
A Web Application for Dialectal Arabic Text Annotation

Yassine Benajiba and Mona Diab

Center for Computational Learning Systems
Columbia University, NY, NY 10115

{ybenajiba,mdiab}@ccls.columbia.edu
Abstract

Design and implementation of an application which allows many annotators to annotate data and enter the information into a central
database is not a trivial task. Such an application has to guarantee a high level of security, consistent and robust back-ups for the underly-
ing database, and aid in increasing the speed and efficiency of the annotation by providing the annotators with intuitive GUIs. Moreover
it needs to ensure that the data is stored with a minimal amount of redundancy in order to simultaneously save all the information while
not losing on speed. In this paper, we describe a web application which is used to annotate many Dialectal Arabic texts. It aims at
optimizing speed, accuracy and efficiency while maintaining the security and integrity of the data.

1. Introduction
Arabic is spoken by more than 300 million people in the
world, most of them live in Arab countries. However
the form of the spoken language varies distinctly from the
written standard form. This phenomenon is referred to as
diglossia (Ferguson, 1959). The spoken form is dialectal
Arabic (DA) while the standard form is modern standard
Arabic (MSA). MSA is the language of education in the
Arab world and it is the language used in formal settings,
people vary in their degree of proficiency in MSA, how-
ever it is not the native tongue of any Arab. MSA is shared
across the Arab world. DA, on the other hand, is the every-
day language used in spoken communication and is emerg-
ing as the form of Arabic used in web communications (so-
cial media) such as blogs, emails, chats and SMS. DA is a
pervasive form of the Arabic language, especially given the
ubiquity of the web.
DA varies significantly from region to region and it varies
also within a single country/city depending on so many fac-
tors including education, social class, gender and religion.
But of more relevance to our object of study, from a natural
language processing (NLP) perspective, DA varieties vary
significantly from MSA which poses a serious impediment
for processing DA with tools designed for MSA. The fact is
that most of the robust tools designed for the processing of
Arabic to date are tailored to MSA due to the abundance of
resources for that variant of Arabic. In fact, applying NLP
tools designed for MSA directly to DA yields significantly
lower performance (Habash et al., 2008; Benajiba et al.,
2008) making it imperative to direct research to building
resources and dedicated tools for DA processing.

DA lack large amounts of consistent data due to several fac-
tors: the lack of orthographic standards for the dialects, the
lack of overall Arabic content on the web, let alone DA con-
tent. Accordingly there is a severe deficiency in the avail-
ability of computational annotations of DA data.
Any serious attempt at processing real Arabic has to ac-
count for the dialects. Even broadcast news which is sup-
posed to be MSA has non-trivial DA infiltrations. In broad-
cast news and talk shows, for instance, speakers tend to
code switch between MSA and DA quite frequently. Fig-
ure 1 illustrates an example taken from a talk show on Al-

jazeera1 where the speaker explains the situation of women
who are film makers in the Arab world. The DA word se-
quences are circled in red and the rest of the text is in MSA.
In (Habash et al., 2008), the authors show that in broadcast
conversation, DA data represents 72.3% of the text. In we-
blogs, the amount of DA is even higher depending on the
domain/topic of discussion where the entire text could be
written in DA.
Language used in social media pose a challenge for NLP
tools in general in any language due the difference in genre.
Social media language is more akin to speech in nature and
people tend to be more loose in their writing standards. The
challenge arises from the fact that the language is less con-
trolled and more speech like where many of the textually
oriented NLP techniques are tailored to processing edited
text. The problem is exacerbated for Arabic writing found
on the web because of the use of DA in these genres. DA
writing lacks orthographic standards, on top of the other
typical problems associated with web media language in
general of typographical errors and lack of punctuation.
Figure 2 shows a fully DA text taken from an Arabic
weblog2.

