/y in the French-English word pair
#opht almologie#/#ophthalmology #; some of the rewriting
rules our algorithm could generate in this context are i → y,
gi → gy, ie → y (note that we do not write the character),
ologie# → ology#, and so on.
The score of a rule is computed from the list L; it is de-
fined as the ratio between the number of times the rule can
actually be applied and the number of times the premise of
the rule matches a source term from the example list. Thus,
formally, it is defined as:

score(r) =
|{p ∈ L | input(r) ⊆ input(p) ∧ output(r) ⊆ align(input(r), p)}|

|{s ∈ Linput | input(r) ⊆ s}|

where ⊆ represents the inclusion of character string (for
example, abc ⊆ aabca).

3.2. Lattice of rules
In order to efficiently choose the best rule among these pos-
sibilities, we define a hierarchical relation between rules.

Definition 1 (Hierarchical relation) Let r1 and r2 be two
rules, then r1 º r2 ⇔ (input(r1) ⊆ input(r2) ∧
output(r1) ⊆ output(r2)).

If r1 º r2, then r1 is said more general than r2. This hier-
archical relation defines a partial order in the search space
E ; thus, it makes it possible to order rules hierarchically in
E , resulting in a lattice of rules.

Proof
Reflexivity. For any rule r, we obviously have input(r) ⊆
input(r) ∧ output(r) ⊆ output(r), thus r º r.
Transitivity. Let r1, r2 and r3 be three rules such that
r1 º r2 and r2 º r3. We have input(r1) ⊆ input(r2),
input(r2) ⊆ input(r3), thus input(r1) ⊆ input(r3), and
similarly we have output(r1) ⊆ output(r3). Finally, we
have r1 º r3.
Anti-symmetry. Let r1 and r2 be two rules such that
r1 º r2 and r2 º r1. We have input(r1) ⊆ input(r2),
input(r2) ⊆ input(r1), thus input(r1) = input(r2), and
similarly we have output(r1) = output(r2). Finally, we
have r1 = r2.
Thus, this relation defines a partial order. It is not a total
order since we can have r1 and r2 such that r1 6º r2 and
r2 6º r1. ¤

Figure 1 presents such a search space built from the differ-
ence i/y in the alignment #opht almologie#/#ophthalmology #.

i → y

ie → ygi → gy

ie# → y#

ogie → ogy
gie# → gy#

gie → gyogi → ogy

logi → logy

#ophtalmologie# → #ophthalmology#

Figure 1: Search lattice E from the example i/y in
#opht almologie#/#ophthalmology #

In practice, these lattices of rules are explored top-down;
the rules are generated on the fly with a very simple oper-



ator that generates more specialized rules from an existing
one. Consider the rule r1 = i → y in the previous exam-
ple. This is the most general rule for the difference i/y in
the alignment #opht almologie#/#ophthalmology #. After the
computing of its score the algorithm will generate and score
every rule that is immediately more specific, that is:

{r2 | r1 º r2 ∧ @ r3 s.t. r1 Â r3 Â r2}
The generation of these specific rules is simply done by
adding the letter on the right (respectively on the left) from
the input word of the paired term used as example to the
input of r1 and adding the corresponding aligned letter to
the right (resp. to the left) of its output. Thus, by apply-
ing this to r1 we have: g input(r1) → g output(r1) and
input(r1) e → output(r1) , that is gi → gy and ie → y.
The inheritance properties of the lattices and this special-
ization operator make it possible to choose quickly the best
rewriting rules for each example according to the score
function which is consistent with the specialization op-
erator. Indeed, computing the score is the most time-
consuming task of our algorithm because it necessitates an-
alyzing every word in the training set L. However, by con-
sidering the hierarchical relation and the way hypothesis are
generated, a big amount of time can be saved: for a term
pair used as an example, consider two rules r1 and r2 such
that r1 º r2. When computing the score of r2, we have
for any word pair p: input(r1) ⊆ input(r2) ⊆ input(p),
that is, if p is such that input(r2) ⊆ input(p) then nec-
essarily p was analyzed when computing the score of r1.
Therefore, we do not need to examine every word of L to
compute the score of r2 but only those that were covered
by the denominator of r1.

