

Re-ordering Source Sentences for SMT

Amit Sangodkar, Om P. Damani
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

E-mail: amits@it.iitb.ac.in, damani@cse.iitb.ac.in

Abstract

We propose a pre-processing stage for Statistical Machine Translation (SMT) systems where the words of the source sentence are
re-ordered as per the syntax of the target language prior to the alignment process, so that the alignment found by the statistical system
is improved. We take a dependency parse of the source sentence and linearize it as per the syntax of the target language, before it is
used in either the training or the decoding phase. During this linearization, the ordering decisions among dependency nodes having a
common parent are done based on two aspects: parent-child positioning and relation priority. To make the linearization process
rule-driven, we assume that the relative word order of a dependency relation’s relata does not depend either on the semantic properties
of the relata or on the rest of the expression. We also assume that the relative word order of various relations sharing a relata does not
depend on the rest of the expression. We experiment with a publicly available English-Hindi parallel corpus and show that our scheme
improves the BLEU score.

Keywords: SMT, Statistical Machine Translation, Dependency Parsing, Reordering.

1. Introduction

In an end-to-end setting of machine translation system

based on linguistic knowledge, we explore the

applicability of Dependency Parsing (Marneffe et. al.

2006) based reordering for Statistical Machine

Translation (SMT) where the words of the source

sentence are re-ordered as per the syntax of the target

language prior to the alignment process, so that the

alignment found by the statistical machine translation

system is improved. We experiment with a publicly

available English-Hindi parallel corpus and show that our

scheme improves the BLEU score.

A statistical machine translation system aligns the words

of a source language sentence with the words in the

translation in a target language sentence in a parallel

corpus and builds a phrase table. It uses this phrase table

to translate a new source language sentences into target

language sentences, in a process called decoding. During

decoding source sentence is partitioned into phrases,

translation for each phrase is looked up in a phrase table,

and the resulting phrase translation fragments are

reordered to generate a word ordering most suitable for

the target language.

The success of any machine translation system depends

on how well the source language words are aligned with

the target language words during the phrase table build-up

and how well the reordering mechanism is able to produce

a word order that resonates with the target language

syntax. It is reasonable to guess that closer the syntax of

the source and target language, better will be the

alignment between the source and target language

phrases, resulting in an improved quality of the output

sentence. For example, consider the English sentence

Ram broke the window whose Hindi translation is Ram ne

khidki todi. In a pre-processing phase, this English

sentence can be re-ordered as per Hindi syntax to Ram the

window broke. As can be seen, the re-ordered sentence

has a better word-order matching with the Hindi sentence

as compared to the original English sentence. And the

hope is that such a pre-processing may improve the

quality of the phrase alignment in the SMT system.

Towards this goal of better alignment, we take a

dependency parse of the source sentence and linearize it

as per the syntax of the target language. Unlike earlier

approaches discussed in Section 3, we do not perform

Tree Transformation. Instead we do a transformation

similar to Descending Transfer (Boitet 2003), where the

parse tree on the source side is directly linearized as per

the syntax of the target language. The ordering decisions

among dependency nodes having a common parent are

done based on two aspects: parent-child positioning and

relation priority. To make the linearization process

rule-driven, we assume that the relative word order of a

dependency relation’s relata does not depend either on the

semantic properties of the relata or on the rest of the

expression. We also assume that the relative word order of

various relations sharing a relata does not depend on the

rest of the expression.

While we have experimented with English-Hindi

language pair, we believe that our approach should be

tried for other language pairs where a dependency parser

is available for the source language and the syntax of

source and target language differs substantially.

2. System Architecture

The architecture of our system is shown in Figure 1. In

this system, the words of the source sentence are

reordered as per the syntax of the target language before

being fed to the statistical machine translation system.

This reordering takes place in following steps:

 A dependency parse (Marneffe et. al. 2006) tree

of the source sentence is obtained.

 As explained in Section 4.1, the dependency

parse is processed and certain nodes are

collapsed.

 This modified dependency parse tree is

2164

linearized as per the syntax of the target

language.

