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Abstract
We present a collection of parallel treebanks that have been automatically aligned on both the terminal and the nonterminal constituent
level for use in syntax-based machine translation. We describe how they were constructed and applied to a syntax- and example-based
machine translation system called Parse and Corpus-Based Machine Translation (PaCo-MT). For the language pair Dutch to English,
we present evaluation scores of both the nonterminal constituent alignments and the MT system itself, and in the latter case, compare
them with those of Moses, a current state-of-the-art statistical MT system, when trained on the same data.
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1. Introduction
For statistical modeling in NLP, such as that used in ma-
chine translation, large parallel corpora are typically re-
quired. Most of the data-driven MT research has been per-
formed on flat sequence representations of sentences, on
strings. By using tree structures one can exploit the linguis-
tic relationships between words and phrases. This requires
syntactically parsing these corpora and aligning them on
the constituent level, producing a collection of parallel tree-
banks.
Various systems have been developed for non-terminal con-
stituent alignment, either making use of hand-crafted rules
(Menezes and Richardson, 2001; Groves et al., 2004)
or fully unsupervised methods (Zhechev and Way, 2008;
Lavie et al., 2008). We have opted to use Lingua-Align, a
supervised tree-to-tree aligner implementing discriminative
models (Tiedemann, 2010). We have also implemented a
recently developed rule-based algorithm to produce an ad-
ditional high recall version of our parallel treebanks, with
many more alignments added. Clean corpora are tokenized,
sentence aligned, parsed, word aligned and tree aligned.
The end result is two fully annotated and aligned sets of
parallel treebanks consisting of millions of sentence pairs
in four language combinations.
In current tree-based MT research, most systems use one
or another form of probabilistic synchronous context-free
grammars (SCFGs) such as the tree-based models of the
Moses toolkit (Koehn et al., 2007).1 There are other, more
complex types of synchronous grammars which can also
be learned from parallel treebanks and which accept trees
on both the left and right hand side of the grammar rules,
allowing such operations as raising and lowering of nodes
(Chiang, 2006). Depending on the operations that are al-
lowed, we distinguish between synchronous tree substi-
tution grammars (STSGs) (Schabes, 1990; Eisner, 2003)
which allow substitution, synchronous tree insertion gram-
mars (STIGs) (Nesson et al., 2006), which allow both
substitution and insertion; and synchronous tree adjoining
grammars (STAG) (Shieber and Schabes, 1990) which al-
low substitution, insertion and adjoinment.
We used the parallel treebank, with alignments at the con-

1http://www.statmt.org/moses/

stituent level to train the PaCo-MT system, which is a
syntax-based MT engine using an STSG transducer to
bridge the gap between source sentence parse tree and tar-
get language parse tree.
The remainder of the paper is organised as follows: Sec-
tion 2. describes how the parallel treebank was constructed.
Section 3. describes how we used this treebank as training
data for the PaCo-MT system, and section 4. draws conclu-
sions and describes future work.

2. Producing a parallel treebank
The parallel treebanks were produced by obtaining a col-
lection of parallel corpora containing only the raw text and
processed automatically by applying a series of tools. In
the next few sections, we describe in more detail how the
data was processed.

2.1. Data collection
We collected Dutch-English and Dutch-French subsets of
the following parallel corpora:

• Europarl 3 (Koehn, 2005), a corpus containing the pro-
ceedings of the European Parliament in several lan-
guages from 1996 to 2006.

• the DGT Multilingual Translation Memory of the Ac-
quis Communautaire: DGT-TM.2

• OPUS: the open parallel corpus (Tiedemann, 2009).3

• an additional private translation memory (Transmem).

2.2. Parsing
The corpora of all three languages involved were annotated
using separate monolingual parsers. We first parse all the
texts before they are sentence aligned. In doing so, we have
the maximum amount of trees available for target language
modeling.
The Dutch data was parsed using the Alpino parser (van
Noord, 2006). Some additional processing was applied in
order to make the resulting parse trees more uniform, for

2http://langtech.jrc.it/DGT-TM.html
3http://opus.lingfil.uu.se/
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example by adding unary branching, aiming at a reduction
in the number of patterns that occur. When Dutch data is
source language data, we removed nodes with separable
verb particles, and added these particles to the verb token
and lemma. When Dutch is the target language, no such
action was taken.
The English data was parsed using the Stanford parser
(Klein and Manning 2003) with dependency information
(de Marneffe and Manning, 2006).
We used the Berkeley parser (Petrov and Klein 2007) on
the French data. As the model does not add dependency in-
formation, we implemented head-finding rules in a similar
style as (de Marneffe and Manning, 2006).
Tables 1 and 2 display word and sentence pair counts of the
1:1 parallel treebanks.