3.3. Using the rules and language modeling to
translate

Every difference between two aligned letters in every term
pair thus ends up with one rewriting rule chosen in the cor-
responding lattice. All the rules are collected inR. Given a
new term to translate, every rewriting rule of R that can be
applied (i.e. rules inferred in the training set in which the in-
put string corresponds to a sub-string of the term) is indeed
applied. In case of conflicting rules (rules with the same or
overlapping premise), all possibilities are generated. Thus,
at this stage, a word can receive several concurrent transla-
tions. Therefore, the second step of our approach consists
in a post-processing technique in order, on the one hand,
to select only one of these proposed translations, and on
the other hand, to give the user a confidence factor for the
result.
These two tasks are conjointly performed by assigning a
probability to each possible translation according to a lan-
guage model (LM). That is, with standard notations, for a
word w composed of the letters l1, l2, ..., lm:

P (w) =
m∏

i=1

P (li | l1, ..., li−1)

In practice, the probabilities P (li|...) are estimated from
the list of output words used as examples in the first step,
decomposed in n-grams of letters. As usual with language

modeling, to prevent the problem of unseen sequences, the
probabilities are actually computed with a limited history,
that is we only consider the n− 1 previous letters:

P (w) =
m∏

i=1

P (li | li−n+1, ..., li−1)

In the experiments presented below, we use n = 7 letters.
A simple smoothing technique is also used to provide more
reliable estimations.
Intuitively, the LM aims at favoring translations that ”look
like” correct words of the output language. Thus, among
all the proposed translations, we only keep the one with
the better LM score. Contrary to similar work in machine
translation or transliteration, we do not include the score of
the rewriting rules in this final score. Indeed, preliminary
experiments tended to show that it performed worse than
using only the LM score, especially when few examples
were used.
This language modeling approach also enables to avoid
some problems. As it was underlined by Claveau &
Zweigenbaum (2005b), some words have similar forms
but different Part-of-Speech or semantic role. If available,
these additional pieces of information may avoid trans-
lation errors. For example, a word in -ique in French
may be translated in English in -ic if it is an adjec-
tive (e.g. dynamique/dynamic) or in -ics if it is a noun
(e.g. linguistique/linguistics). Similarly, a word in -logie in
French may be translated in -logy if it concerns a science
(biologie/biology) or in -logia if it concerns a language disor-
der (dyslogie/dyslogia). It is worth noting that this part-of-
speech and semantic information, if available in the data,
can easily be used with the language model: the probabili-
ties estimated from the training data are simply conditioned
to the information (Info hereafter) we want to consider,
that is:

P (w, Info) =
m∏

i=1

P (li | li−n+1, ..., li−1, Info)

4. Translation Experiments
This section presents some of the experiments we made
with the translation technique previously described. We de-
scribe the data, the experimental framework we used and
finally the results obtained at this translation task.

4.1. Data
Two different kinds of data are used for these experiments.
First, in order to compare our translation approach with
previous work, we use the same French-English pairs of
terms used in (Claveau and Zweigenbaum, 2005a), that is
a list of terms taken from the Masson medical dictionary
(http://www.atmedica.com). The second set of data used
in our experiments is the UMLS Metathesaurus (Tuttle et
al., 1990; Bodenreider, 2004). This collection of thesauri
brings together biomedical terms from 17 languages with
a language-independent identifier allowing us to form the
necessary bilingual pairs of terms. For these two sets, we
only consider simple terms (i.e. one-word terms) in both
studied languages, and we disregard acronyms.



4.2. Experimental framework
In order to evaluate our results, we follow a standard proto-
col. The word pair list is split into two parts: the first one
is used for the learning process as described above (rule in-
ference and language modeling), and the second one, set to
contain 1000 pairs, is used as a testing set. Once the rules
have been inferred and language modeling has been done,
we apply them to every input word of the testing set. We
then compare the generated translation with the expected
output word; if the two strings exactly match, the transla-
tion is considered as correct, in every other case, it is con-
sidered as wrong.
The results are evaluated in terms of precision (percentage
of correct translations generated). Nonetheless, since the
LM gives a confidence factor to each translation, we can
decide to keep only those with a LM score greater than a
certain threshold. If this threshold is set high the precision
may be high, but the number of words actually translated
may be low, and conversely. Thus, in order to represent
all the possibilities, results below are presented as graphs
where each point corresponds to the precision and the per-
centage of words translated for a certain LM score thresh-
old.