Our Cross Lingual Arabic Blog Alerts (COLABA) project
aims at addressing these gaps both on the resource creation
level and the building of DA processing tools. In order to
achieve this goal, the very first phase consists of gathering
the necessary data to model:

• Orthographic cleaning and punctuation restoration
(mainly sentence splitting);

• Dialect Annotation;

• Lemma Creation;

• Morphological Profile Creation.

Across all these tasks, we have designed a new phonetic
scheme to render the DA in a conventionalized internal
orthographic form details of which are listed in (Diab
et al., 2010b). We believe that creating a repository of

1http://www.aljazeera.net/
2http : //www.paldf.net/forum/

91/119



Figure 1: An illustrating example of MSA - DA code switching.

Figure 2: An illustrating example of a DA text on a weblog.

consistent annotated resources allows for the building of
applications such as Information Retrieval, Information
Extraction and Statistical Machine Translation on the DA
data. In this project, we have targeted four Arabic Dialects,
namely: Egyptian, Iraqi, Levantine, and Moroccan. And
the harvested data is on the order of half a million Arabic
blogs. The DA data is harvested based on manually
created queries in the respective dialects as well as a list of
compiled dialect specific URLs. Once the data is harvested
it is automatically cleaned from metadata and the content
part is prepared for manual annotation.
The application that we present in this paper,
COLANN GUI, is designed and implemented in the
framework of the COLABA project.
COLANN GUI is the interface used by the annota-
tors to annotate the data with the relevant information.
COLANN GUI uses two different servers for its front-end
and back-end components. It also allows many annotators
to access the database remotely. It offers several views de-
pending on the type of user and the annotation task assigned
to an annotator at any given time. The decision to develop
an annotation application in-house was taken after unsuc-
cessfully trying to find an off-the-shelf tool which can offer
the functionalities we are interested in. Some of these func-
tionalities are:

• Task dependency management: Some of the annota-
tion tasks are dependent on each other whereas oth-
ers are completely detached. It is pretty important in
our tasks to be able to manage the annotation tasks
in a way to keep track of each word in each sentence
and organize the information entered by the annota-
tor efficiently. It is conceivable that the same word
could have different annotations assigned by different
annotators in different tasks whereas most the avail-
able tools do not have the flexibility to be tailored is
such fashion; and

• Annotators’ management: the tool should be able to

allow the lead annotators to assign different tasks to
different annotators at different times, help them trace
the annotations already accomplished, and should al-
low them to give illustrative constructive feedback
from within the tool with regards to the annotation
quality.

Even though many of these annotation tools, such as
GATE(Damljanovic et al., 2008; Maynard, 2008; Aswani
and Gaizauskas, 2009), Annotea(Kahan et al., 2001) and
MnM(Vargas-Vera et al., 2002) among others, have proven
successful in serving their intended purposes, none of them
was flexible enough for being tailored to the COLABA
goals.
The remainder of this paper is organized as follows: We
give an overview of the system in Section 2.; Section 3. il-
lustrates the detailed functionalities of the application; Sec-
tion 4. describes each of the annotation tasks handled by
the application; We give further details about the database
in Section 5. and finally, some future directions are shared
in Section 6..

2. Overall System View
COLANN GUI is a web application. We have chosen
such a set up, in lieu of a desktop one, as it allows us to
build a machine and platform independent application.
Moreover, the administrator (or super user) will have
to handle only one central database that is multi-user
compatible. Furthermore, the COLANN GUI is browser
independent, i.e. all the scripts running in the background
are completely browser independent hence allowing all
the complicated operations to run on the server side only.
COLANN GUI uses PHP scripts to interact with the server
database, and uses JavaScripts to increase GUI interactivity.

Safety and security are essential issues to be thought of
when designing a web application. For safety considera-
tions, we employ a subversion network (SVN) and auto-

92/119



matic back-up servers. For security considerations we orga-
nize our application in two different servers, both of which
is behind several firewalls (see Figure 3).