2.3. Alignment
After parsing, the texts were extracted and sentence
aligned, after which they were matched with the parse trees,
resulting in a fully one-to-one mapping of parallel trees.
The sentence aligner of choice was Hunalign (Varga et al.,
2005).
Next, we processed the Dutch trees as mentioned above. As
a result, we have four different sets of parallel data, one for
each language pair and direction.
After producing the final set of one-to-one sentence pairs,
we proceeded to align the tokens. For this, we utilized
GIZA++ (Och and Ney, 2003), using the intersect and
grow-diag heuristics implemented by Moses (Koehn et al.,
2007) to produce a higher recall set of alignments suitable
for MT.
The next step is aligning the nonterminal constituents. Us-
ing the Stockholm TreeAligner (Lundborg et al., 2007), we
constructed a set of parallel alignments for each language
pair which functions as training data for the Lingua-Align
models. To achieve this, we imported the already exist-
ing word alignments for that particular set, and manually
drew links between the nonterminal nodes of all parallel
sentences, after which we trained our models and applied
them on the treebanks. Similar to what is used in word
alignment (Och and Ney, 2003) we make a distinction be-
tween ”sure” (or ”good”) and ”possible” links, where the
former are links which indicate exact equivalence, and the
latter include both sure and so-called ”fuzzy” links, which
are links which indicate an approximate equivalence that
are still considered useful for translational purposes.
We consider the alignments produced by Lingua-Align our
high precision data set. Although the models were tuned to
maximize balanced F-score, recall was consistently lower
than precision. Experiments suggested that linking well-
formed first-level subtrees sharing word alignments is gen-
erally accurate, and that the order of alignment matters
(Kotzé, 2011a; Kotzé, 2011b). This led us to develop a
bottom-up rule addition module that greedily links candi-
date subtree pairs using measures of similarity and the ex-
istence of word alignments and with more relaxed well-
formedness constraints, with the intention of implementing
it on data sets that are already aligned by Lingua-Align.
The algorithm states that all source tree nonterminal nodes
are traversed, starting on the first level above the terminals,

and, for every unlinked node considered, we check all un-
linked candidate target tree nonterminals, starting on the
same level as the source tree node. If conditions are sat-
isfied, a link is made before moving on to another subtree
pair. We recognize that traversing the target nodes first also
seems reasonable, but have not yet experimented with di-
rectionality (intersect, union, and so on).
For a link to be made, all of the following criteria need to
be met:

• The subtree pair must be well-formed. However, near
well-formedness is allowed as long as there are not any
good links to the outside of the trees and there is no
more than one fuzzy link to the outside. Punctuation
is ignored.

• The subtree pair must have a certain degree of similar-
ity. In this case, we define a good enough similarity as
one where both the leaf count similarity and leaf link
similarity scores (defined below) obtain values above
a certain threshold.

The leaf count similarity score is based on the ratio between
the number of leaves dominated by the source tree node
and the number of leaves dominated by the target tree node.
Similarly, the leaf link similarity score is based on the ratio
between the number of linked leaves and the total number
of leaves dominated by the source and target side subtrees.
For the leaf count similarity, the ratio, as in (Tiedemann and
Kotzé, 2009), is calculated as follows:

leafratio(si, tj) =
min(|sx ≤ si|, |ty ≤ tj |)
max(|sx ≤ si|, |ty ≤ tj |)

where si and tj are the respective candidate source and tar-
get side nodes, and sx are the leaves dominated by si and
ty are dominated by tj .
The linked leaf ratio is calculated as follows:

llr(si, tj) =

∑
sx

link(sx, si) +
∑

ty
link(ty, tj)∑

sx
leaf(sx, si) +

∑
ty

leaf(ty, tj)