4.3. Results
4.3.1. Translation between French and English
As a first experiment, we focus our attention on the French-
English language pair with the help of the Masson data
in order to compare these results to those of Claveau &
Zweigenbaum (2005a). Figure 2 and 3 respectively present
the precision graph of the French into English and English
into French translation experiments. In close languages
such as French and English, many specialized words are
exactly the same. Thus, as a simple baseline, we compute
the precision that would be obtained by a system systemat-
ically proposing the input term as its own translation. We
also indicate the best precision obtained by the transducer
based technique exposed in (Claveau and Zweigenbaum,
2005a) within the same experimental framework and data.
Whatever the translation direction, the two graphs show
that our approach performs very well: for French into En-
glish translations, it yields a precision of 85.4% when ev-
ery word is translated, and 84.8% for English into French.
In both cases, it represents a 10% improvement over the
transducer-based approach (Claveau and Zweigenbaum,
2005a). Our technique clearly outperforms the baseline
results, but it is also worth noting that about 25% of
the biomedical terms are identical in French and English,
which indicates that the two languages are close enough to
make the learning task relatively easy.
Concerning the use of the language modeling, several
things are noteworthy. First, without including the Part-
of-speech information, the precision rates are a bit lower
(82.6% for French to English and 84.8% for English to
French). Secondly, if we choose the translation at random
among all the generated ones instead of choosing the one
with the best LM score, the precision rate falls to about
50% for both translation directions. Finally, if the good
translation were always chosen (when it appears in the list
of potential translations produced by the rewriting rules),

the precision would reach 90%. It means that the language
model makes very few mistakes at choosing the final trans-
lation among the different proposals. These facts clearly
show the interest of using language modeling and, if avail-
able, to include the Part-of-Speech information in it.

4.3.2. Computation time and performances vs.
number of examples

In the previous experiments all the available examples (i.e.
all the paired terms but those kept for the test set) were
used to infer the rewriting rules. Let us now examine the
results and the computation time when this number varies.
Table 2 displays the results we obtain when we keep dif-
ferent number of examples to infer the rewriting rules and
to learn the language model probabilities. In this table, we
indicate the precision rate in the worst case (i.e. every trans-
lation is kept), the number of rules that are inferred, as well
as the computing time due to the alignment step and the to-
tal inference time (including the alignment time). The ex-
periments were carried out on a 1.5MHz Centrino Laptop
running Linux, and the algorithm presented in Section 3.1.
was entirely implemented in Perl.

Number Alignment Total Number Precision
of term time execution of rules

pairs time

5400 132s 146s 727 85.4%
3600 73s 84s 537 83.5%
2800 54s 62s 406 82.0%
1800 36s 42s 309 82.8%
1400 21s 28s 249 82.3%

660 10s 13s 164 80.4%
320 6s 9s 77 77.3%
130 3s 8s 39 76.3%

Table 2: Computation time and precision as a function of
the number of term pairs used as examples

One can notice that the precision rates remain very good,
even with very few examples ending up with few rules.
This is particularly interesting since gathering such pairs
of terms could be difficult for certain language pairs due to
the lack of multilingual resources. Concerning the compu-
tation time, the inference process is fast enough to process
several language pairs in a minimal amount of time, thanks
to our efficient search in the rewriting rule lattices. Yet, the
whole process is slowed down by the alignment step for
which the dynamic programming algorithm clearly consti-
tutes a bottleneck.

4.3.3. Other language pairs
The same experiment can be carried out with different lan-
guage pairs from the UMLS Metathesaurus. We only ex-
hibit some results from many possible combinations; con-
trary to the previous experiments, we do not include any
part-of-speech information in the language modeling.
Figures 4 and 5 present the results obtained with two lan-
guages known to be close: Spanish and Portuguese. These
results are very good: in the worst case (i.e. no LM thresh-
old is set: every term is proposed a translation), 87.9% of
Portuguese terms are correctly translated into Spanish and



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Pr
ec

is
io

n

Perrcentage of words translated

Rewriting rules
Claveau & Zweigenbaum 2005

Baseline

Figure 2: Performances of French into English translation
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Figure 3: Performances of English into French translation
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Figure 4: Performances of translation
from Portuguese into Spanish
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Figure 5: Performances of translation
from Spanish into Portuguese
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Figure 6: Performances of translation
from Portuguese into English
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Figure 7: Performances of translation
from Spanish into English
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Figure 8: Performances of Italian into
English translation
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Figure 9: Performances of Czech into
English translation

85% for Spanish into Portuguese. This is not surprising
given the closeness of the two languages, a closeness which
further appears in the very high baseline precision. We now
focus on translation into English, as it is the way which
would be favored in real-world application such as cross-
lingual information retrieval. As shown in Figures 6 and
7, translation from Spanish into English provides 71.7%
of terms correctly translated; translation from Portuguese
into English gives 75.5% of precision. Here again, the re-
sults are quite good; they also are in accordance with the
proximity of Spanish and Portuguese since both languages
perform similarly when translated into English.
Italian or Czech to English translations yield almost similar
results as illustrated in Figures 8 and 9, even if these lan-
guages are not reputed to be specially close: in the worst
case, 70% of Italian terms and 75.5% of Czech terms are
correctly translated.
A more surprising result is obtained for German; although

these two languages share strong historical links, Figure 10
clearly shows that German and English biomedical terms
do not exhibit enough regularities to achieve the same pre-
cision rates than the previous languages. Nonetheless, in
the worst case, our technique still yields 68.8% of correctly
translated terms.