The reordered sentence is then fed to the SMT system and

the SMT system learns the language model and builds a

phrase table based on the re-ordered sentences instead of

the original sentences. We have used the Moses toolkit

(Koehn et. al. 2007) for statistical machine translation and

the Stanford Parser (Marneffe et. al. 2006) for the

dependency parsing.

3. Related Work

The idea of reordering the source sentences as per the

target language syntax is not new. Indeed, in any

traditional translation system, reordering has to happen at

some stage or another – an idea captured by the Vauquois

triangle (Vauquois 1968; Boitet 2003), as shown in Figure

2. With the advent of statistical MT the traditional

Vauquois triangle appeared to become irrelevant.

However as the experience with languages with

significant word-order differences grew, several

researchers felt the need for syntax based reordering. The

main difference between our approach and those given in

(Collins et. al., 2005; Genzel, 2010; Habash, 2007;

Isozaki 2010; Wang, 2007; Xia and McCord, 2004, Xu et

al., 2009) is that these researchers are working on Tree

Transformations – Syntactic Transfer phase in terms of

the Vauquois triangle shown in Figure 2, while our

approach is similar to that of Descending Transfer from

Syntactic Structure to Words in the Vauquois Triangle. In

traditional Vauquois triangle, the transfer happens from

the source side to the target side, while in our case the

transfer/reordering happens from the source side to source

side only. While the work in (Collins et. al., 2005; Isozaki

2010; Wang, 2007; Xu et al., 2009) is based on manual

rewrite rules, the effort in (Genzel, 2010; Habash, 2007;

Xia and McCord, 2004) is focused on finding automatic

tree-transformation rules.

We have used the Stanford parser for the purpose of

dependency parsing. There are a number of other

dependency parsers like Minipar (Sleator and Temperley

1993) and Link Parser (Lin 1998) that could also have

been used in our system. These parsers differ in both, the

dependency structure (which pair of words get related)

and dependency typing (which is the relation for a given

pair of words). Also, the granularity of the relation set is

different. For instance, Link parser has a very fine-grained

relation set of 106 relations whereas Stanford Parser and

Minipar maintain an intermediate level of granularity

with 48 and 59 relations respectively. Comparison among

dependency parsers is discussed in more detail in

(Marneffe et. al. 2006)`. We chose the Stanford parser

since it has the right level of granularity in its dependency

scheme and is a reasonably well performing parser. Also,

Stanford parser is a syntactic-semantic parser i.e. relations

also depict the semantics to some extent.

For a given typed dependency relation set, a number of

parser optimizations can be performed. A discussion of

some of the parser optimizations and other related issues

can be found in (Katz-Brown 2010; Nivre 2008; Zhang

and Clark 2008).

We have not separately evaluated the reordering quality

but have simply evaluated its end-to-end impact in our

system. Birch and Osborne (2010) have proposed

LRScore, a language independent metric for evaluating

the lexical and word reordering quality. For the

end-to-end evaluation, we have stuck with BLEU

(Papineni et. al. 2002) in this preliminary investigation

and have not considered the alternatives like Meteor

(Lavie and Denkowski 2009), despite being aware of its

limitations (Ananthakrishnan et. al. 2007).

4. Dependency Parsing

Dependency parse is a syntactic representation expressing

the binary relation between the words of a sentence.

Consider the following example:

Sentence 1. Many Bengali poets have sung songs in

praise of this land.

The dependency parse given by the Stanford Parser is:

Figure 1: System Architecture

2165

Dependency Parse:

amod (poets-3, Many-1)

nn (poets-3, Bengali-2)

nsubj (sung-5, poets-3)

aux (sung-5, have-4)

dobj (sung-5, songs-6)

prep_in (sung-5, praise-8)

det (land-11, this-10)

prep_of (praise-8, land-11)

A tree representation of the dependency parse of Sentence

1 is shown in figure 2.

The dependency parse of Sentence 1 consists of relations

such as nsubj (subject), dobj (direct object), amod

(adjectival modifier), nn (noun-noun compound), and

prep (preposition) and so on. The detailed description of

the dependency relations can be found in (Stanford

Dependencies Manual, 2008). The first word of the

relation is called the parent and the second word is called

the child.

In Stanford Parser, there are forty-eight typed

dependency relations arranged in a hierarchical manner

with the most generic relation dep as the root. This is the

dependent relation which is used as default when the

parser fails to identify any specific relation between two

semantically related words in a sentence.