3. COLANN GUI: A Web Application
As an annotation tool, we have designed COLANN GUI
with three types of users in mind: Annotators, Lead
Annotators, and Super User. The design structure of
COLANN GUI aims to ensure that each annotator is work-
ing on the right data at the right time. The Super User and
Lead Annotator views allow for the handling of organiza-
tional tasks such as database manipulations, management
of the annotators as well as control of in/out data opera-
tions.
Accordingly, each of these different views is associated
with different types of permissions which connect to the
application.

3.1. Super User View
The Super User has the following functionalities:

1. Create, edit and delete tables in the database

2. Create, edit and delete lead accounts

3. Create, edit and delete annotator accounts

4. Check the status of the annotation tasks for each anno-
tator

5. Transfer the data which needs to be annotated from
text files to the database

6. Generate reports and statistics on the underlying
database

7. Write the annotated data into XML files

3.2. Lead Annotator View
The Lead Annotator view shares points 3 and 4 of the Su-
per User view. In addition, this view has the following ad-
ditional functionalities:

1. Assign tasks to the annotators

2. Check the annotations submitted by the annotators

3. Communicate annotation errors to the annotators

4. Create gold annotations for samples of the assignment
tasks for evaluation purposes. Their annotations are
saved as those of a special annotator

5. Generate inter-annotator agreement reports and other
types of relevant statistics on the task and annotator
levels

3.3. Annotator View
The annotator view has the following functionalities:

1. Check status of his/her own annotations

2. Annotate the assigned units of data

3. Check the overall stats of other annotators’ work for
comparative purposes

4. An annotator could check the speed of others (anony-
mously and randomized) on a specific task once they
submit their own

5. View annotations shared with them by the Lead Anno-
tator

4. Annotation Tasks
A detailed description of the annotation guidelines goes be-
yond the scope of this paper. The annotation guidelines are
described in detail in (Diab et al., 2010b). We enumerate
the different annotation tasks which our application pro-
vides. All the annotation tasks can only be performed by
a user of category Annotator or Lead Annotator for the cre-
ation of the gold evaluation data. In all the tasks, the anno-
tator is asked to either save the annotation work, or submit
it. If saved they can go back and edit their annotation at a
later time. Once the work is submitted, they are not allowed
to go back and edit it. Moreover, the annotators always have
direct access to the relevant task guidelines from the web in-
terface by pressing on the information button provided with
each task.
The annotation tasks are described briefly as follows:

1. Typo Identification and Classification and Sentence
Boundary Detection: The annotator is presented with
the raw data as it is cleaned from the meta data but as it
would have been present on web. Blog data is known
to have all kinds of speech effects and typos in addi-
tion to a severe lack of punctuation.
Accordingly, the first step in content annotation is to
identify the typos and have them classified and fixed,
in addition have sentence boundaries identified.

The typos include: (i) gross misspellings: it is rec-
ognized that DA has no standard orthography, how-
ever many of the words are cognates/homographs with
MSA, the annotator is required to fix misspelling of
such words if they are misspelled for example

	
Yg. A�ÖÏ @

AlmsAj, “the mosques” would be fixed and re-entered
as Yg. A�ÖÏ @ AlmsAjd; (ii) speech effects: which consists
of rendering words such as “Goaaaal” to “Goal”; and
(iii) missing spaces. The annotator is also asked to
specify the kind of typo found. Figure 4 shows a case
where the annotator is fixing a “missing space” typo.
The following step is sentence boundary detection.
This step is crucial for many of the language tools
which cannot handle very long sequences of text, e.g.
syntactic parsers. In order to increase the speed and
efficiency of the annotation, we make it possible to
indicate a sentence boundary by clicking on a word
in the running text. The sequence of words is simply
split at that click point. The annotator can also de-
cide to merge two sequences of words by clicking at
the beginning of a line and it automatically appends
the current line to the previous one. It is worth noting
that all the tasks that follow depend on this step be-
ing completed. Once this task is completed, the data is
sent to a coarse grained level of dialect identification
(DI) pipeline described in detail in (Diab et al., 2010a).
The result of this DI process is the identification of the

93/119



Figure 3: Servers and views organization.

