
A Python Toolkit for Universal Transliteration

Ting Qian1, Kristy Hollingshead2, Su-youn Yoon3, Kyoung-young Kim4, Richard Sproat5

University of Rochester1, OHSU2, ETS3, UIUC4, OHSU5

ting.qian@rochester.edu1, hollingk@cslu.ogi.edu2, syoon9@gmail.com3, kkim36@illinois.edu4, rws@xoba.com5

Abstract
We describe ScriptTranscriber, an open source toolkit for extracting transliterations in comparable corpora from lan-
guages written in different scripts. The system includes various methods for extracting potential terms of interest from
raw text, for providing guesses on the pronunciations of terms, and for comparing two strings as possible transliterations
using both phonetic and temporal measures. The system works with any script in the Unicode Basic Multilingual Plane
and is easily extended to include new modules. Given comparable corpora, such as newswire text, in a pair of languages
that use different scripts, ScriptTranscriber provides an easy way to mine transliterations from the comparable texts.
This is particularly useful for underresourced languages, where training data for transliteration may be lacking, and
where it is thus hard to train good transliterators. ScriptTranscriber provides an open source package that allows for
ready incorporation of more sophisticated modules — e.g. a trained transliteration model for a particular language pair.
ScriptTranscriber is available as part of the nltk contrib source tree at http://code.google.com/p/nltk/.

1. Introduction
This paper reports on a toolkit for extract-
ing transliteration pairs between scripts called
ScriptTranscriber. ScriptTranscriber includes
modules for producing guesses at pronunciations for
any word in any script in the Unicode Basic Multi-
lingual Plane; for computing edit distances between
strings using a variety of measures including phonetic
distance; for computing time correlations between
terms in comparable corpora; and providing a set of
prepackaged recipes for mining possible transliteration
pairs from comparable corpora. ScriptTranscriber
is useful in two major ways:

1. Given comparable corpora, such as newswire text,
in a pair of languages that use different scripts,
ScriptTranscriber provides an easy way to
mine transliterations from the comparable texts.
This is particularly useful for underresourced lan-
guages, where training data for transliteration
may be lacking, and where it is thus hard to train
good transliterators.

2. ScriptTranscriber provides an open source
package that allows for ready incorporation of
more sophisticated modules — e.g. a trained
transliteration model for a particular language
pair.

ScriptTranscriber consists of approximately 7,500
lines of object-oriented Python. Some of the mod-
ules require PySNoW, the Python interface to the
SNoW machine-learning package (Carlson et al., 1999)
available from the Cognitive Computation Group
at the University of Illinois at Urbana-Champaign.1

ScriptTranscriber is available as part of the
nltk contrib source tree at http://code.google.com/
p/nltk/ (Loper and Bird, 2002).

1PySNoW must be downloaded separately from http:

//l2r.cs.uiuc.edu/~cogcomp/.

2. Modules and classes

The modules and classes of ScriptTranscriber are
as follows.
First there is the XML document structure mod-
ule, an example of which is shown in Figure 1. The
top-level XML representation consists of a set of tu-
pled documents, ordered according to some reasonable
criterion such as time. Each doc element consists of
one or more lang elements, which represent the origi-
nal document(s) in the named language. Within each
lang are a set of tokens, in no particular order, which
represent terms—typically names—that have been ex-
tracted during the term extraction phase described be-
low, along with a set of possible pronunciations and
their counts. Within each doc, the lang elements are
intended to consist of terms derived from comparable
or parallel texts. For example, in Figure 1 the English
document is assumed to be comparable to the Chinese
document.
The term extractor class extracts interesting terms
from raw text, i.e. terms that are likely to be translit-
erated across scripts. We provide five specializations
of this:

• A simple capitalization-based extractor that looks
for sentence medial capitalized terms if the script
supports capitalization; otherwise just returns all
terms.

• A Chinese foreign name extractor. This extractor
uses a list of characters that are commonly used
to transliterate foreign words in Chinese, and ex-
tracts sequences of at least three such characters.

• A Chinese personal name extractor. This uses a
list of family names to find possible Chinese per-
sonal names.

• A katakana extractor, that extracts regions of
katakana from Japanese text; katakana is com-

2897

Figure 1: Sample comparable texts and extracted XML document structure (including just the extracted names) for
ScriptTranscriber.

monly used to transliterate foreign terms in
Japanese.

• A Thai extractor. This uses a discriminative
model (built using SNoW) to predict word bound-
aries in unsegmented Thai text, and then returns
all found terms.