4.3.4. Language pairs with different alphabets
Let us now examine the translation performances of the
Russian-English language pair. As we previously said,
contrary to the technique of (Claveau and Zweigenbaum,
2005a), the approach described in this paper can be easily
used with languages that do not share the same alphabet but
show some regularities that can be learnt. Figures 11 and
12 present the results we obtain. Due to the different alpha-
bets, the baseline is 0 in this case. The minimal precision
rates (i.e. , when every word is translated) are 57.5% for
English into Russian and 64.5% for Russian into English.
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Figure 10: Performances of German into
English translation
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Figure 11: Performances of translation
from Russian into English
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Figure 12: Performances of translation
from English into Russian

These translation performances are surprisingly good given
the apparent difficulty of the task. Of course, they are a bit
lower than those of the other language pairs we examined
but could be useful enough for many applications. It also
proves if needed that most of the biomedical terms in Rus-
sian are built from Cyrilic transliterations of the same Latin
and Greek morphemes used in English, French or Italian...

4.3.5. Common causes of errors
Our translation technique automatically captures existing
regularities between biomedical terms in different lan-
guages. For this reason and unsurprisingly, when exam-
ining the results in detail, it appears that the main cause of
error is due to the lack of morphological links between the
source and the target term. Obviously, this is more often
the case for the Russian-English language pair, but still oc-
curs for languages known to be close (e.g. asimiento/grip for
Spanish-Portuguese translation or embrochage/pinning for
French-English). Besides these unavoidable errors, as al-
ready discussed, some errors are also due to similar forms
with different part-of-speech or semantic features; as it was
shown for the French/English experiments, most of these
errors could be avoided if we had at our disposal the Part-
of-Speech of semantic information. After all, the experi-
ments tend to show that these cases are rare enough to make
our approach yield good precision rates (though they are
variable according to the considered languages).

5. Concluding remarks and perspectives
The method presented in this paper makes it possible to
translate efficiently simple biomedical terms between var-
ious languages. It relies on a machine-learning technique
inferring rewriting rules from examples of a list of bilin-
gual term pairs and on a letter-based language modeling.
These examples can be found easily in the existing –yet
incomplete– multilingual terminologies; no other external
knowledge or human intervention is needed. The approach
is efficient and successful for translating unseen terms with
a high precision, depending on the languages, and can thus
be used to overcome problems due to incomplete multilin-
gual language resources.
Many perspectives are foreseen for this work including
technical enhancements and applications of our translation
approach and its use in a cross-language framework. For in-
stance, the translation of complex terms (terms composed
of more than one word) is currently closely examined.

These terms are widely used in the biomedical domain
(for instance, 50% of the MeSH terminology are complex
terms), and some of them are not compositional, meaning
that they cannot undergo the word-by-word translation our
approach proposes. Moreover, even compositional terms
would certainly necessitate a syntactic analysis to identify
the head-modifier relations and thus translate it accordingly
to these dependency relations. Lastly, our translation sys-
tem bears numerous similarities with the standard statistical
machine translation approach based on a translation model
and a language model (Brown et al., 1993). The parallel
between the two approaches could lead to interesting in-
sights. Concerning the applications, a cross-lingual infor-
mation retrieval system in the biomedical domain using this
translation approach to translate queries is being studied;
first results are promising.
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2007. Automatic morphological query expansion us-
ing analogy-based machine learning. In Proceedings of
the 29th European Conference on Information Retrieval,
ECIR 2007, Roma, Italy.

Kemal Oflazer and Sergei Nirenburg. 1999. Practical boot-
strapping of morphological analyzers. In Proceedings of
EACL Workshop on Computational Natural Language
Learning, CONLL 99, Bergen, Norway.

Yan Qu, Gregory Grefenstette, and David A. Evans. 2003.
Automatic transliteration for Japanese-to-English text re-
trieval. In Proceedings of the 26th International Confer-
ence on Research and Development in information Re-
trieval, SIGIR 03, Toronto, Canada.
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