We use the Stanford Parser with the typeDependencies

option.

4.1 Dependency Tree Modification

As explained in Section 2, in our system, a dependency

Figure 3: Dependency Parse of Sentence 1

Figure 2: Modified Dependency Tree

Semantic Transfer

Figure 2: Vauquois triangle.

Syntactic Transfer

Direct Transfer
Words Words

Syntactic
Structure

Syntactic
Structure

Semantic
Structure

Semantic
Structure

Interlingua

Descending
Transfer
(our
approach)

2166

Table 1: Re-order Algorithm execution sequence

parse of the input sentence is obtained and the

dependency tree is pre-processed before being fed to

reordering sub-system. We perform two types of

pre-processing:

 All auxiliary verbs are removed from the tree

and post-fixed to their respective main verb.

Relations aux and auxpass are removed from the

tree as well. So, in case of Sentence 1, relation

aux (sung-5, have-4), is removed and “have” is

attached to “sung” to form the combined unit

“sung_have”.

 Similarly, prepositions are represented as

prep_xxx dependency relations. The

corresponding preposition is extracted and

re-inserted appropriately with the parent or child.

In Sentence 1, preposition “in” is extracted from

“prep_in” and post-fixed to child “praise”. The

modified tree is shown in figure 3.

 part words (prt relation - e.g. shut down -
prt(shut,down)) are post-fixed to the parent to
form a single word (shut_down in this case) and
the prt relation is removed from the dependency
tree.

5. Linearization

The modified dependency parse tree of the source

sentence is fed to the reordering subsystem. In the

reordering phase, the dependency parse tree of the source

sentence is linearized as per the syntax of the target

language. For graphical input like a dependency parse,

syntax planning is simply a graph traversal problem. The

re-ordering scheme is similar to that used in (Singh, 2007)

for ordering the relations of an Interlingua called UNL

(Uchida et. al., 1999). The traversal ordering decisions

among dependency relations having a common parent are

done based on two aspects: parent-child positioning and

relation priority.

5.1 Parent-child Positioning

Some relations are such that the parent of these relations is

ordered before the child and in some cases it is the other

way round. Examples of the former type are conj

(conjunction), appos (apposition), advcl (adverbial

clause), ccomp (clausal complement), rcmod (relative

clause modifier). For instance, in Sentence 1, one of the

dependency relation is prep_of (praise-8, land-11). In

Hindi, land is ordered before praise i.e. the child is

ordered before the parent for the relation prep_of, unlike

English where the parent of prep_of relation is ordered

before the child.

For each dependency relation we mark it as parent-before

child or child-before-parent.