Users can easily define their own extractors so that, for
example, if they have a good named entity extractor
for a language, they can simply define an interface to
that as a derived class of Extractor.
We also provide a morphological analyzer class, a
placeholder for a range of possible morphological ana-
lyzers. The one provided looks for words that share
common substrings and groups them into tentative
morphological equivalence classes, along the lines of
(Klementiev and Roth, 2006).
The pronouncer module provides a number of classes
to convert Unicode strings into phonetic strings; the
current version of the software uses WorldBet (Hi-
eronymus, 1993), an ASCII implementation of the In-
ternational Phonetic Alphabet (IPA). There are three
specializations of the pronouncer module provided:

• Unitran (Yoon et al., 2007), which provides
guesses on pronunciations for most grapheme code
points in the Unicode Basic Multilingual Plane
that are also used as scripts for languages. (For

example, the IPA code points are not covered,
since IPA is not used as the standard orthogra-
phy for any language.) So, for example, Korean
hangul 마 is given pronunciation ma, Cyrillic Ж
is given pronunciation Z, and Japanese katakana
マ is given pronunciation mA.

• English pronouncer: provides Festival-derived
pronunciations (Taylor et al., 1998) for about 2.9
million words.

• Hanzi (Chinese character) pronouncer. Provides
Chinese (Mandarin) and Native Japanese (kuny-
omi) pronunciations for characters. In some cases,
there may be more than one Mandarin or kuny-
omi pronunciation for a given character. In such
cases, the current implementation picks one pro-
nunciation (i.e. one Chinese pronunciation and
one kunyomi pronunciation, if there is a kuny-
omi pronunciation). For Chinese, in most cases
the variant pronunciations are minor variants so
that the choice of one pronunciation will not af-
fect the phonetic comparison, and comparing one
string is more efficient than comparing a lattice
of possible transcriptions. For Japanese, the sit-
uation is certainly more complex, since there are
multiple pronunciations for most characters, in-
cluding both Sino-Japanese and native Japanese
(kunyomi) pronunciations. ScriptTranscriber

2898

provides one native and one Sino-Japanese pro-
nunciation. The kunyomi module also computes
rendaku so that for example 梅干 is pronounced
as umebosu rather than umehosu.

While most of the pronunciation modules provided
produce single pronunciations for a given string, the
comparator module (below) will consider all possible
pronunciations assigned to a string. Thus it is straight-
forward to incorporate multiple pronunciations, and it
would also be straightforward to incorporate weighted
pronunciations; one would merely need to define a
comparator that makes use of pronunciation weights
in its scoring.
The comparator module provides the cost for the
mapping between strings. Three specializations are
provided:

• Hand-built phonetic comparator, which uses the
phonetic distance method of (Tao et al., 2006;
Yoon et al., 2007).

• Perceptron-based comparator. This uses a percep-
tron string-to-string transliteration model trained
on a dictionary of transliteration pairs, follow-
ing (Klementiev and Roth, 2006). The particular
model provided with ScriptTranscriber is based
on a 71,548 entry English/Chinese name lexi-
con from the Linguistic Data Consortium (http:
//www.ldc.upenn.edu), but the implementation
(which uses PySNoW (Carlson et al., 1999)) is
of course language-pair independent. It would
be straightforward to incorporate other learners,
such as Winnow, which are provided with the
SNoW toolkit.

• Time correlation comparator. For each doc, and
for each lang in the doc, we pair each extracted
term with the extracted terms in all the other
langs in the doc. Those pairs for which the pho-
netic match score is below some threshold can
be removed at this stage. We compute similar
pairs for each of the docs in the corpus. Then for
each pair, we compute the term-relative frequen-
cies across the entire corpus and, following (Sproat
et al., 2006), we compute the Pearson correlation
co-efficient of these relative frequency values.

ScriptTranscriber thus provides general methods
to get a baseline system up and running quickly
for any pair of languages. Clearly, for any given
pair of languages, more specialized methods — e.g.
segmenters for languages such as Thai or Japanese,
a trained morphological analyzer, more finely tuned
pronunciation models —will produce better results.
ScriptTranscriber makes it easy to incorporate
such methods. Furthermore, it is hoped that since
ScriptTranscriber is in the public domain, people
will be motivated to add specialized methods to the
toolkit.

#!/bin/env python

-*- coding: utf-8 -*-

"""Sample transliteration extractor based on the LCTL Thai parallel

data. Also tests Thai prons and alignment.