Figure 4: Typo Identification and Fixing.

problem words and sequences that are not recognized
by our MSA morphological analyzer, i.e. the words
don’t exist in our underlying dictionaries.3

2. Dialect annotation: For each word in the running text
(after the content cleaning step mentioned before), the
annotator is asked to specify its dialect(s) by picking
from a drop down menu. Moreover they are requested
to choose the word’s level of dialectalness on a given

3It is important to note that we run the data through the mor-
phological analyzer as opposed to matching against the underly-
ing dictionary due to the fact the design decision we made early on
that our dictionaries will have lemmas and rules associated with
them rather than exhaustively listing all possible morphological
forms which could easily be in the millions of entries.

scale. Finally, they are required to provide the pho-
netic transcription of word as specified in our guide-
lines on rendering DA in the COLABA Conventional
Orthography (CCO).

The GUI at this point only allows the annotator to sub-
mit his/her annotation work when all the words in the
text are annotated. The annotators are given the option
to mark a word as unknown.

Another functionality that we have added in order to
help the annotators speed up their annotation in an ef-
ficient way is a color coding system for similar words.
If the annotator enters the possible dialects, relevant
annotation, and the phonetic CCO transliteration for
a surface word wi. The annotated words change color

94/119



to red. This allows the annotator to know which words
have already been annotated by simply eye balling the
words colored in red in the overall document undergo-
ing annotation. Second, the script will look for all the
words in the text which have the same surface form as
wi, i.e. all instances/occurrences of annotated wi, and
it will color each of these instances in blue. The an-
notator then, can simply skip annotating these words
if s/he judges them to have the same annotation as the
original, so it ends up being a revision rather than a
new annotation. It is easy to understand how this sim-
ple change of color coding can facilitate the annota-
tion job and increase the efficiency of the annotation
process by an example. In a long Arabic blog text,
frequent function words such as �

�Ó, m$, “not”, will
only need to be annotated once.

Figure 6 shows an illustrating example of the dialect
annotation process via a screenshot of the task.

3. Lemma Creation: In this task, the annotators are
asked to provide the underlying lemma forms (cita-
tion forms) for surface DA words. The lemmas con-
stiture the dictionary entry forms in our lexical re-
sources. The resource aims to have a large repository
of DA lemmas and their MSA and English equivalents
as well as DA example usages as observed in the blog
data in the COLABA project. Accordingly, the anno-
tator is provided with a surface DA word and instances
of it’s usage from example sentences in the blogs and
they are required to provide the corresponding lemma,
MSA equivalent, English equivalent, gross dialect id.
Once they provide the lemma, they have to identify
which example usage is associated with the lemma
they created. All the lemma information is typed in
using the CCO transcription scheme that COLABA
specifies. It is worth noting that this task is completely
independent from the Dialect Annotation task. Hence
annotators could work directly on this task, i.e. after
fixing typos and sentence boundaries are identified and
the DI process is run.

Accordingly, after the data undergoes the various
clean up steps mentioned earlier, the data goes through
the DI process as follows:

(a) Transliterate the Arabic script of the blogs into
the Buckwalter Transliteration scheme (Buck-
walter, 2004) after the previous content clean
up tasks of typo and sentence boundary han-
dling. This process also identifies the foreign
word character encoding if they exist in the text;

(b) Use the DI pipeline to identify the DA words
within each document;

(c) Build a ranked list of all the surface DA words
observed in the input document set based on their
frequency of occurrence, while associating each
surface word with the sentences in which it oc-
curred in the document collection;

Thus, we have grouped the DA words by surface form
and used them as key entries in our database allowing

us the ability to access them easily with their recurrent
examples which are in turn identified uniquely by sen-
tence number and document number. For instance, let
us consider all the sentences where the surface word
éJ.»QÓ, mrkbh, appears in our data. For illustration in
this paper, we provide the English translation and the
Buckwalter transliteration, however in the actual inter-
face the annotators only see the surface DA word and
associated examples in Arabic script as they occur in
the data, but after being cleaned up from meta data,
html mark up, typos are fixed and sentence boundaries
identified.