leaf(sx, si) =

{
1 if sx ≤ si
0 otherwise

leaf(ty, tj) =

{
1 if ty ≤ tj
0 otherwise

link(sx, si) =

{
1 if sx ≤ si and ∃lsx ∈ L
0 otherwise

link(ty, tj) =

{
1 if ty ≤ tj and ∃lty ∈ L
0 otherwise

where l denotes a linked leaf and L is the set of all linked
leaves (aligned terminal nodes).
We found that the ratio should play a more important role
when the differences as explained above are greater. For
example, it is quite common that a subtree governing a sin-
gle terminal node should be linked to one that governs two
terminal nodes, but it seems less likely that a subtree gov-
erning three terminals should be linked to one with six, even
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Table 1: Word and sentence counts on the 1:1 Dutch/English and English/Dutch parallel treebanks.

Dutch-English English-Dutch
Corpus Sentence pairs Words Sentence pairs Words
Europarl 1,180,706 57,812,824 1,190,501 57,810,789
DGT-TM 478,972 19,974,703 484,186 20,222,021
OPUS+Transmem 1,097,834 20,393,721 1,102,958 20,493,131
Total 2,757,512 98,181,248 2,777,645 98,525,941

Table 2: Word and sentence counts on the 1:1 Dutch/French and French/Dutch parallel treebanks.

Dutch-French French-Dutch
Corpus Sentence pairs Words Sentence pairs Words
Europarl 1,188,022 60,987,015 1,188,757 61,231,725
DGT-TM 385,317 17,750,535 385,644 17,801,831
OPUS+Transmem 720,487 18,962,966 722,494 19,038,759
Total 2,293,826 97,700,516 2,296,895 98,072,315

though the ratios are the same. Manual investigation would
suggest that the same principle can be applied to linked leaf
ratios. We therefore introduce a penalty score to be sub-
tracted from the ratios, the results of which constitute the
leaf ratio similarity and linked leaf ratio similarity scores
respectively.
Simply subtracting the differences would lead to a score
below 0 in all cases except when the difference itself is 0.
Therefore, it seemed to be in order to normalize it against
an imagined maximum number of leaves. In this case, we
proceeded with trial and error, and set the denominator at
the value of 80.
We can now define our leaf ratio similarity score as follows:

lrs(si, tj) = leafratio(si, tj)−
abs(|sx ≤ si| − |ty ≤ tj |)

z

where z denotes the normalization value. Similarly, our
linked leaf similarity score can be expressed as follows:

lls(si, tj)

= llr(si, tj)

−
|sx ≤ si|+ |ty ≤ tj | − (|lsx ≤ si|+ |lty ≤ tj |)

z

Provisionally, we set our thresholds for the leaf ratio simi-
larity at 0.35 and for the linked leaf ratio similarity at 0.45.
Additionally, a link is made fuzzy if its value came within
the range of 0.05 of the thresholds. Finally, we assume that
sentence alignment is perfect and therefore change all fuzzy
links between root nodes to good.
We found that the parsers treated punctuation differently,
and that the existence of a punctuation mark inside or out-
side a subtree should not dictate an alignment decision as
much as for example a content word does. Another obser-
vation is that in many cases, subtrees should still be aligned
even if a fuzzy link goes to the outside - in other words,

when a token in one of the two subtrees links to a token
in another subtree. However, if a good link goes to the
outside, it is less likely that they should be linked. There-
fore, we have decided to allow for a certain amount of non-
wellformedness in the case of fuzzy links.
Table 3 presents the evaluation results of both our high pre-
cision and high recall approaches on a gold standard of 200
sentence pairs for Dutch to English, taking only nontermi-
nal alignments into account. The sentences were extracted
from Europarl and manually aligned using the Stockholm
TreeAligner. F-scores are balanced and are based on both
sure and possible links.

Table 3: Evaluation scores of high precision vs. high recall
approaches tested on a Dutch to English gold standard.

Data set Precision Recall F-score
High precision 93.3 61.2 73.9
High recall 72.0 82.3 76.8

Noticeable is the very significant decrease in alignment pre-
cision and a similar increase in recall. The F-score, though,
increases by almost 3%. Implementing our algorithm on
the full data set results in the statistics presented in table 4.
In section 3.3. we discuss the effects of training our system
on either set.