"""

__author__ = """

xxx@yyyy.zzz (Xxxxx Yyyyyyy)

"""

import sys

import os

import documents

import tokens

import token_comp

import extractor

import thai_extractor

import pronouncer

from __init__ import BASE_

A sample of 10,000 from each:

ENGLISH_ = ’%s/testdata/thai_test_eng.txt’ % BASE_

THAI_ = ’%s/testdata/thai_test_thai.txt’ % BASE_

XML_FILE_ = ’%s/testdata/thai_test.xml’ % BASE_

MATCH_FILE_ = ’%s/testdata/thai_test.matches’ % BASE_

BAD_COST_ = 6.0

def LoadData():

t_extr = thai_extractor.ThaiExtractor()

e_extr = extractor.NameExtractor()

doclist = documents.Doclist()

doc = documents.Doc()

doclist.AddDoc(doc)

Thai

lang = tokens.Lang()

lang.SetId(’th’)

doc.AddLang(lang)

t_extr.FileExtract(THAI_)

lang.SetTokens(t_extr.Tokens())

lang.CompactTokens()

for t in lang.Tokens():

pronouncer_ = pronouncer.UnitranPronouncer(t)

pronouncer_.Pronounce()

English

lang = tokens.Lang()

lang.SetId(’en’)

doc.AddLang(lang)

e_extr.FileExtract(ENGLISH_)

lang.SetTokens(e_extr.Tokens())

lang.CompactTokens()

for t in lang.Tokens():

pronouncer_ = pronouncer.EnglishPronouncer(t)

pronouncer_.Pronounce()

return doclist

def ComputePhoneMatches(doclist):

matches = {}

for doc in doclist.Docs():

lang1 = doc.Langs()[0]

lang2 = doc.Langs()[1]

for t1 in lang1.Tokens():

hash1 = t1.EncodeForHash()

for t2 in lang2.Tokens():

hash2 = t2.EncodeForHash()

try: result = matches[(hash1, hash2)] ## don’t re-calc

except KeyError:

comparator = token_comp.OldPhoneticDistanceComparator(t1, t2)

comparator.ComputeDistance()

result = comparator.ComparisonResult()

matches[(hash1, hash2)] = result

values = matches.values()

values.sort(lambda x, y: cmp(x.Cost(), y.Cost()))

p = open(MATCH_FILE_, ’w’) ## zero out the file

p.close()

for v in values:

if v.Cost() > BAD_COST_: break

v.Print(MATCH_FILE_, ’a’)

if __name__ == ’__main__’:

doclist = LoadData()

doclist.XmlDump(XML_FILE_, utf8 = True)

ComputePhoneMatches(doclist)

Figure 2: Sample use of ScriptTranscriber. This pro-
gram computes matches between English and Thai given a
sample comparable English-Thai corpus.

3. Sample Use

A sample use of the program is given in Figure 2. This
program loads some Thai and English data from the
distributed testdata directory, extracts terms from
each, builds and dumps an XML document represen-
tation, and computes phonetic distances for each pair
of terms in each document, dumping a best-first sorted
list of matches to a file.
Figure 3 shows a sample interactive use of the tools.
Here we compute the phonetic distance between the
same (nonsense) word lalagua transcribed in Chinese

2899

Figure 3: Interactive use of the ScriptTranscriber tools. (Note that ’>>>’ is the standard Python prompt. System
responses are indented to the left margin. The two script examples are Cherokee and Hanzi.) The Hanzi pronouncer
produces one Chinese and one Native Japanese pronunciation guess for the string. It is the Chinese one — lalakwa —
that will match with the Cherokee example.

and in Cherokee.

4. Performance

ScriptTranscriber, since it is written in Python
is not blindingly fast. To give a sense of the
speed we computed comparisons between 10,000
Chinese and English parallel sentences from the
ISI Chinese-English Automatically Extracted Parallel
Text Corpus (http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2007T09). On an
Intel Pentium 1.80GHz Dual CPU with 2G of mem-
ory, it takes about 18 seconds to load the sentences,
parse the sentences into documents, and run the Chi-
nese and English extractors. It takes an additional
22 seconds to compute 16,700 matches (760 matches
per second) using the phonetic distance comparator of
(Tao et al., 2006; Yoon et al., 2007) between English
and Chinese potential transliterations, and extract a
total of 320 matches that were above threshold. The
top 30 strongest matches from this corpus are given in
Table 1.

5. Summary

This short paper described ScriptTranscriber, an
open source Python toolkit for extracting transliter-
ation pairs from comparable corpora in languages that
use different scripts. It works with any script in the
Unicode Basic Multilingual Plane. The object-oriented
design of ScriptTranscriber means that it is easy to
extend to incorporate other more sophisticated mod-
els. ScriptTranscriber is available as part of the
nltk contrib source tree at http://code.google.com/
p/nltk/

6. Acknowledgments

Work reported here was partially funded by
NBCHC040176 from the US Department of the
Interior, a Google Research Award, and the National

Science Foundation under grant #0705708 to the
Center for Language and Speech Processing at tne
Johns Hopkins University.