. . . è @ @ @ @ @ @ @ @ AÖß
 éJ.»QÓ é
�
<Ë @ð PAJ
ÊK. ú




	
Gñ¢ªK
 ñË Aë Aë Aë Aë

Buckwalter Transliteration: hA hA hA hA lw
yEtwny blyAr wAllh mrkbh ymAAAAAAAAh ...

English Gloss: hahaha even if they give me a billion
I wouldn’t ride it muuuuuum

¨A
	
®
�
KP@

�
I. ��.

	
àAJ. K


	
X ø



X@ð úÍ@ éJ.»QÓ

	
¬Qm.

�
	
' @...

Buckwalter Transliteration: Anjrf mrkbh AlY
wAdy *ybAn bsbb ArtfAE ...

English Gloss: his boat drifted to the Dhibane valley
because of the increase of the level ...

é
	
KñºÊJ. ÊJ


	
¯ éJ.»QÓ ú



×A� èX

Buckwalter Transliteration: dh sAmy mrkbh
fylblkwnh

English Gloss: Samy has it set up in the balcony

These sentences are shown to the annotator and s/he
is asked to identify the number of lemmas for this
surface word. For instance, in the second example,
we find sentences where mrkbh appears as “his boat”
and in the first example it appears as “ride”. Accord-
ingly in these examples, the annotator should indicate
that there are three different lemmas for the surface
form mrkbh rendered in CCO transliteration scheme
as rikib, markib, and merakib, respectively.

Figure 5 shows an illustrating example.

4. Morphological Profile Creation: Only for those words
which have been already annotated with the lemma in-
formation in the previous step do we proceed for fur-
ther annotation. For those lemmas in the database al-
ready, we add more detailed morphological informa-
tion. The annotator is shown one lemma at a time with
a set of example sentences where the surface form of
the lemma is used. Thereafter the annotator is asked to
select a part of speech tag (POS-tag). Figure 7 shows
that when a POS-tag is selected the interface shows
the type of information required accordingly.

In all these tasks, the application is always keeping track of
the time that took each annotator for each task unit. Such
information is necessary to compare speed and efficiency
among annotators and also for the annotators themselves
to be able to compare themselves to the best and the worst
across a task.

95/119



Figure 5: Illustrating example of lemma creation.

5. The Database
For this application we need a sophisticated database. We
use the freely available Postgresql management sys-
tem4. The database system is able to save all the annota-
tions which we have described in Section 3.. But it also
holds other information concerning the users and their an-
notation times. Our database contains 22 relational tables,
which can be split into the following categories:

• Basic information: We have created a number of tables
which save basic information that is necessary for all
the tasks. By saving such information in the database
our application becomes very easy to update and main-
tain. For instance, if we decide to add a new POS-tag
we just have to add it in the appropriate table.

• Annotation: These tables are the core of the database.
For each of the annotation tasks described in Section 4.
it saves all the information entered by the annotator
while keeping the redundancy of the information at a
minimum. For instance, for each sentence in the data,
we want to save all the information entered about the
dialect, the lemmas and the morphological informa-
tion of the dialectal words while saving only one in-

4http://www.postgresql.org/

stance of the actual sentence in only one table and re-
late all the annotation records to it. Only by doing
so are we able to save information about millions of
words in the database while keeping it easily and ef-
ficiently accessible. Finally, we also save the time (in
seconds) taken by the annotators to complete the an-
notation tasks. This information is necessary for inter-
annotator speed comparison.

• Assignments: These tables hold information about
how many task assignments have been assigned to
each annotator and how many of them have already
been annotated and submitted. This is directly related
to the assignment task of the lead annotators described
in Subsection 3.2..