3. Using the parallel treebanks in MT

The preprocessing steps described in the previous section
allow to extract transduction rules: synchronous grammar
rules indicating the mapping of the source language trees
onto the target language trees. By keeping track of how
many times such mappings occur, we can add weights to
the synchronous grammar.
In the next section we describe how we extracted an STSG
from the parallel treebanks. An extraction of SCFGs,
STIGs and STAGs is also possible.
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Table 4: Counts of alignments applied to all the parallel treebanks

Language pair Moses/GIZA++ Lingua-Align Rules Total
Dutch/English 48,011,840 5,049,496 9,818,623 62,879959
English/Dutch 38,060,911 11,820,036 9,301,941 58,182,888
Dutch/French 46,976,046 9,128,714 6,021,967 62,126,727
French/Dutch 47,017,307 6,237,574 5,259,590 58,514,471
Total 180,066,104 32,235,820 30,402,121 242,704,045

3.1. Rule extraction
In the extraction of an STSG for our MT system, we limit
ourselves to grammar rules with a horizontally complete
subtree on both the source and the target side of each gram-
mar rule. Subtrees are horizontally complete (Boitet and
Tomokiyo, 1995) if, when a daughter node of a node is in-
cluded in the subtree, then so are all of its sisters.
Figure 1 is an example4 of two sentences aligned at both the
sentence and constituent level. For each alignment point,
either one or two rules are extracted. First, each align-
ment point is a lexical alignment, creating a rule that maps
a source language word or phrase to a target language one
(Figure 2 (a), (b) and (c)).

Figure 1: Two sentences with subsentential alignment.

Figure 2: Rules extracted from the alignments in Figure 1

(a) →

(b) → (c) →

(d) →

Secondly, each aligned pair of sentences engenders fur-
ther rules by partitioning each tree at each alignment point,
yielding non-lexical grammar rules. For these rules, the

4The edge labels have been omitted from these examples, but
were used in the actual rule induction.

alignment information is retained at the leaves so that these
trees can be recombined (Figure 2 (d)).
Figure 2 shows the four rules extracted from the alignments
in Figure 2.3.. Rules are extracted by passing over the entire
aligned treebank, identifying each aligned node pair and
recursively iterating over its children to generate a substi-
tutable pair of trees whose roots are aligned, and whose
leaves are either terminal leaves in the treebank or corre-
spond to aligned vertices. As shown in Figure 2, when a
leaf node corresponds to an alignment point, we retain the
information to identify which target tree leaf aligns with
each such source leaf.
Many such tree substitution rules recur many times in the
treebank, and a count is kept of the number of times each
pair appears, resulting in a stochastic synchronous tree sub-
stitution grammar.

3.2. The PaCo-MT engine
Figure 3 presents the general system architecture of the
PaCo-MT system (Parse and Corpus-based MT). A source
language sentence gets syntactically analysed by a parser,
that leads to a source language parse tree. We make an
abstraction of the surface ordering in the source language
parse tree and put the children of every node in a canonical
order.

Figure 3: The architecture of the PaCo-MT system

We transfer this unordered parse tree by applying tree
transduction with the transfer grammar, i.e. the grammar
rules as extracted from the parallel treebank, as explained
in section 3.1.. Note that the grammar also makes an ab-
straction of the surface ordering of both source and target
sides.
The transducer takes an unordered souce language parse
tree and applies the STSG. For every node in the source
parse tree, it looks for a grammar rule where the source lan-
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guage side matches any horizontally complete subtree with
the current node as its root.
When finding such a grammar rule, the corresponding tar-
get language side is inserted into the output forest.
The weight that the target side of the grammar rule will
get is calculated according to Formula 1. We multiply the
weight of the grammar rule with the relative frequency of
the grammar rule over all grammar rules with the same
source side. This is divided by an alignment point penalty,
favouring the solutions with the least alignment points.

W =
w(g)

(j + 1)app
× F (g)

F (dg)
(1)

where
w(g) = n

√∏n
i=1 w(A

g
i ) is the weight of the grammar rule,

which is the geometric mean of the weight of each in-
dividual occurence of alignment A, as produced by Lin-
gua::Align;
j is the number of alignment points, which is the number of
non-lexical frontier elements that are aligned in the gram-
mar rule;
app is the alignment points power parameter (app = 0.5);
F (g) is the frequency of occurrence of the grammar rule g
in the data;
F (dg) is the frequency of occurrence of the source side d
of g in the data.