7. References

Andrew Carlson, Chad Cumby, Je L. Rosen, and Dan
Roth. 1999. The SNoW learning architecture. Tech-
nical Report UIUCDCS-R-99-2101, UIUC CS Dept.

Jim Hieronymus. 1993. Ascii phonetic symbols for the
world’s languages: Worldbet.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discov-
ery from multilingual comparable corpora. In Pro-
ceedings of COLING-ACL 2006, Sydney, Australia,
July.

Edward Loper and Steven Bird. 2002. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-
tional linguistics, pages 63–70.

Richard Sproat, Tao Tao, and ChengXiang Zhai. 2006.
Named entity transliteration with comparable cor-
pora. In Proceedings of COLING-ACL 2006, Syd-
ney, July.

Tao Tao, Su-Youn Yoon, Andrew Fister, Richard
Sproat, and ChengXiang Zhai. 2006. Unsupervised
named entity transliteration using temporal and
phonetic correlation. In EMNLP 2006, Sydney, July.

Paul Taylor, Alan Black, and Richard Caley. 1998.
The architecture of the Festival speech synthesis sys-
tem. In Proceedings of the Third ESCA Workshop
on Speech Synthesis, pages 147–151, Jenolan Caves,
Australia.

Su-youn Yoon, Kyoung-young Kim, and Richard
Sproat. 2007. Multilingual transliteration using fea-
ture based phonetic method. In ACL.

2900

Chinese English Match score Chinese Pron English Pron
卡杜米 Kaddoumi 2.33 kh a t u m i k @ d u m i:
马尼拉 Manila 2.42 m a n i l a m & n I l &
卢萨卡 Lusaka 2.42 l u s a kh a l u s A: k &
夸祖鲁 Kwazulu 2.43 kh w a ts u l u k w A: z u l u
黎巴嫩 Lebanon 2.50 l i p a n & n l E b & n & n
希拉里 Hillary 2.58 C i l a l i h I l & r i:
迈克尔 Michael 2.58 m a i kh & &r m a I k & l
卡杜纳 Kaduna 2.67 kh a t u n a k A: d u n &
巴拿马 Panama 2.75 p a n a m a p @ n & m A:
曼德拉 Mandela 2.79 m a n t & l a m @ n d E l &
德拉卡马 Dhlakama 2.81 t & l a kh a m a d & l & k A: m &
突尼斯 Tunisia 2.92 th u n i s i t u n i: Z &
科威特 Kuwaitis 2.93 kh & w e i th & k u w e I t i: z
巴拉圭 Paraguay 3.00 p a l a k w e i p E r & g w e I
卡苏莱德 Cassoulides 3.00 kh a s u l a i t & k @ s u l a I d z
塔利班 Taliban 3.07 th a l i p a n t @ l & b & n
科威特 Kuwaiti 3.14 kh & w e i th & k u w e I t i:
霍梅尼 Khomeini 3.19 x w o m e i n i k o U m e I n i:
阿莱萨纳 Alesana 3.19 a l a i s a n a A: l e I s @ n &
萨利纳斯 Salinas 3.19 s a l i n a s i s & l i: n & s
巴基斯坦 Pakistan 3.22 p a cC i s i th a n p @ k I s t @ n
布特莱齐 Buthelezi 3.28 p u th & l a i cCh i b u t & l e I z i:
马普托 Maputo 3.29 m a ph u th w o m & p u t o U
伊拉克 Iraqis 3.30 i l a kh & I r @ k i: z
曼德勒 Mandalay 3.38 m a n t & l & m @ n d & l e I
纳米比亚 Namibia 3.38 n a m i p i j a n & m I b i: &
普林西比 Principe 3.39 ph u l i n C i p i p r i: n tS i: p i:
布达拉 Potala 3.42 p u t a l a p A: t A: l &
卡拉奇 Karachi 3.42 kh a l a cCh i k A: r A: tS i:
英格兰 England 3.43 i N k & l a n I N g l & n d
坦塔维 Tantawi 3.44 th a n th a w e i t @ n t A: w i:

Table 1: Top 30 matches from sample of 10,000 Chinese/English parallel sentences from the ISI Chinese-English Au-
tomatically Extracted Parallel Text Corpus. Pronunciations are in WorldBet. Only Kuwaitis, Kuwaiti and Iraqis are
technically wrong: the Chinese equivalents are for Kuwait and Iraq.

2901