5.2 Prioritizing the Relations

When a parent has multiple children in the dependency

parse tree, the children nodes of the parent need to be

ordered. This is done by assigning a priority to each

relation. Higher the priority of a relation, the

corresponding child node (relata) is ordered leftmost as

compared to other relatas. In dependency parse of

Sentence 1, among the children of node sung, nsubj has

higher priority than dobj and prep_in has a lower priority

than nsubj but higher priority than dobj. As a result, child

word praise of prep_in is ordered between the child word

Step State

1 Stack={} Current=sung_have Output={}

2.1 Before-Current={poets, praise_in, songs}

2.2 Sorted Before-Current={songs, praise_in,

poets}

2.3 Stack={sung_have, songs, praise_in, poets}

1 Stack={sung_have, songs, praise_in}

Current=poets

2.1 Before-Current={Many, Bengali}

2.2 Sorted Before-Current={Bengali, Many}

2.3 Stack={sung_have, songs, praise_in, poets,

Bengali, Many}

1 Stack={sung_have, songs, praise_in, poets,

Bengali}

Current=Many

3 Current=Bengali Output={Many}

3 Current=poets Output={Many, Bengali}

3 Stack={sung_have, songs, praise_in}

Output={Many, Bengali, poets}

1 Stack={sung_have, songs, praise_in}

Current=praise_in

2.1 Before-Current={land_of}

2.3 Stack={sung_have, songs, praise_in, land_of}

1 Stack={sung_have, songs, praise_in}

Current=land_of

2.1 Before-Current={this}

2.3 Stack={sung_have, songs, praise_in, land_of,

this}

1 Stack={sung_have, songs, praise_in, land_of}

Current=this

3 Stack={sung_have, songs, praise_in}

Current=land_of

Output={Many, Bengali, poets, this}

3 Stack={sung_have, songs, praise_in}

Output={Many, Bengali, poets, this, land_of}

1 Stack={sung_have, songs} Current=praise_in

3 Stack={sung_have, songs}

Output={Many, Bengali, poets, this, land_of,

praise_in}

1 Stack={sung_have} Current=songs

3 Stack={sung_have}

Output={Many, Bengali, poets, this, land_of,

praise_in, songs}

1 Stack={} Current=sung_have

Output={Many, Bengali, poets, this, land_of,

praise_in, songs, sung_have}

3 Stack={}

Output={Many, Bengali, poets, this, land_of,

praise_in, songs, sung_have}

2167

poets of nsubj and child word songs of dobj in the

reordered Sentence 1.r.

This pair wise priority among dependency relations can

be represented in the form of a square matrix of all

relations. A portion of it is shown in Table 2. An ‘L’ in the

i
th

 row and j
th

 column means that i
th

 relation is to the left of

the j
th

 relation in the re-ordered sentence. A ‘-‘ is present

in case two relations should not be compared. It implies

that the matrix is reverse symmetric.

 nsubj dobj Prep amod nn

nsubj - L L - -

Dobj R - R - -

Prep R L - L L

amod - - R - L

Nn - - R R -

Table 2: Example Priority Matrix for pair-wise

priority among a subset of dependency relations

 Table 3: EILMT datasets used for evaluation

5.3 Re-ordering Algorithm

The following algorithm does re-ordering by using the

Parent-Child positioning rules and sorting on relation

priorities. It is similar to that used in [Singh 2007], except

that unlike UNL, dependency parse does not result in

non-atomic nodes called scope node.

Initialization: Put the root node on the Stack.

Begin-Algo

While the stack is non-empty:

1. Pop the top node from the stack and make it

Current.

2. If the Current node is not marked

2.1 Mark the node and divide the children

of current node into Before-Current and

After-Current groups based on the

parent-child positioning rules of the

relations.

2.2 Topological Sort each group in

ascending order based on the pair wise

priorities of the relations.

2.3 Push them on the stack in

sorted-after-current, current,

sorted-before-current order.

3. Else if the node is marked, output the Current

node.

End-Algo

Table 1 shows the sequence of execution of the algorithm

for sentence 1. The final re-ordering of Sentence 1 with

function words is:

Sentence 1.r (Reordered) Many Bengali poets this

land of praise in songs sung have.

It is similar to the syntax of the corresponding Hindi

sentence:

कई बॊगाऱी कवियों ने ईस महान भूमम की प्रशॊसा के गीत गाये है

“Kai kaviyon ne is mahaan bhoomi ki prashansa ke geet

gaaye hai”.

6. Performance Evaluation

We have evaluated the performance of our system for

English to Hindi statistical machine translation.

6.1 Dataset Used

We have used the publicly available EILMT datasets

provided during SMT Tools contest, International

Conference on Natural Language Processing (ICON)

2008. The details of the datasets are as given in Table 3.

6.2 Experimental Setting

We have used the Moses toolkit (Koehn et. Al. 2007) as

the statistical machine translation system. For Hindi

language model, trigram model is used. The SRILM

toolkit is used for language modelling. The Baseline

system constitutes only pure Moses without any kind of

pre or post processing. The SMT system is trained on the

training corpus. The development corpus is used to set

weights to the language model, distortion model and the

phrase translation model. This process is also called

tuning. For tuning, the minimum error rate training (mert)

is used. Finally, the decoding is performed using Moses

decoder. In case of reordering, a similar procedure is

followed. The only difference is that now, the English

corpus (training, tuning, and testing) is reordered before

the SMT step. The English sentences are reordered based

on the dependency parse of the sentence.

Initially the training corpus is cleaned. Sentences with

length greater than 40, empty lines, and redundant spaces

were removed. Then a 6-gram language model is learnt.