The output of the transducer is a set of target language bag
of bags, i.e. a set of unordered trees, which we represent
as a weighted packed forest. Figure 4 shows an example of
a packed forest. More details about the transducer and the
PaCo-MT engine can be found in (Vandeghinste et al., in
press).
From this forest, the tree-based target language generator
determines the surface order and generates an n-best list
of translation alternatives by using a tree-based target lan-
guage model. This is described in detail in (Vandeghinste,
2009).

3.3. Experiments and results
In this section, we compare the results of the transduction
approach described in section 3.2. with the results from
(Vandeghinste and Martens, 2009), in which we applied a
top-down approach towards transduction and (Vandeghin-
ste and Martens, 2010), in which we applied a bottom-up
approach to transduction with on the fly rule generation.
We evaluated translation quality from Dutch to English
using BLEU (Papineni et al., 2002), NIST (Doddington,
2002), and translation edit rate (TER) (Snover et al., 2006).
In table 5 we compare the evaluation results of this ap-
proach with the results from (Vandeghinste and Martens,
2009) and from (Vandeghinste and Martens, 2010). There
is a 7.9% relative rise of BLEU score between the approach
from 2010 with the current approach. When we use the
same data, but with alignments focussing on a high recall
instead of a high precision, the BLEU score goes up with
another 14.36% relative rise. While we have made a large
progress in translation quality, we do not yet reach the same
quality level as Moses (Koehn et al., 2007), which reaches
a stunning BLEU score of 41.74 trained on Europarl alone.

Table 6 shows the effect of adding data to our model, grad-
ually adding the subcorpora to the training data. This
shows consistently better results for the conditions trained
on data where alignments were determined focussing on re-
call rather than precision. The effect of adding data to the
model is not entirely as expected. Overall, we can say that
the quality improves when adding more data, but this is not
the case when adding DGT-TM. The best results up till now
have been reached in the condition where we omit the data
from DGT-TM. A detailed analysis of the results will have
to reveal the reasons for this.

4. Conclusion and future work
We have described our work on the creation of a large
collection of richly annotated parallel treebanks that are
aligned on multiple levels. Furthermore, we have applied
these corpora to the development of a syntax-based MT sys-
tem using STSG grammars. Although we are still making
progress, there is still room for improvement, and we have
not reached the same quality level as Moses.
As all parts of the MT engine, apart from the monolingual
parsers, are language independent, we expect the approach
to be transposable to other language pairs. In future work
we will investigate how well this approach does on Dutch-
French, English-Dutch and French-Dutch.
Current results suggest that for our data setup, high recall
alignments are preferable to high precision alignments in
producing better MT results. We achieve this by combin-
ing statistical with rule-based alignment methods that as-
sume reasonably accurate word alignments and a degree of
isomorphism between the trees produced by the source and
target side parsers. For Dutch to English, at least, it has
proven to work reasonably well.
There is much that can be done to increase alignment ac-
curacy. Of course, more training data and further tuning
of parameters are likely to lead to better scores. It is also
possible to specify additional features to be integrated into
Lingua-Align. We are currently also investigating the effect
of more automatic error-correcting measures in the form of
a transformation-based learning system. Finally, the impact
of using different parsers and word alignment software still
has to be investigated more thoroughly.
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Figure 4: An example of a packed forest as output of the transducer for the Dutch sentence Het heeft ook een wettelijke
reden. Note that ? marks an alternation.

Table 5: Comparing the different transduction approaches for Dutch to English trained on Europarl

Transducer Prec/Recall BLEU NIST TER
V&M (2009) Precision 13.53 5.70 70.36
V&M (2010) Precision 20.65 6.44 63.72
PaCo-MT Precision 22.28 6.43 64.14
PaCo-MT Recall 25.48 7.36 61.12

Table 6: Evaluation of adding data to the model

Treebanks High Precision High Recall
BLEU NIST TER BLEU NIST TER

Europarl 22.28 6.43 64.14 25.48 7.36 61.12
Europarl+OPUS 22.71 6.57 64.68 26.23 7.40 61.63
Europarl+OPUS+DGT-TM 22.83 6.66 65.26 24.10 6.59 64.08
Europarl+OPUS+DGT-TM+Transmem 24.19 6.78 64.31 26.57 6.95 62.46
Europarl+OPUS+Transmem 29.12 7.68 60.04
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