• Users Permissions: When a user is created, we assign
a certain category to her/him. This information is used
by all the scripts to decide on user privileges.

• Connection: Whenever a user is connected, this infor-
mation is communicated to the database. By doing so
we are able to deny a user to connect from two ma-
chines at the same time.

As mentioned in Section 1., our database is located on a
separate server from the web server. This web server can

96/119



Figure 7: Illustrating example of the requested information when an annotator chooses the POS-tag Noun or Verb.

Figure 6: Illustrating example of dialect annotation.

send requests to the database server through an ssh tunnel
which helps forward services between the two servers with
encrypted data.5

5http://www.ssh.com/support/documentation/online/ssh/adminguide/
32/Port Forwarding.html

6. Future Work
We are constantly updating our interface incorporating
feedback from the annotators and lead annotators on the
various tasks. The data that is annotated using our applica-
tion is intended to build efficient models of four different
dialects that cover all the major Arabic dialects. The mod-
els will be useful for several NLP applications:

• Automatic spelling correction;

• Automatic sentence boundary detection;

• Automatic dialect identification and annotation;

• Lemmatization and POS-tagging;

• Information Retrieval and Advanced search;

• Named Entity, foreign words and borrowed words de-
tection;

However, it is not possible to aim at such advanced appli-
cations without a consistent annotation where the efficiency
of the application which we describe in this paper plays a
pivotal role.

Acknowledgments
This work has been funded by ACXIOM Corporation.

97/119



7. References
N. Aswani and R. Gaizauskas. 2009. Evolving a general

framework for text alignment: Case studies with two
south asian languages. In Proceedings of the Interna-
tional Conference on Machine Translation: Twenty-Five
Years On.

Y. Benajiba, M. Diab, and P. Rosso. 2008. Arabic named
entity recognition using optimized feature sets. In Pro-
ceedings of EMNLP’08, pages 284–293.

T. Buckwalter. 2004. Buckwalter Arabic Morphologi-
cal Analyzer Version 2.0. Linguistic Data Consortium,
University of Pennsylvania, 2002. LDC Cat alog No.:
LDC2004L02, ISBN 1-58563-324-0.

D. Damljanovic, V. Tablan, and K. Bontcheva. 2008. A
Text-based Query Interface to owl Ontologies. In Pro-
ceedings of the 6th Language Resources and Evaluation
Conference (LREC).

M. Diab, N. Habash, O. Rambow, M. AlTantawy, and
Y. Benajiba. 2010a. COLABA: Arabic Dialect Annota-
tion and Processing. In Proceedings of the Language Re-
sources (LRs) and Human Language Technologies (HLT)
for Semitic Languages at LREC.

Mona Diab, Nizar Habash, Reem Faraj, and May Ahmar.
2010b. Guidelines for the Annotation of Dialectal Ara-
bic. In Proceedings of the Language Resources (LRs)
and Human Language Technologies (HLT) for Semitic
Languages at LREC.

C. A. Ferguson. 1959. Diglossia. Word, 15:325–340.
N. Habash, O. Rambow, M. Diab, and R. Kanjawi-Faraj.

2008. Guidelines for Annotation of Arabic Dialectness.
In Proceedings of the LREC Workshop on HLT & NLP
within the Arabic world.

J. Kahan, M.R. Koivunen, E. Prud’Hommeaux, and R.R.
Swick. 2001. Annotea: an open rdf infrastructure for
shared web annotations. In Proceedings of the WWW10
Conference.

D. Maynard. 2008. Benchmarking textual annotation tools
for the semantic web. In Proceedings of the 6th Lan-
guage Resources and Evaluation Conference (LREC).

M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna. 2002. Mnm: Ontology
driven semi-automatic and automatic support for seman-
tic markup. In Proceedings of the 13th International
Conference on Knowledge Engineering and Manage-
ment (EKAW).

98/119