After this the entire Moses tool is trained using

train-factored-phrase model with alignment option as

grow-diag-final and reordering option as

msd-bidirectional-fe. This training is done using the

original sentences.

After the training process, the tool is tuned with tuning

scripts provided with Moses. Using the tuned system,

Corpus #sentences #words

(English)

#words

(Hindi)

EILMT

Training 6500 130585 156010

Develop. 467 9541 11419

Testing 472 9529 11335

2168

translation of development data and testing data is done.

Maximum phrase length used for the decoding is seven.

In the next step, the process is repeated with re-ordered

English sentences instead of the original English

sentences.

6.3 Experimental Results

Our results are summarized in the Table 4.

Corpus Baseline Re-ordered

Devlop. Test Devlo

p.

Test

EILMT 0.149 0.145 0.175 0.160

Table 4: BLEU scores

The BLEU score has improved from 0.145 to 0.175 using

development data and the score on test data also shows

improvement from 0.145 to 0.160 for EILMT data set.

These results in improvement in the translation output of

Moses system, using the re-ordered source language

sentences, over the baseline system.

6.3.1 Sample Output

Some sample output translations from SMT system are

shown. E is the English sentence, RE is the reordered

English sentence, B is the hindi translation using the

Baseline, R is the hindi translation using the re-ordered

technique with RE as input to the SMT system.

Figure 4: An example showing positive impact of
reordering

Figure 5: An example showing negative impact of
reordering

6.4 Error Analysis

The improvement over baseline is lower than expected.

The main source of error is the parse errors of the

Dependency Parser wherein the relation among words is

captured incorrectly. The small size of the parallel corpus

is also the reason for low accuracy.

6.4.1 Small Corpus Size

The training corpus contains only around 6500 sentences.

The problem of data sparsity is reflected in the output. So,

there are several missing words which are not translated.

Also, low frequency of words results in incorrect phrase

table entries causing incorrect phrase translation during

decoding.

6.4.2 Parsing Errors

In case the Stanford parser is unable to identify a specific

relation for a particular dependency, it qualifies that

relation generically as a dep (dependent) relation. For

example, consider the output of Stanford parser for the

following sentence: the hill station is very charming in

winter when the rains have stopped. The parser gives a

dependency dep(winter, stopped) where the correct

relation is rcmod.

In some cases, the parser labels a dependency incorrectly.

For example, consider the following sentence: The jeep

safari refreshes and revitalizes. The parser wrongly

interprets safari as a verb (POS=VBZ) and refreshes,

revitalizes as nouns (POS=NNS) because of which all the

dependencies are garbled. For instance, we get

nsubj(safari,jeep) instead of amod(safari,jeep).

To be fair, our corpus is also a peculiar corpus with many

constructs that are specific to Indian English and maybe

the parser needs to be trained with such a corpus before it

can be expected to give good performance.

6.4.3 Other Reordering Errors

We have made many simplifying assumptions which do

not always hold true in practice:

 Fixed Priority: Certain pair of relations do not

follow a definite priority order in all cases.

Since, we have assigned a definite priority order

for all pairs of relations, the reordering can go

wrong in these cases. Similarly, the relation

precedence can also differ based on the situation.

For example, bay of bengal and hundreds of

years have a similar dependency parse

representation. However, the order of the words

as per Hindi syntax is different. The former,

bengal of bay(बॊगाऱ की खाड़ी), shows a

child-before-parent precedence and the latter,

hundreds of years (सैकड़ो साऱ), shows a

parent-before-child precedence.

 Ordering Relative Clauses: Relative clauses

follow a Parent-before-child precedence. For

example, the sentence An insect called

stem-borer has affected watermelon.is reordered

as insect, stem-borer called, watermelon affected

has. The relative clause, called as stem-borer is

ordered after its parent, insect. Although the

translation is acceptable, there is a loss of

fluency. A more fluent translation would

E: these lovely pavilions were constructed by the
Mughal emperor shah jahan.
RE: these lovely pavilions the Mughal emperor
shah jahan by constructed were

E: the village has a number of interesting antique
shops and cafes.
RE: the village interesting antique shops and cafes
of a number has

2169

correspond to reordering stem-borer called

insect watermelon affected has.

Also, cases where the relative clause is better

placed towards the end of the sentence or

attached to the word that it is associated with,

need to be determined.

 Adverbial Clauses and Markers: Adverbial

clauses are typically ordered after the verb that

they qualify. Hence, advcl relation obeys a

parent-before-child precedence. Now, consider

conditionals, such as, if you come, then I shall

eat, where the dependency relation is

advcl(eat,come). The desired reordering as per

Hindi syntax is if you come, then I eat shall (यदद

तुम आओगे तो में खाऊॉ गा) which indicates the

child come is ordered before parent eat. If we

follow a parent-before-child precedence here,

the reordered output would be, then I eat shall, if

you come (तो में खाऊॉ गा यदद तुम आओगे)

Similarly, markers (words connecting clauses

like because, since, before etc.) are generally

ordered before the parent (child-before-parent

precedence). Now consider the sentence he lived

in delhi before he moved to mumbai. Here the

dependency relations of interest are

advcl(live,move) and mark(move,before).

The desired reordering for this sentence is he

mumbai to moved before he delhi in lived (िह

मुॊबई आने से पहऱे ददल्ऱी में रेहता था). Here, both

the exceptions hold i.e. the child of advcl relation

move has to be ordered before the parent live and

the marker before has to be ordered after the

clause containing move. Such cases are not

handled well in our system. With our existing

relation precedence rule, reordered sentence

would be, he delhi in lived before he mumbai to

moved (िह ददल्ऱी में रेहता था से पहऱे मुॊबई आने)

Essentially this shows that the priority rules have

to be lexicalized, if we want to handle all corner

cases.

 Clausal Complement relation: The relation

ccomp occurs in two cases: (i) He says that you

like swimming - ccomp(say,like), (ii) situated

near the sea, mumbai is a nice place -

ccomp(place,situated).

In (i), as per Hindi syntax, he says that you

swimming like, says should be ordered before

like - a parent-before-child precedence holds.

However, in (ii), although, parent-before-child

precedence gives an arrangement that is

acceptable, the construction of the sentence is

such that it consists of two separate parts whose

order should be maintained in the target

language, which gives an arrangement as the sea

near situated mumbai a nice place is (समॊदर के

ननकट स्थथत मुॊबई एक अच्छी जगह है). So situated

should be ordered before place which indicates

that a child-before-parent precedence holds in

this specific case.

 Inconsistency of relative clause, conjunction,

neg, cop: These relations are applicable to both

type of parents: verbs as well as nouns. In

verb-parent case, they follow a order of

parent-neg-cop-partmod-conj whereas for

noun-parent, the order is parent-rcmod-conj -neg

-cop.

To some extent, this inconsistency can be

resolved by exploiting the phrase structure parse

provided the phrase structure parse denotes the

relative clause or conjunctive clause as a

sentential part, and the main clause (along with

neg,cop children) as a separate sentential part.

Then we can group sentential parts together, so

that these parts are ordered as a single entity and

the components of these parts are not mixed with

other parts during the reordering process.

7 Conclusions and Future Work

We have demonstrated that reordering the source sentence

as per the syntax of the target language has the potential of

improving the performance of a statistical machine

translation system. However, our study is limited by the

performance of the dependency parser and the size of the

parallel corpus. In future, this study can be extended in a

number of ways:

 By employing different dependency parsers

 By training dependency parsers with a corpus of

Indian English sentences as opposed to

American or British English

 Using a larger corpus

 Working with different language pairs

 Using other evaluation metrics. Also, instead of

doing just end-to-end evaluation, quality of

reordering alone can be determined.

 Automatic determination of priority relations

from a large reordered corpus.

8 Acknowledgements

This work was supported in part by the TCS sponsored

project Laboratory for Intelligent Internet Research. We

also wish to thank the English to Indian Languages

Machine Translation (EILMT) Consortium funded by the

Government of India for making the relevant datasets

available.

9 References

R. Ananthakrishnan, P. Bhattacharyya, M. Sasikumar and

R. M. Shah (2007). Some Issues in Automatic
Evaluation of English-Hindi MT: More Blues for
BLEU, Int. Conference on Natural Language
Processing (ICON) 2007.

A. Birch and M. Osborne (2010). LRscore for evaluating

lexical and reordering quality in MT. In ACL-2010

Workshop on Statistical Machine Translation

(WMT).
C. Boitet, (2003). « Automated Translation », Revue

française de linguistique appliquée, 2003/2 Vol. VIII,

2170

p. 99-121.
M. Collins, P. Koehn, and I. Kuˇcerov´a. (2005). Clause

restructuring for statistical machine translation. In
Proceedings of Association for Computational
Linguistics Conference (ACL) 2005.

D. Genzel. (2010). Automatically learning source-side
reordering rules for large scale machine translation.
In Proceedings of the International Conference on
Computational Linguistics. (COLING) 2010.

N. Habash. (2007). Syntactic preprocessing for statistical
 machine translation. Machine Translation Summit XI,

2007.
H. Isozaki, K. Sudoh, H. Tsukada, and K. Duh. (2010).

Head finalization: A simple reordering rule for
SOV languages. In ACL-2010 Workshop on
Statistical Machine Translation (WMT).

J. Katz-Brown, S. Petrov, R. McDonald, D. Talbot, F.
Och, H. Ichikawa, M. Seno and H. Kazawa (2011).
Training a Parser for Machine Translation
Reordering. In Proceedings of the Empirical Methods
in Natural Language Processing (EMNLP), 2011.

Philipp Koehn et. al. (2007) Moses: Open Source Toolkit
for Statistical Machine Translation, In Proceedings of
Association for Computational Linguistics
Conference ACL 2007, demonstration session.

A. Lavie and M. Denkowski. (2009). The Meteor metric

for automatic evaluation of machine translation.

Machine Translation, 23(2-3).
D. Lin. (1998). Dependency-based evaluation of

MINIPAR. In Workshop on the Evaluation of Parsing
Systems, Granada, Spain.

Marie-Catherine de Marneffe, Bill MacCart ney and
Christopher D. Manning, (2006) Generating Typed
Dependency Parses from Phrase Structure Parses.
In Proceedings of Lexical Resource Evaluation
Conference (LREC). 2006.

Stanford Dependencies Manual (2008), Available at
http://nlp.stanford.edu/software/dependencies_manu
al.pdf.

J. Nivre. 2008. Algorithms for deterministic incremental

dependency parsing. Computational Linguistics,

34(4).

K. Papineni, S. Roukos, T. Ward, and W. Zhu. (2002).

BLEU: a method for automatic evaluation of

machine translation. In Proceedings of Association

for Computational Linguistics Conference (ACL)

2002.
Daniel D. Sleator and Davy Temperley. 1993. Parsing

English with a link grammar. In Third International
Workshop on Parsing Technologies.

S. Singh, M. Dalal, V. Vachhani, P. Bhattacharyya, O. P.
Damani (2007). Hindi Generation from Interlingua
(UNL), Machine Translation Summit XI, 2007.

D. Talbot, H. Kazawa, H. Ichikawa, J. Katz-Brown, M.
Seno, and F. Och. (2011). A lightweight evaluation
framework for machine translation reordering. In
EMNLP-2011 Workshop on Statistical Machine
Translation (WMT).

H. Uchida, M. Zhu, M. et al.. (1999). Universal
Networking Language: A gift for a millennium. The
United Nations University, Tokyo, Japan.

C. Wang. (2007). Chinese syntactic reordering for
statistical machine translation. In Proceedings of the
Empirical Methods in Natural Language Processing

(EMNLP), 2007.
F. Xia and M. McCord. 2004. Improving a statistical MT
 system with automatically learned rewrite patterns.

In Proceedings of the International Conference on
Computational Linguistics. (COLING) 2004.

P. Xu, J. Kang, M. Ringgaard, and F. Och. 2009. Using a
 dependency parser to improve SMT for

subject-objectverb languages. In Proceedings of the
North American Chapter of the Association for
Computational Linguistics - Human Language
Technologies (NAACL HLT) 2009.

Y. Zhang and S. Clark. 2008. A tale of two parsers:
Investigating and combining graph-based and
transition based dependency parsing. In Proceedings
of the Empirical Methods in Natural Language
Processing (EMNLP), 2008.

2171

